Skip to main content

Advertisement

Log in

Treatment of Vascular Myelopathies

  • Cerebrovascular Disorders (D Jamieson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

This article reviews the treatment of vascular myelopathies of various causes, with an emphasis on the treatment and prevention of the most common non-traumatic etiologies: ischemia secondary to open and endovascular interventions for treatment of thoracoabdominal aortic aneurysms and spontaneous (non-periprocedural) spinal cord ischemia and infarction.

Recent findings

Acute vascular myelopathies can present as sudden or rapid onset of paraplegia or quadriplegia. In such cases, spine MRI allows rapid and reliable exclusion of compressive or hemorrhagic lesions and may identify acute spinal cord ischemia; thus, it should be the preferred radiological technique for the evaluation of patients with suspected acute vascular myelopathy. Pressure-based protocols have improved the safety of intra- and post-procedural prophylactic and therapeutic cerebrospinal fluid drainage during thoracic aortic procedures, including open and endovascular treatment of thoracic aortic aneurysms and aortic valve replacements. Increasingly sophisticated and staged endovascular approaches to treat aortic aneurysms have greatly reduced the risk of spinal cord infarction and may not require prophylactic drainage in some cases. Spontaneous spinal cord infarction is less common, and acute treatment remains experimental.

Summary

Acute myelopathies may be caused by various forms of vascular disease, and some of those causes can be treatable. Emergency MRI is often necessary to guide therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Zalewski NL. Vascular myelopathies Contin Lifelong Learn Neurol. 2021;27:30. High-quality review of the natural history, imaging, and diagnosis of the diverse conditions that fall under vascular myelopathy. Is an update to the previous Continuum article of the same title by Rabinstein [2].

    Article  Google Scholar 

  2. Rabinstein AA. Vascular myelopathies Contin Lifelong Learn Neurol. 2015;21:67–83.

    Article  Google Scholar 

  3. Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48:795–801.

    Article  PubMed  Google Scholar 

  4. Weidauer S, Nichtweiss M, Lanfermann H, Zanella FE. Spinal cord infarction: MR imaging and clinical features in 16 cases. Neuroradiology. 2002;44:851–7.

    Article  PubMed  Google Scholar 

  5. Weidauer S, Nichtweiß M, Hattingen E, Berkefeld J. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology. 2015;57:241–57.

    Article  PubMed  Google Scholar 

  6. Zalewski NL, Rabinstein AA, Brinjikji W, Kaufmann TJ, Nasr D, Ruff MW, Flanagan EP. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol. 2018;75:1542–5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Mustafa R, Passe TJ, Lopez-Chiriboga AS et al. Utility of MRI enhancement pattern in myelopathies with longitudinally-extensive T2-lesions. Neurol Clin Pract. 2021. https://doi.org/10.1212/CPJ.0000000000001036. Novel detailed and comprehensive visual and textual guide to interpretation of gadolinium-enhanced high-resolution MRI sequences of the spinal cord.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jolliffe EA, Keegan BM, Flanagan EP. Trident sign trumps Aquaporin-4-IgG ELISA in diagnostic value in a case of longitudinally extensive transverse myelitis. Mult Scler Relat Disord. 2018;23:7–8.

    Article  PubMed  Google Scholar 

  9. •• Zalewski NL, Rabinstein AA, Krecke KN et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol. 2019;76:56–63. Important diagnostic criteria for spontaneous and procedural infarction of the spinal cord, which can be used as a tool to help with the challenge of recognizing and thus treating spontaneous spinal cord ischemia and infraction.

    Article  PubMed  Google Scholar 

  10. • Zalewski NL, Rabinstein AA, Krecke KN, Brown RD, Wijdicks EFM, Weinshenker BG, Doolittle DA, Flanagan EP. Spinal cord infarction: clinical and imaging insights from the periprocedural setting. J Neurol Sci. 2018;388:162–7. Important case review with extensive data on the natural history and risk factors for periprocedural spinal cord ischemia.

    Article  PubMed  Google Scholar 

  11. • Nasr DM, Rabinstein A. Spinal cord infarcts: risk factors, management, and prognosis. Curr Treat Options Neurol. 2017;19:28. Excellent discussion of the management and prognosis of spinal cord infarction.

