Advertisement

Food and Bioprocess Technology

, Volume 10, Issue 4, pp 630–638 | Cite as

A Non-invasive Real-Time Methodology for the Quantification of Antioxidant Properties in Coffee During the Roasting Process Based on Near-Infrared Spectroscopy

  • Tiago A. Catelani
  • Ricardo N. M. J. Páscoa
  • João Rodrigo Santos
  • Leonardo Pezza
  • Helena R. Pezza
  • José L. F. C. Lima
  • João A. Lopes
Original Paper

Abstract

This paper describes the development of a real-time method based on near-infrared spectroscopy (NIRS) for determination of total antioxidant capacity (TAC) and total phenolic content (TPC) in coffee during the roasting process. The real-time non-invasive monitoring procedure involved pointing a diffuse reflectance probe directly at the roasting chamber through a glass window in order to monitor the roasting process. The figures of merit of the chemometric models to estimate TAC and TPC showed selectivity values higher than 12% and determination coefficients (R 2 P) above 0.90. The TAC and TPC profiles during the roasting procedure are discussed in terms of the antioxidant compounds likely to be present in green and roasted coffee. NIRS was found to be a satisfactory real-time tool for monitoring the content of antioxidant compounds in coffee during the roasting process, complementing other established procedures.

Keywords

Near-infrared spectroscopy Coffee roasting Real-time monitoring Total antioxidant capacity Total phenolic content 

Notes

Acknowledgements

T.A. Catelani is grateful to CAPES for a scholarship (PDSE no. 99999.000655/2015-05) and to CNPq. R.N.J. Páscoa acknowledges financial support from SFRH/BPD/81384/2011. This work received financial support from FCT/MEC through national funds and was co-financed by FEDER under partnership agreement PT2020—UID/QUI/50006/2013—POCI/01/0145/FEDER/007265. The authors also acknowledge funding from NORTE-01-0145-FEDER-000011 and iMed.ULisboa (grant UID/DTP/04138/2013).

Supplementary material

11947_2016_1843_MOESM1_ESM.docx (156 kb)
Fig. SD1 Score plot from a PCA model build with near-infrared spectra of roasted coffee samples of four geographical origins. (DOCX 155 kb)
11947_2016_1843_MOESM2_ESM.docx (169 kb)
Fig. SD2 Regression coefficient vectors for the PLS models built for the prediction of TAC and TPC. (DOCX 169 kb)

