Skip to main content

Determination of Volumetric Coefficients of Thermal Expansion in Alcoholic Beverages and Aqueous Ethanol–Sucrose Mixtures by Differential Volume Measurements

Abstract

The volumetric coefficient of thermal expansion (CTE) of diverse alcoholic beverages and aqueous ethanol–sucrose mixtures was calculated by a simple experiment in the temperature range of 5–30°C at atmospheric pressure. The temperature and volume corresponding changes were measured using a basic device as a dilatometer type. Alcohol degree, titratable acidity, volumetric mass, total dry extract, reducing sugars, total polyphenol index, and conductivity in different wine types and other alcoholic beverages were studied to correlate with CTE values. Multivariate techniques were used to study the data, essentially to reveal any widespread patterns in the alcoholic beverages. Additionally, the error of the CTE measurements was also estimated. The CTE obtained results for alcoholic beverages ranged from 1.9 ± 0.3 (×10−4°C−1) for white wines to 11.7 ± 0.4 (×10−4°C−1) for rectified alcohol samples. In the sucrose–ethanol–water mixtures the experimental results of CTE ranged from 2.0 to 6.5 ± 0.01 (×10−4°C−1). Based on the results obtained, the CTE values depend mainly of alcohol degree and volumetric mass of the samples. The knowledge of volumetric coefficient of thermal expansion will be useful to estimate thermal induced volume changes and to check the accurate quantities in stored bulk beverages or during its ageing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

CTE:

Volumetric coefficient of thermal expansion

TDE:

Total dry extract

TPI:

Total polyphenol index

Φ V :

Apparent average molar volume, in millilitres per mole

V 2 :

Apparent specific molar volume, in millilitres per gram

\( \overline M \) :

Average molecular weight, in grams per mole

ρ :

Density, in grams per millilitre

δ:

Error measurement, in percent

S v :

Experimental slope, in millilitres kilograms per square mole

\( \varphi_{\text{V}}^0 \) :

Limiting apparent molar volume, in millilitres per mole

m S :

Molality, in moles per kilogram

T :

Temperature, in degrees Celsius

V :

Volume, in litres

α V :

Volumetric coefficient of thermal expansion, in per degrees Celsius

α D :

Volumetric coefficient of thermal expansion of dilatometer, in per degrees Celsius

References

  1. Apelblat, A., & Manzurola, E. (2005). Volumetric and thermal properties of some aqueous electrolyte solutions part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol kg−1 solutions at temperatures from T = 278.15 to 338.15 K. Journal of Molecular Liquids, 118, 77–88.

    Article  CAS  Google Scholar 

  2. Bartels, R. A. (1973). Thermal expansion corrections when ΔT is not small. American Journal of Physics, 41, 78–80.

    Article  Google Scholar 

  3. Blouin, J., & Maron, J.-M. (2006). Maîtrise des températures et qualités des vins (pp. 37–39). Paris, France: Ed. Dunod.

    Google Scholar 

  4. Bouchard, A., Horfland, G. W., & Witkamp, G.-J. (2007). Properties of sugar, polyol, and polysaccharide water–ethanol solutions. Journal of Chemical & Engineering Data, 52, 1838–1842.

    Article  CAS  Google Scholar 

  5. Collieu, A. M., & Powney, D. J. (1973). The mechanical and thermal properties of materials (pp. 107–115). London, UK: Edward Arnold.

    Google Scholar 

  6. Commission Regulation. (1990). EC 2676/90 of 17 September. Official Journal of the European Communities, L272, 1–192.

    Google Scholar 

  7. Commission Regulation. (2000). EC 2870/00 of 19 December. Official Journal of the European Communities, L333, 20–46.

    Google Scholar 

  8. Dash, U. N., Roy, G. S., & Mohanty, S. (2004). Evaluation of apparent and partial molar volume of potassium ferro- and ferricyanides in aqueous alcohol solutions at different temperatures. Indian Journal of Chemical Technology, 11, 714–718.

    CAS  Google Scholar 

  9. Deng, D. Q., & Xu, L. (2003). Measurements of thermal expansion coefficient of phenolic foam at low temperatures. Cryogenics, 43, 465–468.

    Article  CAS  Google Scholar 

  10. Dey, P. C., Motin, D. M., Biswas, T. K., & Huque, E. M. (2003). Apparent molar volume and viscosity studies on some carbohydrates in solutions. Monatshefte für Chemie, 134, 797–809.

    Article  CAS  Google Scholar 

  11. Dixit, S., Crain, J., Poon, W. C., Finney, J. L., & Soper, A. K. (2002). Molecular segregation observed in a concentrated alcohol–water solution. Nature, 416, 829–832.

    Article  CAS  Google Scholar 

  12. Esteve-Zarzoso, B., Peris-Torán, M. J., García-Maiquez, E., Uruburu, F., & Querol, A. (2001). Yeast population dynamics during the fermentation and biological aging of Sherry wines. Applied and Environmental Microbiology, 67(5), 2056–2061.