    Article  PubMed  Google Scholar 

  12. • Epstein NE. Cerebrospinal fluid drains reduce risk of spinal cord injury for thoracic/thoracoabdominal aneurysm surgery: a review. Surg Neurol Int. 2018;9. A review with excellent tables of the multitude of studies (both case control and randomized) regarding the benefit of CSF diversion in open and endovascular aortic treatment.

  13. Cheung AT, Pochettino A, McGarvey ML, Appoo JJ, Fairman RM, Carpenter JP, Moser WG, Woo EY, Bavaria JE. Strategies to manage paraplegia risk after endovascular stent repair of descending thoracic aortic aneurysms. Ann Thorac Surg. 2005;80:1280–9.

    Article  PubMed  Google Scholar 

  14. Coselli JS, Bozinovski J, LeMaire SA. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2007;83:S862–4.

    Article  PubMed  Google Scholar 

  15. Martin DJ, Martin TD, Hess PJ, Daniels MJ, Feezor RJ, Lee WA. Spinal cord ischemia after TEVAR in patients with abdominal aortic aneurysms. J Vasc Surg. 2009;49:302–6.

    Article  PubMed  Google Scholar 

  16. Sinha AC, Cheung AT. Spinal cord protection and thoracic aortic surgery. Curr Opin Anesthesiol. 2010;23:95–102.

    Article  Google Scholar 

  17. Wortmann M, Böckler D, Geisbüsch P. Perioperative cerebrospinal fluid drainage for the prevention of spinal ischemia after endovascular aortic repair. Gefasschirurgie. 2017;22:35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khan NR, Smalley Z, Nesvick CL, Lee SL, Michael LM. The use of lumbar drains in preventing spinal cord injury following thoracoabdominal aortic aneurysm repair: an updated systematic review and meta-analysis. J Neurosurg Spine SPI. 2016;25:383–93.

    Article  Google Scholar 

  19. Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, Weisz DJ, Plestis K, Griepp RB. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82:1670–7.

    Article  PubMed  Google Scholar 

  20. Wynn M, Acher C, Marks E, Acher CW. The effect of intercostal artery reimplantation on spinal cord injury in thoracoabdominal aortic aneurysm surgery. J Vasc Surg. 2016;64:289–96.

    Article  PubMed  Google Scholar 

  21. McGarvey ML, Cheung AT, Szeto W, Messe SR. Management of neurologic complications of thoracic aortic surgery. J Clin Neurophysiol. 2007;24:336–43.

    Article  PubMed  Google Scholar 

  22. Scott DA, Denton MJ. Spinal cord protection in aortic endovascular surgery. Br J Anaesth. 2016;117:ii26–ii31.

  23. Benício A, Moreira LFP, de Mônaco BA, Castelli JB, Mingrone LE, Stolf NAG. Estudo comparativo entre o pré-condicionamento isquêmico e a drenagem liquórica como métodos de proteção medular em cães. Braz J Cardiovasc Surg. 2007;22:15–23.

    Article  Google Scholar 

  24. Crawford ES, Svensson LG, Hess KR, Shenaq SS, Coselli JS, Safi HJ, Mohindra PK, Rivera V. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoracoabdominal aorta. J Vasc Surg. 1991;13:36–45; discussion 45–46.

  25. Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg. 2002;35:631–9.

    Article  PubMed  Google Scholar 

  26. Svensson LG, Hess KR, D’Agostino RS, Entrup MH, Hreib K, Kimmel WA, Nadolny E, Shahian DM. Reduction of neurologic injury after high-risk thoracoabdominal aortic operation. Ann Thorac Surg. 1998;66:132–8.

    Article  CAS  PubMed  Google Scholar 

  27. Xenos ES, Abedi NN, Davenport DL, Minion DJ, Hamdallah O, Sorial EE, Endean ED. Meta-analysis of endovascular vs open repair for traumatic descending thoracic aortic rupture. J Vasc Surg. 2008;48:1343–51.

    Article  PubMed  Google Scholar 

  28. Weaver KD, Wiseman DB, Farber M, Ewend MG, Marston W, Keagy BA. Complications of lumbar drainage after thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2001;34:623–7.

