Food and Bioprocess Technology

, Volume 10, Issue 4, pp 615–629 | Cite as

Green Banana (Musa cavendishii) Osmotic Dehydration by Non-Caloric Solutions: Modeling, Physical-Chemical Properties, Color, and Texture

  • Livia Chaguri
  • Mariana S. Sanchez
  • Verônica P. Flammia
  • Carmen C. Tadini
Original Paper
  • 298 Downloads

Abstract

Osmotic dehydration effects on the kinetics and on some quality attributes of green banana slices (Musa cavendishii) at 25 °C with non-caloric solutes (glycerol, sorbitol, and a mixture of both) at concentrations varying from 40 to 60 g/100 g for up to 6 h were studied. The three-component diagram showed that the first pseudo-equilibrium was achieved, and the water pseudo-diffusion coefficient presented higher values with glycerol solutions. A modified Peleg’s model was applied to obtain the maximum water loss. Changes in green banana physical-chemical properties were observed: moisture content from 1.25 to 0.19 kg/kg dry basis, soluble solute content from 5.4 to 16.9 °Brix; total color-difference from 2.7 to 15.8; and the maximum biaxial extensional viscosity from 0.63 to 1.53 MPa s. Moreover, the obtained low chroma difference values suggest that the osmotically drying process may be a suitable technique to preserve the final color of green banana slices.

Keywords

Modified Peleg’s model Resistant starch Biaxial viscosity 

Notes

Acknowledgments

The authors acknowledge São Paulo Research Foundation (FAPESP) under grants 2011/23599-0, 2011/22398-0, and 2012/13456-9.