References

  1. Alves, R. C., Almeida, I. M. C., Casal, S., & Oliveira, M. B. P. P. (2010). Isoflavones in coffee: influence of species, roast degree, and brewing method. Journal of Agricultural and Food Chemistry, 58(5), 3002–3007. doi: 10.1021/jf9039205.CrossRefGoogle Scholar
  2. Andrade, K. S., Gonçalvez, R. T., Maraschin, M., Ribeiro-Do-Valle, R. M., Martínez, J., & Ferreira, S. R. S. (2012). Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta, 88, 544–552. doi: 10.1016/j.talanta.2011.11.031.CrossRefGoogle Scholar
  3. Borrelli, R. C., Visconti, A., Mennella, C., Anese, M., & Fogliano, V. (2002). Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry, 50(22), 6527–6533. doi: 10.1021/jf025686o.CrossRefGoogle Scholar
  4. Budryn, G., Pałecz, B., Rachwał-Rosiak, D., Oracz, J., Zaczyńska, D., Belica, S., et al. (2015). Effect of inclusion of hydroxycinnamic and chlorogenic acids from green coffee bean in β-cyclodextrin on their interactions with whey, egg white and soy protein isolates. Food Chemistry, 168, 276–287. doi: 10.1016/j.foodchem.2014.07.056.CrossRefGoogle Scholar
  5. Carlsen, M. H., Halvorsen, B. L., Holte, K., Bøhn, S. K., Dragland, S., Sampson, L., et al. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9, 3. doi: 10.1186/1475-2891-9-3.CrossRefGoogle Scholar
  6. Charurin, P., Ames, J. M., & Del Castillo, M. D. (2002). Antioxidant activity of coffee model systems. Journal of Agricultural and Food Chemistry, 50(13), 3751–3756. doi: 10.1021/jf011703i.CrossRefGoogle Scholar
  7. De Girolamo, A., Lippolis, V., Nordkvist, E., & Visconti, A. (2009). Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-transform near infrared (FT-NIR) spectroscopy. Food Additives & Contaminants: Part A, 26(6), 907–917. doi: 10.1080/02652030902788946.CrossRefGoogle Scholar
  8. Del Castillo, M. D., Ames, J. M., & Gordon, M. H. (2002). Effect of roasting on the antioxidant activity of coffee brews. Journal of Agricultural and Food Chemistry, 50(13), 3698–3703. doi: 10.1021/jf011702q.CrossRefGoogle Scholar
  9. Delgado-Andrade, C., Rufián-Henares, J. A., & Morales, F. J. (2005). Assessing the antioxidant activity of melanoidins from coffee brews by different antioxidant methods. Journal of Agricultural and Food Chemistry, 53(20), 7832–7836. doi: 10.1021/jf0512353.CrossRefGoogle Scholar
  10. Devasagayam, T. P. A., Kamat, J. P., Mohan, H., & Kesavan, P. C. (1996). Caffeine as an antioxidant: inhibition of lipid peroxidation induced by reactive oxygen species. Biochimica et Biophysica Acta, 1282, 63–70.CrossRefGoogle Scholar
  11. Esteban-Díez, I., González-Sáiz, J. M., & Pizarro, C. (2004). Prediction of sensory properties of espresso from roasted coffee samples by near-infrared spectroscopy. Analytica Chimica Acta, 525(2), 171–182. doi: 10.1016/j.aca.2004.08.057.CrossRefGoogle Scholar
  12. Esteban-Díez, I., González-Sáiz, J. M., Sáenz-González, C., & Pizarro, C. (2007). Coffee varietal differentiation based on near infrared spectroscopy. Talanta, 71(1), 221–229. doi: 10.1016/j.talanta.2006.03.052.CrossRefGoogle Scholar
  13. Farah, A. (2012). Coffee constituents. In Y.-F. Chu (Ed.), Coffee: emerging health effects and disease prevention (pp. 21–58). Blackwell Publishing Ltd. doi: 10.1002/9781119949893.ch2.
  14. Gallardo, C., Jiménez, L., & García-Conesa, M.-T. (2006). Hydroxycinnamic acid composition and in vitro antioxidant activity of selected grain fractions. Food Chemistry, 99(3), 455–463. doi: 10.1016/j.foodchem.2005.07.053.CrossRefGoogle Scholar
  15. Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression—a tutorial. Analytica Chimica Acta, 185, 1–17.CrossRefGoogle Scholar
  16. Gökmen, V., Serpen, A., & Fogliano, V. (2009). Direct measurement of the total antioxidant capacity of foods: the “QUENCHER” approach. Trends in Food Science & Technology, 20, 278–288. doi: 10.1016/j.jcs.2008.06.002.CrossRefGoogle Scholar
  17. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856.CrossRefGoogle Scholar
  18. ISO (11294:1994) Roasted ground coffee – Determination of moisture content – Method by determination of loss in mass at 103 degrees C (Routine method).Google Scholar
  19. Lee, J., Koo, N., & Min, D. B. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 3(1), 21–33. doi: 10.1111/j.1541-4337.2004.tb00058.x.CrossRefGoogle Scholar
  20. Morais, S. A. L., Aquino, F. J. T., Nascimento, P. M., Nascimento, E. A., & Chang, R. (2009). Compostos bioativos e atividade antioxidante do café conilon submetido a diferentes graus de torra. Química Nova, 32(2), 327–331.CrossRefGoogle Scholar
  21. Moreira, D. P., Monteiro, M. C., Ribeiro-Alves, M., Donangelo, C. M., & Trugo, L. C. (2005). Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages. Journal of Agricultural and Food Chemistry, 53(5), 1399–1402. doi: 10.1021/jf0485436.CrossRefGoogle Scholar