    Article  CAS  PubMed  Google Scholar 

  29. Dardik A, Perler BA, Roseborough GS, Williams GM. Subdural hematoma after thoracoabdominal aortic aneurysm repair: an underreported complication of spinal fluid drainage? J Vasc Surg. 2002;36:47–50.

    Article  PubMed  Google Scholar 

  30. Reynolds JM, Belvadi YS, Kane AG, Poulopoulos M. Thoracic disc herniation leads to anterior spinal artery syndrome demonstrated by diffusion-weighted magnetic resonance imaging (DWI): a case report and literature review. Spine J. 2014;14:e17–22.

    Article  PubMed  Google Scholar 

  31. Walden JE, Castillo M. Sildenafil-induced cervical spinal cord infarction. Am J Neuroradiol. 2012;33:E32–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sladky JT, Rorke LB. Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol. 1986;6:87–101.

    Article  CAS  PubMed  Google Scholar 

  33. Mateen FJ, Monrad PA, Hunderfund ANL, Robertson CE, Sorenson EJ. Clinically suspected fibrocartilaginous embolism: clinical characteristics, treatments, and outcomes. Eur J Neurol. 2011;18:218–25.

    Article  CAS  PubMed  Google Scholar 

  34. English SW, Rabinstein AA, Flanagan EP, Zalewski NL. Spinal cord transient ischemic attack: insights from a series of spontaneous spinal cord infarction. Neurol Clin Pract. 2020;10:480–3.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jankovic J, Rey Bataillard V, Mercier N, Bonvin C, Michel P. Acute ischemic myelopathy treated with intravenous thrombolysis: four new cases and literature review. Int J Stroke. 2019;14:893–7.

    Article  PubMed  Google Scholar 

  36. Wiszniewska M, Harat M. The positive effect of combined treatment with thrombolysis and neurosurgery for cervical myelopathy due to anterior spinal artery thrombosis. 2017. https://doi.org/10.5114/PPN.2017.72439.

    Article  Google Scholar 

  37. Restrepo L, Guttin JF. Acute spinal cord ischemia during aortography treated with intravenous thrombolytic therapy. Tex Heart Inst J. 2006;33:74–7.

    PubMed  PubMed Central  Google Scholar 

  38. Baba H, Tomita K, Kawagishi T, Imura S. Anterior spinal artery syndrome. Int Orthop. 1993;17:353–6.

    Article  CAS  PubMed  Google Scholar 

  39. Powers WJ, Rabinstein AA, Teri A et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50:e344–418.

    Article  PubMed  Google Scholar 

  40. The CADISS trial investigators. Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial. Lancet Neurol. 2015;14:361–7.

    Article  CAS  Google Scholar 

  41. Robertson CE, Brown RD, Wijdicks EFM, Rabinstein AA. Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology. 2012;78:114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Krassen N, Loher TJ, Frank S, Marcel A, Gerhard S, Mattle HP, Matthias S. Long-term outcome of acute spinal cord ischemia syndrome. Stroke. 2004;35:560–5.

    Article  Google Scholar 

  43. Narvid J, Hetts SW, Larsen D, Neuhaus J, Singh TP, McSwain H, Lawton MT, Dowd CF, Higashida RT, Halbach VV. Spinal dural arteriovenous fistulae: clinical features and long-term results. Neurosurgery. 2008;62:159–67.

    Article  PubMed  Google Scholar 

  44. Fugate JE, Lanzino G, Rabinstein AA. Clinical presentation and prognostic factors of spinal dural arteriovenous fistulas: an overview. Neurosurg Focus. 2012;32:E17.

    Article  PubMed  Google Scholar 

  45. Muralidharan R, Saladino A, Lanzino G, Atkinson JL, Rabinstein AA. The clinical and radiological presentation of spinal dural arteriovenous fistula. Spine. 2011;36:E1641.

    Article  PubMed  Google Scholar 

  46. Rubin MN, Rabinstein AA. Vascular diseases of the spinal cord. Neurol Clin. 2013;31:153–81.

    Article  PubMed  Google Scholar 

  47. Steinmetz MP, Chow MM, Krishnaney AA, Andrews-Hinders D, Benzel EC, Masaryk TJ, Mayberg MR, Rasmussen PA. Outcome after the treatment of spinal dural arteriovenous fistulae: a contemporary single-institution series and meta-analysis. Neurosurgery. 2004;55:77–88.