    Article  CAS  Google Scholar 

  13. Ferreira, O., Brignole, E. A., & Macedo, E. A. (2003). Phase equilibria in sugar solutions using the A-UNIFAC model. Industrial and Engineering Chemistry Research, 42(24), 6212–6222.

    Article  CAS  Google Scholar 

  14. Furniss, D., & Seddon, A. B. (2008). Thermal analysis of inorganic compound glasses and glass-ceramics. In P. Gabbott (Ed.), Principles and applications of thermal analysis (pp. 410–449). Singapore: Blackwell.

    Chapter  Google Scholar 

  15. Garai, J. (2006). Correlation between thermal expansion and heat capacity. Computer Coupling of Phase Diagrams and Thermochemistry, 30, 354–356.

    Article  CAS  Google Scholar 

  16. Gharsallaoui, A., Rogé, B., Génotelle, J., & Mathlouthi, M. (2008). Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chemistry, 106, 1443–1453.

    Article  CAS  Google Scholar 

  17. Giangiacomo, R. (2006). Study of water–sugar interactions at increasing sugar concentration by NIR spectroscopy. Food Chemistry, 96, 371–379.

    Article  CAS  Google Scholar 

  18. Goharshadi, E. K., & Abareshi, M. (2008). Prediction of volumetric and thermodynamic properties of two aromatic-alcohol mixtures using GMA equation of state. Fluid Phase Equilibria, 268, 61–67.

    Article  CAS  Google Scholar 

  19. Grimval, G. (1999). Thermophysical properties of materials (pp. 220–237). Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  20. Guo, J. H., Luo, Y., Augustsson, A., Kashtanov, S., Rubensson, J. E., Shuh, D. K., et al. (2003). Molecular structure of alcohol–water mixtures. Physical Review Letters, 91, 1–4.

    Google Scholar 

  21. Immel, S., & Lichtenthaler, F. W. (1995). The conformation of sucrose in water: a molecular dynamics approach. Liebigs Annalen der Chemie, 7, 1925–1937.

    Google Scholar 

  22. Kapoor, K., & Dass, N. (2009). Temperature dependent study of volume and thermal expansivity of solids based on equation of state. Indian Journal of Pure and Applied Physics, 47, 592–596.

    CAS  Google Scholar 

  23. Koribilli, N., Aravamudan, K., & Varadhan, M. U. (2011). Quantifying enhancement in heat transfer due to natural convection during canned food thermal sterilization in a still retort. Food Bioprocess Technology, 4, 429–450.

    Article  Google Scholar 

  24. LaCombe, J. C., Oudemool, J. L., Koss, M. B., Bushnell, L. T., & Glicksman, M. E. (1997). Measurement of thermal expansion in liquid succinonitrile and pivalic acid. Journal of Crystal Growth, 173, 167–171.

    Article  CAS  Google Scholar 

  25. Lide, D. R. (Ed.). (2005). CRC handbook of chemistry and physics (85th ed., pp. 1127–1128). Boca Raton, FL, USA: CRC.

    Google Scholar 

  26. Loukili, A., Chopin, D., Khelidj, A., & Le Touzo, J. Y. (2000). A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history. Cement and Concrete Research, 30, 915–922.

    Article  CAS  Google Scholar 

  27. Mathlouthi, M. (1981). X-ray diffraction study of the molecular association in aqueous solutions of D-fructose, D-glucose, and sucrose. Carbohydrate Research, 91, 113–123.

    Article  CAS  Google Scholar 

  28. Mathpal, R., Joshi, B. K., Joshi, S., & Kandpal, N. D. (2006). Intermolecular forces of sugars in water. Monatshefte für Chemie, 137, 375–379.

    Article  CAS  Google Scholar 

  29. McCain, D. C., & Markley, J. L. (1986). The solution conformation of sucrose: concentration and temperature dependence. Carbohydrate Research, 152, 73–80.

    Article  CAS  Google Scholar 

  30. Millero, F. J. (1971). Molal volumes of electrolytes. Chemical Reviews, 71(2), 147–176.

    Article  CAS  Google Scholar 

  31. Moreno, J. A., Zea, L., Moyano, L., & Medina, M. (2005). Aroma compounds as markers of the changes in Sherry wines subjected to biological ageing. Food Control, 16, 333–338.

    Article  CAS  Google Scholar 

  32. Mújica-Paz, H., Valdez-Fragoso, A., Tonello-Samson, C., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4, 969–985.

    Article  Google Scholar 

  33. Natta, J. M., & Garí, M. (2004). Coeficiente de dilatación cúbica de mezclas etanol–agua. Control de mermas en la fabricación de aguardientes compuestos. Alimentación Equipos y Tecnología, 194, 43–48.

    CAS  Google Scholar 

  34. Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34.

    Article  Google Scholar 

  35. Nose, A., & Hojo, M. (2006). Hydrogen bonding of water–ethanol in alcoholic beverages. Journal of Bioscience and Bioengineering, 102, 269–280.

