Advertisement

Food and Bioprocess Technology

, Volume 5, Issue 7, pp 2805–2818 | Cite as

Determination of Volumetric Coefficients of Thermal Expansion in Alcoholic Beverages and Aqueous Ethanol–Sucrose Mixtures by Differential Volume Measurements

  • Francisco Espejo
  • Sandra Armada
Original Paper

Abstract

The volumetric coefficient of thermal expansion (CTE) of diverse alcoholic beverages and aqueous ethanol–sucrose mixtures was calculated by a simple experiment in the temperature range of 5–30°C at atmospheric pressure. The temperature and volume corresponding changes were measured using a basic device as a dilatometer type. Alcohol degree, titratable acidity, volumetric mass, total dry extract, reducing sugars, total polyphenol index, and conductivity in different wine types and other alcoholic beverages were studied to correlate with CTE values. Multivariate techniques were used to study the data, essentially to reveal any widespread patterns in the alcoholic beverages. Additionally, the error of the CTE measurements was also estimated. The CTE obtained results for alcoholic beverages ranged from 1.9 ± 0.3 (×10−4°C−1) for white wines to 11.7 ± 0.4 (×10−4°C−1) for rectified alcohol samples. In the sucrose–ethanol–water mixtures the experimental results of CTE ranged from 2.0 to 6.5 ± 0.01 (×10−4°C−1). Based on the results obtained, the CTE values depend mainly of alcohol degree and volumetric mass of the samples. The knowledge of volumetric coefficient of thermal expansion will be useful to estimate thermal induced volume changes and to check the accurate quantities in stored bulk beverages or during its ageing.

Keywords

Thermal expansion Temperature Alcoholic beverages Ethanol Sucrose 

Abbreviations

CTE

Volumetric coefficient of thermal expansion

TDE

Total dry extract

TPI

Total polyphenol index

Symbols

ΦV

Apparent average molar volume, in millilitres per mole

V2

Apparent specific molar volume, in millilitres per gram

\( \overline M \)

Average molecular weight, in grams per mole

ρ

Density, in grams per millilitre

δ

Error measurement, in percent

Sv

Experimental slope, in millilitres kilograms per square mole

\( \varphi_{\text{V}}^0 \)

Limiting apparent molar volume, in millilitres per mole

mS

Molality, in moles per kilogram

T

Temperature, in degrees Celsius

V

Volume, in litres

αV

Volumetric coefficient of thermal expansion, in per degrees Celsius

αD

Volumetric coefficient of thermal expansion of dilatometer, in per degrees Celsius

