Skip to main content

Advertisement

Log in

An Update on the Treatment of Chorea

  • Movement Disorders (A Videnovich, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

There are many causes for chorea, including genetic, autoimmune, pharmacological, and structural lesions. Where appropriate, treatment is based on reversing the underlying cause of chorea; many cases are self-limited, resolving when the primary disorder is treated. This review focuses on the management of chorea due to untreatable causes.

Recent findings

There are a limited number of double-blind randomized control trials assessing the efficacy of specific chorea treatments. Most therapeutic recommendations are based on small open-label studies, case reports, and expert opinion. This is in part due to the heterogeneity of chorea and chorea-associated syndromes and the variety of neurodegenerative phenotypes with variable progression rates.

Summary

Chorea can be treated with a variety of medications ranging from antiepileptics to antipsychotics. The recent development of selective vesicular monoamine transporter blocking agents has allowed for targeted chorea management with minimal side effects. Neurosurgical interventions such as deep brain surgery (DBS) and pallidotomy are reserved for medication-refractory chorea. As a symptom of neurodegenerative disease, chorea is only one aspect of the basal ganglia syndromes, and often, a multidisciplinary approach tailored to individual patient needs provides the best management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hermann A, Walker RH. Diagnosis and treatment of chorea syndromes. Curr Neurol Neurosci Rep. 2015;15 https://doi.org/10.1007/s11910-014-0514-0.

  2. Mink JW. The basal ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol. 2003;60:1365–8.

    Article  Google Scholar 

  3. Khouzam HR. Identification and management of tardive dyskinesia: a case series and literature review. Postgrad Med. 2015;127:726–37.

    Article  Google Scholar 

  4. Vijayakumar D, Jankovic J. Drug-induced dyskinesia, part 2: treatment of tardive dyskinesia. Drugs. 2016;76:779–87.

    Article  CAS  Google Scholar 

  5. Waln O, Jankovic J. An Update on Tardive Dyskinesia: From Phenomenology to Treatment. Tremor and Other Hyperkinetic Movements. 2013;1–11.

  6. Sackett DL, Rosenberg WMC, Gray JAM, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. Br Med J. 1996;312:71–2.

    Article  CAS  Google Scholar 

  7. Guay DRP. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. 2010;8:331–73.

    Article  CAS  Google Scholar 

  8. Frank S. Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington study group/TETRA-HD investigators. BMC Neurol. 2009;9:62.

    Article  Google Scholar 

  9. Killoran A, Biglan KM. Current therapeutic options for Huntington’s disease: good clinical practice versus evidence-based approaches? Mov Disord. 2014;29:1404–13.

    Article  Google Scholar 

  10. Ondo WG, Adam OR, Jankovic J, Chinnery PF. Dramatic response of facial stereotype/tic to tetrabenazine in the first reported cases of neuroferritinopathy in the United States. Mov Disord. 2010;25:2470–2.

    Article  Google Scholar 

  11. Qayyum Rana A, Chaudry ZM, Blanchet PJ. New and emerging treatment options for symptomatic tardive d. Drug Des Devel Ther. 2013;7:1329–40.

    Article  Google Scholar 

  12. Chinnery PF, Crompton DE, Birchall D, Jackson MJ, Coulthard A, Lombès A, et al. Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain. 2007;130:110–9.

    Article  Google Scholar 

  13. Ong B, Devathasan G, Chong PN. Choreoacanthocytosis in a Chinese patient--a case report. Singap Med J. 1989;30:506–8.

    CAS  Google Scholar 

  14. Walker RH. Management of Neuroacanthocytosis Syndromes. Tremor Other Hyperkinet Mov (N Y). 2015;5:346.

    Google Scholar 

  15. Hawkes C, Nourse C. Tetabenazine in Sydenham’s chorea. Br Med J. 1977;28:1391–2.

    Article  Google Scholar 

  16. Calabrò RS, Polimeni G, Gervasi G, Bramanti P. Postthalamic stroke dystonic choreoathetosis responsive to tetrabenazine. Ann Pharmacother. 2011;45:e65.