    Article  PubMed  Google Scholar 

  48. Takai K, Endo T, Yasuhara T et al. Neurosurgical versus endovascular treatment of spinal dural arteriovenous fistulas: a multicenter study of 195 patients. J Neurosurg Spine. 2020;34:514–21.

    Article  Google Scholar 

  49. Guillevin R, Vallee JN, Cormier E, Lo D, Dormont D, Chiras J. n-Butyl 2-cyanoacrylate embolization of spinal dural arteriovenous fistulae: CT evaluation, technical features, and outcome prognosis in 26 cases. Am J Neuroradiol. 2005;26:929–35.

    PubMed  PubMed Central  Google Scholar 

  50. Morgan MK, Marsh WR. Management of spinal dural arteriovenous malformations. J Neurosurg. 1989;70:832–6.

    Article  CAS  PubMed  Google Scholar 

  51. Han PP, Theodore N, Porter RW, Detwiler PW, Lawton MT, Spetzler RF. Subdural hematoma from a Type I spinal arteriovenous malformation: case report. J Neurosurg Spine. 1999;90:255–7.

    Article  CAS  Google Scholar 

  52. Rangel-Castilla L, Russin JJ, Zaidi HA, Martinez-del-Campo E, Park MS, Albuquerque FC, McDougall CG, Nakaji P, Spetzler RF. Contemporary management of spinal AVFs and AVMs: lessons learned from 110 cases. Neurosurg Focus. 2014;37:E14.

    Article  PubMed  Google Scholar 

  53. Lad SP, Santarelli JG, Patil CG, Steinberg GK, Boakye M. National trends in spinal arteriovenous malformations: a review. Neurosurg Focus. 2009;26:1–5.

    Article  PubMed  Google Scholar 

  54. • Yu JX, Hong T, Krings T et al. Natural history of spinal cord arteriovenous shunts: an observational study. Brain. 2019;142:2265–75. Notable detailed manuscript with data on the natural history of spinal cord arteriovenous shunts.

    Article  PubMed  Google Scholar 

  55. Hall WA, Oldfield EH, Doppman JL. Recanalization of spinal arteriovenous malformations following embolization. J Neurosurg. 1989;70:714–20.

    Article  CAS  PubMed  Google Scholar 

  56. Yu JX, Liu J, He C et al. Spontaneous spinal epidural hematoma: a study of 55 cases focused on the etiology and treatment strategy. World Neurosurg. 2017;98:546–54.

    Article  PubMed  Google Scholar 

  57. • Nasr DM, Brinjikji W, Clarke MJ, Lanzino G. Clinical presentation and treatment outcomes of spinal epidural arteriovenous fistulas. J Neurosurg Spine. 2017;26:613–20. High-quality data on the clinical presentation and treatment outcomes of spinal epidural arteriovenous fistulas, as the title suggests.

    Article  PubMed  Google Scholar 

  58. Ropper AH, Ayata C, Adelman L. Vasculitis of the spinal cord. Arch Neurol. 2003;60:1791–4.

    Article  PubMed  Google Scholar 

  59. Galetta SL, Balcer LJ, Lieberman AP, Syed NA, Lee JM, Oberholtzer JC. Refractory giant cell arteritis with spinal cord infarction. Neurology. 1997;49:1720–3.

    Article  CAS  PubMed  Google Scholar 

  60. Abdel Razek AAK, Alvarez H, Bagg S, Refaat S, Castillo M. Imaging spectrum of CNS vasculitis. Radiographics. 2014;34:873–94.

    Article  PubMed  Google Scholar 

  61. Cheshire WP, Santos CC, Massey EW, Howard JF. Spinal cord infarction: etiology and outcome. Neurology. 1996;47:321–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro A. Rabinstein MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Cerebrovascular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcellino, C., Zalewski, N.L. & Rabinstein, A.A. Treatment of Vascular Myelopathies. Curr Treat Options Neurol 23, 35 (2021). https://doi.org/10.1007/s11940-021-00689-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11940-021-00689-x

Keywords

Navigation