References

  1. Apelblat, A., & Manzurola, E. (2005). Volumetric and thermal properties of some aqueous electrolyte solutions part 5. Potassium bromide and potassium iodide 0.1, 0.5, and 1.0 mol kg−1 solutions at temperatures from T = 278.15 to 338.15 K. Journal of Molecular Liquids, 118, 77–88.CrossRefGoogle Scholar
  2. Bartels, R. A. (1973). Thermal expansion corrections when ΔT is not small. American Journal of Physics, 41, 78–80.CrossRefGoogle Scholar
  3. Blouin, J., & Maron, J.-M. (2006). Maîtrise des températures et qualités des vins (pp. 37–39). Paris, France: Ed. Dunod.Google Scholar
  4. Bouchard, A., Horfland, G. W., & Witkamp, G.-J. (2007). Properties of sugar, polyol, and polysaccharide water–ethanol solutions. Journal of Chemical & Engineering Data, 52, 1838–1842.CrossRefGoogle Scholar
  5. Collieu, A. M., & Powney, D. J. (1973). The mechanical and thermal properties of materials (pp. 107–115). London, UK: Edward Arnold.Google Scholar
  6. Commission Regulation. (1990). EC 2676/90 of 17 September. Official Journal of the European Communities, L272, 1–192.Google Scholar
  7. Commission Regulation. (2000). EC 2870/00 of 19 December. Official Journal of the European Communities, L333, 20–46.Google Scholar
  8. Dash, U. N., Roy, G. S., & Mohanty, S. (2004). Evaluation of apparent and partial molar volume of potassium ferro- and ferricyanides in aqueous alcohol solutions at different temperatures. Indian Journal of Chemical Technology, 11, 714–718.Google Scholar
  9. Deng, D. Q., & Xu, L. (2003). Measurements of thermal expansion coefficient of phenolic foam at low temperatures. Cryogenics, 43, 465–468.CrossRefGoogle Scholar
  10. Dey, P. C., Motin, D. M., Biswas, T. K., & Huque, E. M. (2003). Apparent molar volume and viscosity studies on some carbohydrates in solutions. Monatshefte für Chemie, 134, 797–809.CrossRefGoogle Scholar
  11. Dixit, S., Crain, J., Poon, W. C., Finney, J. L., & Soper, A. K. (2002). Molecular segregation observed in a concentrated alcohol–water solution. Nature, 416, 829–832.CrossRefGoogle Scholar
  12. Esteve-Zarzoso, B., Peris-Torán, M. J., García-Maiquez, E., Uruburu, F., & Querol, A. (2001). Yeast population dynamics during the fermentation and biological aging of Sherry wines. Applied and Environmental Microbiology, 67(5), 2056–2061.CrossRefGoogle Scholar
  13. Ferreira, O., Brignole, E. A., & Macedo, E. A. (2003). Phase equilibria in sugar solutions using the A-UNIFAC model. Industrial and Engineering Chemistry Research, 42(24), 6212–6222.CrossRefGoogle Scholar
  14. Furniss, D., & Seddon, A. B. (2008). Thermal analysis of inorganic compound glasses and glass-ceramics. In P. Gabbott (Ed.), Principles and applications of thermal analysis (pp. 410–449). Singapore: Blackwell.CrossRefGoogle Scholar
  15. Garai, J. (2006). Correlation between thermal expansion and heat capacity. Computer Coupling of Phase Diagrams and Thermochemistry, 30, 354–356.CrossRefGoogle Scholar
  16. Gharsallaoui, A., Rogé, B., Génotelle, J., & Mathlouthi, M. (2008). Relationships between hydration number, water activity and density of aqueous sugar solutions. Food Chemistry, 106, 1443–1453.CrossRefGoogle Scholar
  17. Giangiacomo, R. (2006). Study of water–sugar interactions at increasing sugar concentration by NIR spectroscopy. Food Chemistry, 96, 371–379.CrossRefGoogle Scholar
  18. Goharshadi, E. K., & Abareshi, M. (2008). Prediction of volumetric and thermodynamic properties of two aromatic-alcohol mixtures using GMA equation of state. Fluid Phase Equilibria, 268, 61–67.CrossRefGoogle Scholar
  19. Grimval, G. (1999). Thermophysical properties of materials (pp. 220–237). Amsterdam, The Netherlands: Elsevier.Google Scholar
  20. Guo, J. H., Luo, Y., Augustsson, A., Kashtanov, S., Rubensson, J. E., Shuh, D. K., et al. (2003). Molecular structure of alcohol–water mixtures. Physical Review Letters, 91, 1–4.Google Scholar
  21. Immel, S., & Lichtenthaler, F. W. (1995). The conformation of sucrose in water: a molecular dynamics approach. Liebigs Annalen der Chemie, 7, 1925–1937.Google Scholar
  22. Kapoor, K., & Dass, N. (2009). Temperature dependent study of volume and thermal expansivity of solids based on equation of state. Indian Journal of Pure and Applied Physics, 47, 592–596.Google Scholar
  23. Koribilli, N., Aravamudan, K., & Varadhan, M. U. (2011). Quantifying enhancement in heat transfer due to natural convection during canned food thermal sterilization in a still retort. Food Bioprocess Technology, 4, 429–450.CrossRefGoogle Scholar
  24. LaCombe, J. C., Oudemool, J. L., Koss, M. B., Bushnell, L. T., & Glicksman, M. E. (1997). Measurement of thermal expansion in liquid succinonitrile and pivalic acid. Journal of Crystal Growth, 173, 167–171.CrossRefGoogle Scholar
  25. Lide, D. R. (Ed.). (2005). CRC handbook of chemistry and physics (85th ed., pp. 1127–1128). Boca Raton, FL, USA: CRC.Google Scholar
  26. Loukili, A., Chopin, D., Khelidj, A., & Le Touzo, J. Y. (2000). A new approach to determine autogenous shrinkage of mortar at an early age considering temperature history. Cement and Concrete Research, 30, 915–922.CrossRefGoogle Scholar
  27. Mathlouthi, M. (1981). X-ray diffraction study of the molecular association in aqueous solutions of D-fructose, D-glucose, and sucrose. Carbohydrate Research, 91, 113–123.CrossRefGoogle Scholar