    Article  Google Scholar 

  17. •• Frank S, Testa CM, Stamler D, et al. Effect of Deutetrabenazine on chorea among patients with Huntington disease: a randomized clinical trial. JAMA. 2016;316:40–50. This is curently the largest double-blind, randomized, placebo-controlled study of the effects of deutetrabenazine on patients with Huntington's diseae.

    Article  CAS  Google Scholar 

  18. •• Fernandez HH, Factor SA, Hauser RA, Jimenez-Shahed J, Ondo WG, Jarskog LF, et al. Randomized controlled trial of deutetrabenazine for tardive dyskinesia: the ARM-TD study. Neurology. 2017;88:2003–10. This paper is the largest multicenter double-blind, randomized, placebo-controlled study of the effects of deutetrabenazine on tardive dyskinesia.

    Article  CAS  Google Scholar 

  19. •• Anderson KE, Stamler D, Davis MD, Factor SA, Hauser RA, Isojärvi J, et al. Deutetrabenazine for treatment of involuntary movements in patients with tardive dyskinesia (AIM-TD): a double-blind, randomised, placebo-controlled, phase 3 trial. The lancet Psychiatry. 2017;4:595–604. This paper is the only double-blind, randomized, placebo-controlled study using deutetrabenazine to specifically treat movements from tardive dyskinesia.

    Article  Google Scholar 

  20. Grigoriadis DE, Smith E, Hoare SRJ, Madan A, Bozigian H. Pharmacologic characterization of Valbenazine (NBI-98854) and its metabolites. J Pharmacol Exp Ther. 2017;361:454–61.

    Article  CAS  Google Scholar 

  21. •• Hauser RA, Factor SA, Marder SR, Knesevich MA, Ramirez PM, Jimenez R, et al. KINECT 3: a phase 3 randomized, double-blind, placebo-controlled trial of Valbenazine for tardive dyskinesia. Am J Psychiatry. 2017;174:476–84. This paper is the only double-blind, placebo-controlled study uding valbenazine for tardive dysinesia.

    Article  Google Scholar 

  22. Factor SA, Remington G, Comella CL, Correll CU, Burke J, Jimenez R, et al. The effects of Valbenazine in participants with tardive dyskinesia. J Clin Psychiatry. 2017;78:1344–50.

    Article  Google Scholar 

  23. Deroover J, Baro F, Bourguignon RP, Smets P. Tiapride versus placebo: a double-blind comparative study in the management of Huntington’s chorea. Curr Med Res Opin. 1984;9:329–38.

    Article  CAS  Google Scholar 

  24. Girotti F, Carella F, Scigliano G, Grassi MP, Soliveri P, Giovannini P, et al. Effect of neuroleptic treatment on involuntary movements and motor performances in Huntington’s disease. J Neurol Neurosurg Psychiatry. 1984;47:848–52.

    Article  CAS  Google Scholar 

  25. Marsden CD. Drug treatment of diseases characterized by abnormal movements. Proc R Soc Med. 1973;66:871–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Seeman P, Tallerico T. Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry. 1998;3:123–34.

    Article  CAS  Google Scholar 

  27. Candelise L. Haloperidol, reserpine, l-dopa and amantidine in the treatment of Huntington chorea (author’s transl). Riv Patol Nerv Ment. 1976;96:54–62.

    CAS  PubMed  Google Scholar 

  28. Giménez-Roldán S, Mateo D. Huntington disease: tetrabenazine compared to haloperidol in the reduction of involuntary movements. Neurol (Barcelona, Spain). 1989;4:282–7.

    Google Scholar 

  29. Leonard DP, Kidson MA, Brown JG, Shannon PJ, Taryan S. A double blind trial of lithium carbonate and haloperidol in Huntington’s chorea. Aust N Z J Psychiatry. 1975;9:115–8.

    Article  CAS  Google Scholar 

  30. Demiroren K, Yavuz H, Cam L, Oran B, Karaaslan S, Demiroren S. Sydenham’s chorea: a clinical follow-up of 65 patients. J Child Neurol. 2007;22:550–4.

    Article  Google Scholar 

  31. Walker KG, Wilmshurst JM. An update on the treatment of Sydenham’s chorea: the evidence for established and evolving interventions. Ther Adv Neurol Disord. 2010;3:301–9.