    Article  CAS  Google Scholar 

  36. Nose, A., Hamasaki, T., Hojo, M., Kato, R., Uehara, K., & Ueda, T. (2005). Hydrogen bonding in alcoholic beverages (distilled spirits) and water–ethanol mixtures. Journal of Agricultural and Food Chemistry, 53, 7074–7081.

    Article  CAS  Google Scholar 

  37. Office International de la Vigne et du Vin. (OIV). (1990). Recueil des méthodes internationales d´analyses des vins et des moûts. Paris, France: Ed. Dunod.

    Google Scholar 

  38. Onori, G., & Santucci, A. (1996). Dynamical and structural properties of water/alcohol mixtures. Journal of Molecular Liquids, 69, 161–181.

    CAS  Google Scholar 

  39. Parke, S. A., & Birch, G. G. (1999). Solution properties of ethanol in water. Food Chemistry, 67, 241–246.

    Article  CAS  Google Scholar 

  40. Parke, S. A., Birch, G. G., Portmann, M. O., & Kilcast, D. (1999). A study of the solution properties of selected binary mixtures of bulk and intense sweeteners in relation to their psychophysical characteristics. Food Chemistry, 67, 247–259.

    Article  CAS  Google Scholar 

  41. Ribereau-Gayon, J., Peynaud, E., Sudraud, P., & Ribereau-Gayon, P. (1972). Analyse et controle des vins. Paris, France: Ed. Dunod.

    Google Scholar 

  42. Sato, T., Chiva, A., & Nozaki, R. (1999). Dynamical aspects of mixing schemes in ethanol–water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. Journal of Chemical Physics, 100(5), 2508–2521.

    Article  Google Scholar 

  43. Serghat, S., Mathlouthi, M., Hoopman, T., & Birch, G. G. (1992). Solute–solvent interactions and the sweet taste of small carbohydrates. Part 1: effect of solvent polarity on solution properties. Food Chemistry, 45, 25–32.

    Article  CAS  Google Scholar 

  44. Seuvre, A. M., & Mathlouthi, M. (2010). Solutions properties and solute–solvent interactions in ternary sugar–salt–water solutions. Food Chemistry, 122, 455–461.

    Article  CAS  Google Scholar 

  45. Tarek, M., Tobias, D. J., & Klein, M. L. (1996). Molecular dynamics investigation of an ethanol–water solution. Physica A, 231, 117–122.

    Article  CAS  Google Scholar 

  46. Tep, Y., & Brun, S. (1989). Variation du volume liquide en fonction de la température. Revue Francaise d’Oenologie, 119, 9–13.

    Google Scholar 

  47. Tipler, P. A., & Mosca, G. P. (2007). Physics for scientists and engineers vol I (6th ed., pp. 666–670). New York, USA: Worth.

    Google Scholar 

  48. Touloukian, Y. S., Kirby, R. K., Taylor, R. E., & Desai, P. D. (1976). Thermophysical properties of matters. Thermal expansion of metallic elements and alloys, vol 12. New York, USA: IFI/Plenum.

    Google Scholar 

  49. Wakisaka, A., & Matsuura, K. (2006). Microheterogeneity of ethanol–water binary mixtures observed at the cluster level. Journal of Molecular Liquids, 129, 25–32.

    Article  CAS  Google Scholar 

  50. Wang, Z. D., & Jiang, S. Q. (2006). Coefficient of thermal expansion of stressed thin films. Transactions of Nonferrous Metals Society of China, 16, s220–s225.

    Article  Google Scholar 

  51. Weast, R. C. (1965). Handbook of chemistry and physics (46th ed., p. F-4). Cleveland, USA: Chem. Rubber.

    Google Scholar 

  52. Wolff, E. G. (2006). Technique for volumetric expansion of liquids and solids from 200-400K. In: Proceeding of the 16th International Thermal Expansion Symposium, ITCC28/ITES 16, pp. 556. Lancaster, PA, USA: DEStech.

  53. Yaws, C.L. (1997). Coefficient of thermal expansion. In: Yaws CL (ed) Handbook of chemical compound data for process safety (pp. 145–173). Elsevier.

  54. Zuritz, C. A., Muñoz, E., Mathey, H. H., Pérez, E. H., Gascón, A., Rubio, L. A., et al. (2005). Density, viscosity and coefficient of thermal expansion of clear grape juice at different soluble solid concentrations and temperatures. Journal of Food Engineering, 71, 143–149.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Espejo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Espejo, F., Armada, S. Determination of Volumetric Coefficients of Thermal Expansion in Alcoholic Beverages and Aqueous Ethanol–Sucrose Mixtures by Differential Volume Measurements. Food Bioprocess Technol 5, 2805–2818 (2012). https://doi.org/10.1007/s11947-011-0658-8

Download citation

Keywords

  • Thermal expansion
  • Temperature
  • Alcoholic beverages
  • Ethanol
  • Sucrose