References

  1. Aminzadeh, R., Sargolzaei, J., & Abarzani, M. (2012). Preserving melons by osmotic dehydration in a ternary system followed by air-drying. Food and Bioprocess Technology, 5, 1305–1316.CrossRefGoogle Scholar
  2. ANVISA Agência Nacional de Vigilância Sanitária. (2010). Aditivos alimentares autorizados para uso segundo as Boas Práticas de Fabricação (BPF). RDC n° 45.Google Scholar
  3. AOAC (2007). International official methods of analysis of AOAC. Gaithersburg: Association of Official Analytical Chemists.Google Scholar
  4. ASTM—American Society for Testing and Materials (2014). ASTM Standard D2244-14. Standard practice for calculation of color tolerances and color differences from instrumentally measured color coordinates. West Conshohocken: ASTM International.Google Scholar
  5. Atares, L., Sousa-Gallagher, M. J., & Oliveira, F. A. R. (2011). Process conditions effect on the quality of banana osmotically dehydrated. Journal of Food Engineering, 103, 401–408.CrossRefGoogle Scholar
  6. Azarpazhooh, E., & Ramaswamy, H. S. (2010). Evaluation of diffusion and Azuara models for mass transfer kinetics during microwave-osmotic dehydration of apples under continuous flow medium-spray conditions. Drying Technology, 28, 57–67.CrossRefGoogle Scholar
  7. Azoubel, P. M., & Murr, F. E. X. (2004). Mass transfer kinetics of osmotic dehydration of cherry tomato. Journal of Food Engineering, 61, 291–295.CrossRefGoogle Scholar
  8. Barat, J. M., Alvarruiz, A., Chiralt, A., & Fito, P. (1997). A mass transfer modelling in osmotic dehydration. In Proceedings of the Seventh International Congress on Engineering and Food. Brighton: ICEF.Google Scholar
  9. Chenlo, F., Moreira, R., Fernandez-Herrero, C., & Vázquez, G. (2006). Mass transfer during osmotic dehydration of chestnut using sodium chloride solutions. Journal of Food Engineering, 73, 164–173.CrossRefGoogle Scholar
  10. Chiralt, A., Martínez-Navarrete, N., Martínez-Monzo, J., Talens, P., Moraga, G., Ayala, A., & Fito, P. (2001). Changes in mechanical properties throughout osmotic processes: cryoprotectant effect. Journal of Food Engineering, 49, 129–135.CrossRefGoogle Scholar
  11. FDA Food and Drug Administration. (2011). CFR - Code of Federal Regulations. Title 21-Food and Drugs. Chapter 1, Food and Drugs Administration. Subchapter B, Part 182—Substances generally recognized as safe. Section 182.1320. Glycerin.Google Scholar
  12. Fernandes, F. A. N., Rodrigues, S., Gaspareto, O. C. P., & Oliveira, E. L. (2006). Optimization of osmotic dehydration of bananas followed by air-drying. Journal of Food Engineering, 77, 188–193.CrossRefGoogle Scholar
  13. Fernando, W. J. N., Low, H. C., & Ahmad, A. L. (2011). Dependence of the effective diffusion coefficient of moisture with thickness and temperature in convective drying of sliced materials. A study on slices of banana, cassava and pumpkin. Journal of Food Engineering, 102, 310–316.CrossRefGoogle Scholar
  14. Ferrari, C. C., Arballo, J. R., Mascheroni, R. H., & Hubinger, M. D. (2011). Modeling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. International Journal of Food Science & Technology, 46, 436–443.CrossRefGoogle Scholar
  15. Fito, P., & Chiralt, A. (1996). Osmotic dehydration an approach to the modeling of solid food-liquid operations. In P. Fito & E. Ortega-Rodriguez (Eds.), Food Engineering 2000. New York: Springer.Google Scholar
  16. Hofsetz, C. C. L., Hubinger, M. D., Mayor, L., & Sereno, A. M. (2007). Changes in the physical properties of bananas on applying HTST pulse during air-drying. Journal of Food Engineering, 83, 531–540.CrossRefGoogle Scholar
  17. Ispir, A., & Togrul, I. T. (2009). Osmotic dehydration of apricot: kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87, 166–180.CrossRefGoogle Scholar
  18. Izidoro, D. R., Sierakowski, M. R., Haminiukc, C. W. I., Souza, C. F., & Scheer, A. P. (2011). Physical and chemical properties of ultrasonically, spray-dried green banana (Musa cavendish) starch. Journal of Food Engineering, 104, 639–648.CrossRefGoogle Scholar
  19. Langkilde, A. M., Cham, M., & Andersson, H. (2002). Effects of high-resistant-starch banana flour (RS2) on in vitro fermentation and the small-bowel excretion of energy nutrients, and sterols: an ileostomy study. American Journal of Clinical Nutrition, 75, 104–111.Google Scholar
  20. Lazarides, H. N., Fito, P., Chiralt, A., Gekas, V., & Lenart, A. (1999). Advances in osmotic dehydration. In F. A. R. Oliveira & J. C. Oliveira (Eds.), Processing of foods: quality optimization and process assessments in conventional and emerging technologies. Boca Raton: CRC Press.Google Scholar
  21. Mansueto, P., Seidita, A., D’Alcamo, A., & Carroccio, A. (2015). Role of FODMAPs in patients with irritable bowel syndrome. Nutrition in Clinical Practice, 30, 665–682.CrossRefGoogle Scholar
  22. Maskan, M. (2000). Microwave/air and microwave finish drying of banana. Journal of Food Engineering, 44, 71–78.CrossRefGoogle Scholar
  23. Mavroudis, N. E., Gidley, M. J., & Sjöholm, I. (2012). Osmotic processing: effects of osmotic medium composition on the kinetics and texture of apple tissue. Food Research International, 48, 839–847.CrossRefGoogle Scholar
  24. Mayor, L., Cunha, R. L., & Sereno, A. M. (2007a). Relation between mechanical properties and structural changes during osmotic dehydration of pumpkin. Food Research International, 40, 448–460.CrossRefGoogle Scholar
  25. Mayor, L., Moreira, R., Chenlo, F., & Sereno, A. M. (2007b). Osmotic dehydration kinetics of pumpkin fruits using ternary solutions of sodium chloride and sucrose. Drying Technology, 25, 1749–1758.CrossRefGoogle Scholar