    Article  CAS  Google Scholar 

  32. Ford JB, Albertson TE, Owen KP, Sutter ME, McKinney WB. Acute, sustained chorea in children after supratherapeutic dosing of amphetamine-derived medications. Pediatr Neurol. 2012;47:216–8.

    Article  Google Scholar 

  33. Park K, Lee Y, Park H. Chorea in the both lower limbs associated with Nonketotic hyperglycemia. Magn Reson Imaging. 2009;2:98–100.

    Google Scholar 

  34. Sutamtewagul G, Sood V, Nugent K. Sympathomimetic syndrome, choreoathetosis, and acute kidney injury following "bath salts" injection. Clin Nephrol. 2014;81:63–6.

    Article  Google Scholar 

  35. Armstrong MJ, Miyasaki JM, Suchowersky O, Armstrong MJ, Miyasaki JM. Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology. 2013;79:597–603.

    Article  Google Scholar 

  36. Seeman P, Van Tol HHM. Dopamine receptor pharmacology. Trends Pharmacol Sci. 1994;15:264–70.

    Article  CAS  Google Scholar 

  37. Bonuccelli U, Ceravolo R, Maremmani C, Nuti A, Rossi G, Muratorio A. Clozapine in Huntington’s chorea. Neurology. 1994;44:821–3.

    Article  CAS  Google Scholar 

  38. Li C-R, Chung Y-C, Park T-W, Yang J-C, Kim K-W, Lee K-H, et al. Clozapine-induced tardive dyskinesia in schizophrenic patients taking clozapine as a first-line antipsychotic drug. World J Biol Psychiatry. 2009;10:919–24.

    Article  Google Scholar 

  39. Molho ES, Factor SA. Possible tardive dystonia resulting from clozapine therapy. Mov Disord. 1999;14:873–4.

    Article  CAS  Google Scholar 

  40. Ryu S, Yoo JH, Kim JH, Choi JS, Baek JH, Ha K, et al. Tardive dyskinesia and tardive dystonia with second-generation antipsychotics in non-elderly schizophrenic patients unexposed to first-generation antipsychotics: a cross-sectional and retrospective study. J Clin Psychopharmacol. 2015;35:13–21.

    Article  CAS  Google Scholar 

  41. Grover S, Hazari N, Kate N, Chakraborty K, Sharma A, Singh D, et al. Management of tardive syndromes with clozapine: a case series. Asian J Psychiatr. 2014;8:111–4.

    Article  Google Scholar 

  42. Kando JC, Shepski JC, Satterlee W, Patel JK, Reams SG, Green AI. Olanzapine: a new antipsychotic agent with efficacy in the management of schizophrenia. Ann Pharmacother. 1997;31:1325–34.

    Article  CAS  Google Scholar 

  43. Bonelli RM, Niederwieser G, Tribl GG, Költringer P. High-dose olanzapine in Huntington’s disease. Int Clin Psychopharmacol. 2002;17:91–3.

    Article  CAS  Google Scholar 

  44. Paleacu D, Anca M, Giladi N. Olanzapine in Huntington’s disease. Acta Neurol Scand. 2002;105:441–4.

    Article  CAS  Google Scholar 

  45. Mason SL, Barker RA. Advancing pharmacotherapy for treating Huntington’s disease: a review of the existing literature. Expert Opin Pharmacother. 2015;6566:1–12.

    Google Scholar 

  46. Zádori D, Geisz A, Vámos E, Vécsei L, Klivényi P. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease. Pharmacol Biochem Behav. 2009;94:148–53.

    Article  Google Scholar 

  47. Symington GR, Leonard DP, Shannon PJ, Vajda FJ. Sodium valproate in Huntington’s disease. Am J Psychiatry. 1978;135:352–4.

    Article  CAS  Google Scholar 

  48. Grove VE, Quintanilla J, DeVaney GT. Improvement of Huntington’s disease with olanzapine and valproate. N Engl J Med. 2000;343:973–4.

    Article  Google Scholar 

  49. Peña J, Mora E, Cardozo J, Molina O, Montiel C. Comparison of the efficacy of carbamazepine, haloperidol and valproic acid in the treatment of children with Sydenham’s chorea: clinical follow-up of 18 patients. Arq Neuropsiquiatr. 2002;60:374–7.