  28. Mathpal, R., Joshi, B. K., Joshi, S., & Kandpal, N. D. (2006). Intermolecular forces of sugars in water. Monatshefte für Chemie, 137, 375–379.CrossRefGoogle Scholar
  29. McCain, D. C., & Markley, J. L. (1986). The solution conformation of sucrose: concentration and temperature dependence. Carbohydrate Research, 152, 73–80.CrossRefGoogle Scholar
  30. Millero, F. J. (1971). Molal volumes of electrolytes. Chemical Reviews, 71(2), 147–176.CrossRefGoogle Scholar
  31. Moreno, J. A., Zea, L., Moyano, L., & Medina, M. (2005). Aroma compounds as markers of the changes in Sherry wines subjected to biological ageing. Food Control, 16, 333–338.CrossRefGoogle Scholar
  32. Mújica-Paz, H., Valdez-Fragoso, A., Tonello-Samson, C., Welti-Chanes, J., & Torres, J. A. (2011). High-pressure processing technologies for the pasteurization and sterilization of foods. Food and Bioprocess Technology, 4, 969–985.CrossRefGoogle Scholar
  33. Natta, J. M., & Garí, M. (2004). Coeficiente de dilatación cúbica de mezclas etanol–agua. Control de mermas en la fabricación de aguardientes compuestos. Alimentación Equipos y Tecnología, 194, 43–48.Google Scholar
  34. Norton, T., & Sun, D.-W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1, 2–34.CrossRefGoogle Scholar
  35. Nose, A., & Hojo, M. (2006). Hydrogen bonding of water–ethanol in alcoholic beverages. Journal of Bioscience and Bioengineering, 102, 269–280.CrossRefGoogle Scholar
  36. Nose, A., Hamasaki, T., Hojo, M., Kato, R., Uehara, K., & Ueda, T. (2005). Hydrogen bonding in alcoholic beverages (distilled spirits) and water–ethanol mixtures. Journal of Agricultural and Food Chemistry, 53, 7074–7081.CrossRefGoogle Scholar
  37. Office International de la Vigne et du Vin. (OIV). (1990). Recueil des méthodes internationales d´analyses des vins et des moûts. Paris, France: Ed. Dunod.Google Scholar
  38. Onori, G., & Santucci, A. (1996). Dynamical and structural properties of water/alcohol mixtures. Journal of Molecular Liquids, 69, 161–181.Google Scholar
  39. Parke, S. A., & Birch, G. G. (1999). Solution properties of ethanol in water. Food Chemistry, 67, 241–246.CrossRefGoogle Scholar
  40. Parke, S. A., Birch, G. G., Portmann, M. O., & Kilcast, D. (1999). A study of the solution properties of selected binary mixtures of bulk and intense sweeteners in relation to their psychophysical characteristics. Food Chemistry, 67, 247–259.CrossRefGoogle Scholar
  41. Ribereau-Gayon, J., Peynaud, E., Sudraud, P., & Ribereau-Gayon, P. (1972). Analyse et controle des vins. Paris, France: Ed. Dunod.Google Scholar
  42. Sato, T., Chiva, A., & Nozaki, R. (1999). Dynamical aspects of mixing schemes in ethanol–water mixtures in terms of the excess partial molar activation free energy, enthalpy, and entropy of the dielectric relaxation process. Journal of Chemical Physics, 100(5), 2508–2521.CrossRefGoogle Scholar
  43. Serghat, S., Mathlouthi, M., Hoopman, T., & Birch, G. G. (1992). Solute–solvent interactions and the sweet taste of small carbohydrates. Part 1: effect of solvent polarity on solution properties. Food Chemistry, 45, 25–32.CrossRefGoogle Scholar
  44. Seuvre, A. M., & Mathlouthi, M. (2010). Solutions properties and solute–solvent interactions in ternary sugar–salt–water solutions. Food Chemistry, 122, 455–461.CrossRefGoogle Scholar
  45. Tarek, M., Tobias, D. J., & Klein, M. L. (1996). Molecular dynamics investigation of an ethanol–water solution. Physica A, 231, 117–122.CrossRefGoogle Scholar
  46. Tep, Y., & Brun, S. (1989). Variation du volume liquide en fonction de la température. Revue Francaise d’Oenologie, 119, 9–13.Google Scholar
  47. Tipler, P. A., & Mosca, G. P. (2007). Physics for scientists and engineers vol I (6th ed., pp. 666–670). New York, USA: Worth.Google Scholar
  48. Touloukian, Y. S., Kirby, R. K., Taylor, R. E., & Desai, P. D. (1976). Thermophysical properties of matters. Thermal expansion of metallic elements and alloys, vol 12. New York, USA: IFI/Plenum.Google Scholar
  49. Wakisaka, A., & Matsuura, K. (2006). Microheterogeneity of ethanol–water binary mixtures observed at the cluster level. Journal of Molecular Liquids, 129, 25–32.CrossRefGoogle Scholar
  50. Wang, Z. D., & Jiang, S. Q. (2006). Coefficient of thermal expansion of stressed thin films. Transactions of Nonferrous Metals Society of China, 16, s220–s225.CrossRefGoogle Scholar
  51. Weast, R. C. (1965). Handbook of chemistry and physics (46th ed., p. F-4). Cleveland, USA: Chem. Rubber.Google Scholar
  52. Wolff, E. G. (2006). Technique for volumetric expansion of liquids and solids from 200-400K. In: Proceeding of the 16th International Thermal Expansion Symposium, ITCC28/ITES 16, pp. 556. Lancaster, PA, USA: DEStech.Google Scholar
  53. Yaws, C.L. (1997). Coefficient of thermal expansion. In: Yaws CL (ed) Handbook of chemical compound data for process safety (pp. 145–173). Elsevier.Google Scholar
  54. Zuritz, C. A., Muñoz, E., Mathey, H. H., Pérez, E. H., Gascón, A., Rubio, L. A., et al. (2005). Density, viscosity and coefficient of thermal expansion of clear grape juice at different soluble solid concentrations and temperatures. Journal of Food Engineering, 71, 143–149.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Quality DepartmentNavisa Industrial Vinícola Española S.A.CórdobaSpain

Personalised recommendations