  26. Mercali, G. D., Marczak, L. D. F., Tessaro, I. C., & Norena, C. P. Z. (2011). Osmotic dehydration of banana (Musa sapientum, shum.) in ternary aqueous solutions of sucrose and sodium chloride. Journal of Food Process Engineering, 35, 149–165.CrossRefGoogle Scholar
  27. Moreira, R., Chenlo, F., Torres, M. D., & Vázquez, G. (2007). Effect of stirring in the osmotic dehydration of chestnut using glycerol solutions. LWT - Food Science and Technology, 49, 1507–1514.CrossRefGoogle Scholar
  28. Moreira, R., Chenlo, F., Chaguri, L., & Mayor, L. (2010). Analysis of chestnut cellular tissue during osmotic dehydration, air drying, and rehydration processes. Drying Technology, 29, 10–18.CrossRefGoogle Scholar
  29. Moreno, J., Simpson, R., Sayas, M., Segura, I., Aldana, O., & Almonacid, S. (2011). Influence of ohmic heating and vacuum impregnation on the osmotic dehydration kinetics and microstructure of pears (cv. Packham’s triumph). Journal of Food Engineering, 104, 621–627.CrossRefGoogle Scholar
  30. Ochoa-Martínez, C. I., Ramaswamy, H. S., & Ayala-Aponte, A. A. (2009). Suitability of Crank’s solutions to Fick’s second law for water diffusivity calculation and moisture loss prediction in osmotic dehydration of fruits. Journal of Food Process Engineering, 32, 933–943.CrossRefGoogle Scholar
  31. Peleg, M. (1988). An empirical-model for the description of moisture sorption curves. Journal of Food Science, 53, 1216–1219.CrossRefGoogle Scholar
  32. Porciuncula, B. D. A., Zotarelli, M. F., Carciofi, B. A. M., & Laurindo, J. B. (2013). Determining the effective diffusion coefficient of water in banana (Prata variety) during osmotic dehydration and its use in predictive models. Journal of Food Engineering, 119, 490–496.CrossRefGoogle Scholar
  33. Raikham, C., Prachayawarakorn, S., Nathakarakule, A., & Soponronnarit, S. (2015). Influences of pretreatment and drying process including fluidized bed puffing on quality attributes and microstructural changes of banana slices. Drying Technology, 33, 915–925.CrossRefGoogle Scholar
  34. Rastogi, N. K., Raghavarao, K. S. M. S., & Niranjan, K. (1997). Mass transfer during osmotic dehydration of banana: Fickian diffusion in cylindrical configuration. Journal of Food Engineering, 31, 423–432.CrossRefGoogle Scholar
  35. Ruiz-López, I. I., Ruiz-Espinosa, H., Hernan-Lara, E., & Zárate-Castillo, G. (2011). Modeling of kinetics, equilibrium and distribution data of osmotically dehydrated carambola (Averrhoa carambola L.) in sugar solutions. Journal of Food Engineering, 104, 218–226.CrossRefGoogle Scholar
  36. Sacchetti, G., Gianotti, A., & Dalla Rosa, M. (2001). Sucrose-salt combined effects on mass transfer kinetics and product acceptability. Study on apple osmotic treatments. Journal of Food Engineering, 49, 163–173.CrossRefGoogle Scholar
  37. Silva, W. P., Silva, C. M. D. P. S., & Gomes, J. P. (2013). Drying description of cylindrical pieces of bananas in different temperatures using diffusion models. Journal of Food Engineering, 117, 417–424.CrossRefGoogle Scholar
  38. Simpson, R., Ramírez, C., Birchmeier, V., Almonacid, A., Moreno, J., Nunez, H., & Jaques, A. (2015). Diffusion mechanisms during the osmotic dehydration of Granny Smith apples subjected to a moderate electric field. Journal of Food Engineering, 166, 204–211.CrossRefGoogle Scholar
  39. Sirousazar, M., Mohammadi-Doust, A., & Achachlouei, B. F. (2009). Mathematical investigation of the effects of slicing on the osmotic dehydration of sphere and cylinder shaped fruits. Czech Journal of Food Sciences, 27, 95–101.Google Scholar
  40. Souraki, B. A., Ghavami, M., & Tondro, H. (2014). Correction of moisture and sucrose effective diffusivities for shrinkage during osmotic dehydration of apple in sucrose solution. Food and Bioproducts Processing, 92, 1–8.CrossRefGoogle Scholar
  41. Steffe, J. F. (1992). Rheological methods in food process engineering (2nd ed.). East Lansing: Freeman Press.Google Scholar
  42. Tabtiang, S., Prachayawarakon, S., & Soponronnarit, S. (2012). Effects of osmotic treatment and superheated steam puffing temperature on drying characteristics and texture properties of banana slices. Drying Technology, 30, 20–28.CrossRefGoogle Scholar
  43. Torreggiani, D. (1993). Osmotic dehydration in fruit and vegetable processing. Food Research International, 26, 59–68.CrossRefGoogle Scholar
  44. Torreggiani, D., Forni, E., Erba, M. A., & Longoni, F. (1995). Functional properties of pepper osmodehydrated in hydrolyzed cheese whey permeate with or without sorbitol. Food Research International, 28, 161–166.CrossRefGoogle Scholar
  45. Torres, J. D., Talens, P., Escriche, I., & Chiralt, A. (2006). Influence of process conditions on mechanical properties of osmotically dehydrated mango. Journal of Food Engineering, 74, 240–246.CrossRefGoogle Scholar
  46. Tribess, T. B., Hernández-Uribe, J. P., Méndez-Montealvo, M. G. C., Menezes, E. W., Bello-Pérez, L. A., & Tadini, C. C. (2009). Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT - Food Science and Technology, 42, 1022–1025.CrossRefGoogle Scholar
  47. Zenebon, O., & Pascuet, N. S. (2005). Métodos físico-químicos para análises de alimentos do Instituto Adolfo Lutz (4th ed.). Brasilia: IAL.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Livia Chaguri
    • 1
    • 2
  • Mariana S. Sanchez
    • 3
  • Verônica P. Flammia
    • 3
  • Carmen C. Tadini
    • 2
    • 3
  1. 1.Chemical Engineering DepartmentEscola de Engenharia de Lorena, University of São PauloLorenaBrazil
  2. 2.FoRC/NAPAN Food Research CenterUniversity of São PauloSão PauloBrazil
  3. 3.Chemical Engineering DepartmentEscola Politécnica, University of São PauloSão PauloBrazil

Personalised recommendations