    Article  Google Scholar 

  50. Schwarz JR, Grigat G. Phenytoin and carbamazepine: potential- and frequency-dependent block of Na currents in mammalian myelinated nerve fibers. Epilepsia. 1989;30:286–94.

    Article  CAS  Google Scholar 

  51. Zhang JD, Saito K. Carbamazepine facilitates effects of GABA on rat hippocampus slices. Zhongguo Yao Li Xue Bao. 1997;18:230–3.

    CAS  PubMed  Google Scholar 

  52. Thapa L, Bhattarai S, Shrestha MP, Panth R, Gongal DN, Devkota UP. Chorea-acanthocytosis: a case report. Int Med Case Rep J. 2016;9:39–42.

    Article  Google Scholar 

  53. Rudolph U, Möhler H. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr Opin Pharmacol. 2006;6:18–23.

    Article  CAS  Google Scholar 

  54. Mohapatra S. Successful Management of Tardive Dyskinesia with quetiapine and clonazepam in a patient of schizophrenia with type 2 diabetes mellitus. Clin Psychopharmacol Neurosci. 2016;14:218–20.

    Article  CAS  Google Scholar 

  55. Thaker GK, Nguyen JA, Strauss ME, Jacobson R, Kaup BA, Tamminga CA. Clonazepam treatment of tardive dyskinesia: a practical GABAmimetic strategy. Am J Psychiatry. 1990;147:445–51.

    Article  CAS  Google Scholar 

  56. Vogl C, Mochida S, Wolff C, Whalley BJ, Stephens GJ. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol Pharmacol. 2012;82:199–208.

    Article  CAS  Google Scholar 

  57. Fukuyama K, Tanahashi S, Nakagawa M, Yamamura S, Motomura E, Shiroyama T, et al. Levetiracetam inhibits neurotransmitter release associated with CICR. Neurosci Lett. 2012;518:69–74.

    Article  CAS  Google Scholar 

  58. Zesiewicz TA, Sullivan KL, Hauser RA, Sanchez-Ramos J. Open-label pilot study of levetiracetam (Keppra) for the treatment of chorea in Huntington’s disease. Mov Disord. 2006;21:1998–2001.

    Article  Google Scholar 

  59. Woods SW, Saksa JR, Baker CB, Cohen SJ, Tek C. Effects of levetiracetam on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry. 2008;69:546–54.

    Article  CAS  Google Scholar 

  60. Şahin S, Cansu A. A new alternative drug with fewer adverse effects in the treatment of Sydenham chorea: Levetiracetam efficacy in a child. Clin Neuropharmacol. 2015;38:144–6.

    Article  Google Scholar 

  61. Verhagen L, Morris MJ, Farmer C, Gillespie M, Mosby K, Wuu J, et al. Huntington’s disease: a randomized, controlled trial using the NMDA-antagonist amantadine. Neurology. 2002;59:694–9.

    Article  Google Scholar 

  62. O’Suilleabhain P, Dewey RB. A randomized trial of amantadine in Huntington disease. Arch Neurol. 2003;60:996–8.

    Article  Google Scholar 

  63. Heckmann J, Legg P, Sklar D, Fine J, Bryer A, Kies B. IV amantadine improves chorea in Huntington’s disease: an acute randomized, controlled study. Neurology. 2004;63:597–8.

    Article  CAS  Google Scholar 

  64. Alblowi MA, Alosaimi FD. Tardive dyskinesia occurring in a young woman after withdrawal of an atypical antipsychotic drug. Neurosciences (Riyadh). 2015;20:376–9.

    Article  Google Scholar 

  65. Pappa S, Tsouli S, Apostolou G, Mavreas V, Konitsiotis S. Effects of amantadine on tardive dyskinesia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2010;33:271–5.

    Article  CAS  Google Scholar 

  66. Bergerot A, Shortland PJ, Anand P, Hunt SP, Carlstedt T. Co-treatment with riluzole and GDNF is necessary for functional recovery after ventral root avulsion injury. Exp Neurol. 2004;187:359–66.