  22. Mussatto, S. I., Ballesteros, L. F., Martins, S., & Teixeira, J. A. (2011). Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 83(1), 173–179. doi: 10.1016/j.seppur.2011.09.036.CrossRefGoogle Scholar
  23. Naes, T., Isakson, T., Fearn, T., & Davies, T. (2004). Interpreting PCR and PLS solutions. In a user-friendly guide to multivariate calibration and classification. Chichester: NIR publications.Google Scholar
  24. Nicoli, M. C., Anese, M., Manzocco, L., & Lerici, C. R. (1997). Antioxidant properties of coffee brews in relation to the roasting degree. Food Science and Technology-Lebensmittel-Wissenschaft & Technologie, 30, 292–297. doi: 10.1006/fstl.1996.0181.CrossRefGoogle Scholar
  25. Páscoa, R. N. M. J., Magalhães, L. M., & Lopes, J. A. (2013). FT-NIR spectroscopy as a tool for valorization of spent coffee grounds: application to assessment of antioxidant properties. Food Research International, 51(2), 579–586. doi: 10.1016/j.foodres.2013.01.035.CrossRefGoogle Scholar
  26. Pérez-Jiménez, J., & Torres, J. L. (2011). Analysis of nonextractable phenolic compounds in foods: the current state of the art. Journal of Agricultural and Food Chemistry, 59(24), 12713–12724. doi: 10.1021/jf203372w.CrossRefGoogle Scholar
  27. Pérez-Martínez, M., Caemmerer, B., De Peña, M. P., Concepción, C., & Kroh, L. W. (2010). Influence of brewing method and acidity regulators on the antioxidant capacity of coffee brews. Journal of Agricultural and Food Chemistry, 58(5), 2958–2965. doi: 10.1021/jf9037375.CrossRefGoogle Scholar
  28. Pizarro, C., Esteban-Díez, I., González-Sáiz, J. M., & Forina, M. (2007). Use of near-infrared spectroscopy and feature selection techniques for predicting the caffeine content and roasting color in roasted coffees. Journal of Agricultural and Food Chemistry, 55(18), 7477–7488. doi: 10.1021/jf071139x.CrossRefGoogle Scholar
  29. Pizarro, C., Esteban-Díez, I., Nistal, A. J., & González-Sáiz, J. M. (2004). Influence of data pre-processing on the quantitative determination of the ash content and lipids in roasted coffee by near infrared spectroscopy. Analytica Chimica Acta, 509(2), 217–227. doi: 10.1016/j.aca.2003.11.008.CrossRefGoogle Scholar
  30. Preedy, V. R. (Ed.) (2015). Coffee in health and disease. Amsterdam: Academic.Google Scholar
  31. Ribeiro, J. S., Ferreira, M. M. C., & Salva, T. J. G. (2011). Chemometric models for the quantitative descriptive sensory analysis of Arabica coffee beverages using near infrared spectroscopy. Talanta, 83(5), 1352–1358. doi: 10.1016/j.talanta.2010.11.001.CrossRefGoogle Scholar
  32. Sacchetti, G., Di Mattia, C., Pittia, P., & Mastrocola, D. (2009). Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90(1), 74–80. doi: 10.1016/j.jfoodeng.2008.06.005.CrossRefGoogle Scholar
  33. Sánchez-González, I., Jiménez-Escrig, A., & Saura-Calixto, F. (2005). In vitro antioxidant activity of coffees brewed using different procedures (Italian, espresso and filter). Food Chemistry, 90(1–2), 133–139. doi: 10.1016/j.foodchem.2004.03.037.CrossRefGoogle Scholar
  34. Santos, J. R., Lopo, M., Rangel, A. O. S. S., & Lopes, J. A. (2016a). Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control, 60, 408–415. doi: 10.1016/j.foodcont.2015.08.007.CrossRefGoogle Scholar
  35. Santos, J. R., Viegas, O., Páscoa, R. N. M. J., Ferreira, I. M. P. L. V. O., Rangel, A. O. S. S., & Lopes, J. A. (2016b). In-line monitoring of the coffee roasting process with near infrared spectroscopy: measurement of sucrose and colour. Food Chemistry, 208, 103–110. doi: 10.1016/j.foodchem.2016.03.114.CrossRefGoogle Scholar
  36. Sarraguça, M. C., & Lopes, J. A. (2009). The use of net analyte signal (NAS) in near infrared spectroscopy pharmaceutical applications: interpretability and figures of merit. Analytica Chimica Acta, 642(1–2), 179–185. doi: 10.1016/j.aca.2008.10.006.CrossRefGoogle Scholar
  37. Stelmach, E., Pohl, P., & Szymczycha-Madeja, A. (2015). The content of Ca, Cu, Fe, Mg and Mn and antioxidant activity of green coffee brews. Food Chemistry, 182, 302–308. doi: 10.1016/j.foodchem.2015.02.105.CrossRefGoogle Scholar
  38. Vignoli, J. A., Bassoli, D. G., & Benassi, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chemistry, 124(3), 863–868. doi: 10.1016/j.foodchem.2010.07.008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tiago A. Catelani
    • 1
  • Ricardo N. M. J. Páscoa
    • 2
  • João Rodrigo Santos
    • 3
  • Leonardo Pezza
    • 1
  • Helena R. Pezza
    • 1
  • José L. F. C. Lima
    • 2
  • João A. Lopes
    • 4
  1. 1.Institute of ChemistryState University of São Paulo - UNESPAraraquaraBrazil
  2. 2.REQUIMTE/LAQV - Departamento de Ciências Químicas, Laboratório de Química Aplicada, Faculdade de FarmáciaUniversidade do PortoPortoPortugal
  3. 3.REQUIMTE/LAQV - Departamento de Química e Bioquímica, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  4. 4.Research Institute for Medicines (iMed.ULisboa), Faculdade de FarmáciaUniversidade de LisboaLisbonPortugal

Personalised recommendations