    Article  CAS  Google Scholar 

  67. Boireau A, Meunier M, Imperato A. Ouabain-induced increase in dopamine release from mouse striatal slices is antagonized by riluzole. J Pharm Pharmacol. 1998;50:1293–7.

    Article  CAS  Google Scholar 

  68. Dorsey ER, Shoulson I, Leavitt B, et al. Dosage effects of riluzole in Huntington’s disease a multicenter placebo-controlled study. Neurology. 2003;61:1551–6.

    Article  Google Scholar 

  69. Landwehrmeyer GB, Dubois B, De Yébenes JG, et al. Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol. 2007;62:262–72.

    Article  CAS  Google Scholar 

  70. Bedi G, Cooper ZD, Haney M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana smokers. Addict Biol. 2013;18:872–81.

    Article  CAS  Google Scholar 

  71. Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord. 2015;30:313–27.

    Article  CAS  Google Scholar 

  72. Rabinak CA, Angstadt M, Lyons M, Mori S, Milad MR, Liberzon I, et al. Cannabinoid modulation of prefrontal–limbic activation during fear extinction learning and recall in humans. Neurobiol Learn Mem. 2014;113:125–34.

    Article  CAS  Google Scholar 

  73. Glass M, Brotchie JM, Maneuf Y. Modulation of neurotransmission by cannabinoids in the basal ganglia. Eur J Neurosci. 1997;9:199–203.

    Article  CAS  Google Scholar 

  74. Denovan-Wright EM, Robertson HA. Cannabinoid receptor messenger RNA levels decrease in a subset of neurons of the lateral striatum, cortex and hippocampus of transgenic Huntington’s disease mice. Neuroscience. 2000;98:705–13.

    Article  CAS  Google Scholar 

  75. Curtis A, Mitchell I, Patel S, Ives N, Rickards H. A pilot study using nabilone for symptomatic treatment in Huntington’s disease. Mov Disord. 2009;24:2254–9.

    Article  Google Scholar 

  76. López-Sendón Moreno JL, García Caldentey J, Trigo Cubillo P, Ruiz Romero C, García Ribas G, Alonso Arias MAA, et al. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263:1390–400.

    Article  Google Scholar 

  77. Gardner J. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc Stud Sci. 2013;43:707–28.

    Article  Google Scholar 

  78. Beste C, Mückschel M, Elben S, J Hartmann C, McIntyre CC, Saft C, et al. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct Funct. 2015;220:2441–8.

    Article  CAS  Google Scholar 

  79. Gruber D, Kuhn AA, Schoenecker T, Kopp UA, Kivi A, Huebl J, et al. Quadruple deep brain stimulation in Huntington’s disease, targeting pallidum and subthalamic nucleus: case report and review of the literature. J Neural Transm. 2014;121:1303–12.

    Article  CAS  Google Scholar 

  80. Sharma M, Deogaonkar M. Deep brain stimulation in Huntington’s disease: assessment of potential targets. J Clin Neurosci. 2015;22:812–907.

    Article  Google Scholar 

  81. Delorme C, Rogers A, Lau B, Francisque H, Welter M-L, Fernandez Vidal S, et al. Deep brain stimulation of the internal pallidum in Huntington’s disease patients: clinical outcome and neuronal firing patterns. J Neurol. 2016;263:290–8.

    Article  Google Scholar 

  82. Fasano A, Mazzone P, Piano C, Quaranta D, Soleti F, Bentivoglio AR. GPi-DBS in Huntington’s disease: results on motor function and cognition in a 72-year-old case. Mov Disord. 2008;23:1289–92.

    Article  Google Scholar 

  83. Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S, Seychelles A, Sanrey E, et al. Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg. 2014;121:114–22.

    Article  Google Scholar 

  84. Velez-Lago FM, Thompson A, Oyama G, Hardwick A, Sporrer JM, Zeilman P, et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact Funct Neurosurg. 2013;91:129–33.

    Article  Google Scholar 

  85. Okun MS, Tagliati M, Pourfar M, Fernandez HH, Rodriguez RL, Alterman RL, et al. Management of referred deep brain stimulation failures: a retrospective analysis from 2 movement disorders centers. Arch Neurol. 2005;62:1250–5.

    Article  Google Scholar 

  86. Huys D, Bartsch C, Poppe P, Lenartz D, Huff W, Prütting J, et al. Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr Neurol Psychiatr. 2013;81:202–5.

    Article  CAS  Google Scholar 

  87. Kang GA, Heath S, Rothlind J, Starr PA. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J Neurol Neurosurg Psychiatry. 2011;82:272–7.

    Article  Google Scholar 

  88. • Vedam-Mai V, Martinez-Ramirez D, Hilliard JD, Carbunaru S, Yachnis AT, Bloom J, et al. Post-mortem findings in Huntington’s deep brain stimulation: a moving target due to atrophy. Tremor Other Hyperkinet Mov (N Y). 2016;6:372. This paper highlights some of the difficulties with using deep brain stimulation to treat neurodegenerative diseases, such as Huntington's disease.

    Google Scholar 

  89. • Wojtecki L, Groiss SJ, Ferrea S, et al. A prospective pilot trial for Pallidal deep brain stimulation in Huntington’s disease. Front Neurol. 2015;6:177. This paper reports on using deep brain stimulation to use deep brain stimulation to treat Huntington's disease.

    Article  Google Scholar 

  90. Zittel S, Tadic V, Moll CKE, Bäumer T, Fellbrich A, Gulberti A, et al. Prospective evaluation of Globus pallidus internus deep brain stimulation in Huntington’s disease. Parkinsonism Relat Disord. 2018;51:96–100. https://doi.org/10.1016/j.parkreldis.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  91. Miquel M, Spampinato U, Latxague C, Aviles-Olmos I, Bader B, Bertram K, et al. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS One. 2013;8:e79241. https://doi.org/10.1371/journal.pone.0079241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wihl G, Volkmann J, Allert N, Lehrke R, Sturm V, Freund HJ. Deep brain stimulation of the internal pallidum did not improve chorea in a patient with neuro-acanthocytosis. Mov Disord. 2001;16:572–5.

    Article  CAS  Google Scholar 

  93. Hasegawa H, Mundil N, Samuel M, Jarosz J, Ashkan K. The treatment of persistent vascular hemidystonia-hemiballismus with unilateral GPi deep brain stimulation. Mov Disord. 2009;24:1697–8.

    Article  Google Scholar 

  94. Dy ME, Chang FCF, De Jesus S, et al. Treatment of ADCY5-associated dystonia, chorea, and hyperkinetic disorders with deep brain stimulation: a multicenter case series. J Child Neurol. 2016;31:1027–35.

    Article  Google Scholar 

  95. van Coller R, Slabbert P, Vaidyanathan J, Schutte C. Successful treatment of disabling paroxysmal nonkinesigenic dyskinesia with deep brain stimulation of the globus pallidus internus. Stereotact Funct Neurosurg. 2014;92:388–92.

    Article  Google Scholar 

  96. Nakano N, Uchiyama T, Okuda T, Kitano M, Taneda M. Successful long-term deep brain stimulation for hemichorea-hemiballism in a patient with diabetes. Case report. J Neurosurg. 2005;102:1137–41.

    Article  Google Scholar 

  97. Damier P, Thobois S, Witjas T, Cuny E, Derost P, Raoul S, et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch Gen Psychiatry. 2007;64:170–6.

    Article  Google Scholar 

  98. • Pouclet-Courtemanche H, Rouaud T, Thobois S, Nguyen JM, Brefel-Courbon C, Chereau I, et al. Long-term efficacy and tolerability of bilateral pallidal stimulation to treat tardive dyskinesia. Neurology. 2016;86:651–9. This paper reports uding deep brain stimulation to treat tardive dyskinesia.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Feinstein DO.

Ethics declarations

Conflict of Interest

Erin Feinstein declares no conflict of interest. Ruth Walker has received consulting fees from the manufacturers of valbenazine, Neurocrine Biosciences, Inc. She has also received honoraria from Advance Medical Opinion, the International Parkinson Disease and Movement Disorders Society, and GE Healthcare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinstein, E., Walker, R. An Update on the Treatment of Chorea. Curr Treat Options Neurol 20, 44 (2018). https://doi.org/10.1007/s11940-018-0529-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-018-0529-y

Keywords

Navigation