Vaccine Strategies in Gliomas

  • Michael Platten
  • Lukas Bunse
  • Dennis Riehl
  • Theresa Bunse
  • Katharina Ochs
  • Wolfgang Wick
Neuro-oncology (R Soffietti, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Neuro-oncology

Abstract

Purpose of review

To discuss the current state of glioma vaccine development and highlight the challenges associated with clinical implementation of these approaches.

Recent findings

Vaccination strategies against gliomas have matured considerably during the past years, although proof-of efficacy from controlled clinical trials is still lacking. Advances in antigen discovery, including the definition of neoepitopes including epidermal growth factor receptor variant III (EGFRvIII), isocitrate dehydrogenase (IDH)1R132H and Histone (H)3.3K27M, using multi-omic approaches and computational algorithms allow targeting single antigens, but also implementing truly personalized approaches. In addition, new concepts of vaccine manufacturing including RNA and DNA vaccines improve immunogenicity and applicability in personalized settings.

Summary

As an increasing amount of clinical data defy the concept of the central nervous system (CNS) as a strictly immunoprivileged site, novel vaccine approaches enter the clinic including critical efforts to identify biomarkers of response and resistance and strategies to overcome the immunosuppressive glioma microenvironment.

Keywords

Glioma Immunotherapy Neoepitope Vaccine IDH1 Personalized 

Notes

Compliance with Ethical Standards

Conflict of Interest

Dennis Riehl declares that he has no conflict of interest.

Michael Platten: Patents: IDH1 and H3.3 vaccine, Tryptophan metabolites, Methods for Detecting Antigen Presentation; Advisory board - Genentech/Roche, Merck, Bayer, Novartis; Research Support – Bayer, Pfizer; Speaker - Bayer, Merck, Medac, Novartis, Teva, Genentech/Roche; VAXIMM.

Lukas Bunse: Patents: H3.3K27M vaccine, Methods for Detecting Antigen Presentation.

Theresa Bunse: Patents: IDH1 and H3.3K27M vaccines, Methods for Detecting Antigen Presentation.

Katharina Ochs: H3.3 vaccine.

Wolfgang Wick: Patents: IDH1 and H3.3 vaccine, Tryptophan metabolites, APG101 companion diagnostics, Methods for Detecting Antigen Presentation; Research Support – Boehringer Ingelheim, Apogenic, Pfizer, Roche, VAXIMM.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Quail DF, Joyce JA. The Microenvironmental landscape of brain tumors. Cancer Cell. 2017;31(3):326–41.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    • Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11. This case report for the first time demonstrates response of a glioblastoma with high mutational load to checkpoint inhibition.CrossRefPubMedGoogle Scholar
  3. 3.
    Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6(11):1230–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Platten M, Bunse L, Wick W, Bunse T. Concepts in glioma immunotherapy. Cancer Immunol Immunother. 2016;65(10):1269–75.CrossRefPubMedGoogle Scholar
  5. 5.
    Platten M, Ochs K, Lemke D, Opitz C, Wick W. Microenvironmental clues for glioma immunotherapy. Curr Neurol Neurosci Rep. 2014;14(4):440.CrossRefPubMedGoogle Scholar
  6. 6.
    Platten M, Steinman L. Multiple sclerosis: trapped in deadly glue. Nat Med. 2005;11(3):252–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Wick W, Hertenstein A, Platten M. Neurological sequelae of cancer immunotherapies and targeted therapies. Lancet Oncol. 2016;17(12):e529–e41.CrossRefPubMedGoogle Scholar
  8. 8.
    Mildenberger I, Bunse L, Ochs K, Platten M. The promises of immunotherapy in gliomas. Curr Opin Neurol. 2017;30(6):650–8.Google Scholar
  9. 9.
    Yshii LM, Hohlfeld R, Liblau RS. Inflammatory CNS disease caused by immune checkpoint inhibitors: status and perspectives. Nat Rev Neurol. 2017;13(12):755–63.CrossRefPubMedGoogle Scholar
  10. 10.
    Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lanz TV, Becker S, Osswald M, Bittner S, Schuhmann MK, Opitz CA, et al. Protein kinase C beta as a therapeutic target stabilizing blood-brain barrier disruption in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2013;110:14735–40.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Weller M, Roth P, Preusser M, Wick W, Reardon DA, Platten M, et al. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nat Rev Neurol. 2017;13(6):363–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of malignant tumors in the brain: how different from other sites? Front Oncol. 2016;6:256.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Platten M, Offringa R. Cancer immunotherapy: exploiting neoepitopes. Cell Res. 2015;25(8):887–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuno MA, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother. 2013;62(1):125–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Wen PY, Reardon DA, Phuphanich S, Aiken R, Landolfi JC, Curry WT, et al. A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol. 2014;32(5s):suppl; abstr 2005.Google Scholar
  17. 17.
    • Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, et al. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain. 2012;135(Pt 4):1042–54. This work demonstrates the use of HLA ligandome analyses for defining relevant glioblastoma antigens.CrossRefPubMedGoogle Scholar
  18. 18.
    Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. A Cancer Research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–85.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Abdollahi A, Lipson KE, Sckell A, Zieher H, Klenke F, Poerschke D, et al. Combined therapy with direct and indirect angiogenesis inhibition results in enhanced antiangiogenic and antitumor effects. Cancer Res. 2003;63(24):8890–8.PubMedGoogle Scholar
  20. 20.
    Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, et al. A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med. 2002;8(12):1369–75.CrossRefPubMedGoogle Scholar
  21. 21.
    Schmitz-Winnenthal FH, Hohmann N, Niethammer AG, Friedrich T, Lubenau H, Springer M, et al. Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: a randomized, placebo-controlled, phase 1 trial. Oncoimmunology. 2015;4(4):e1001217.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wick W, Wick A, Nowosielski M, Sahm F, Riehl D, Arzt M, et al. VXM01 phase I study in patients with resectable progression of a glioblastoma. J Clin Oncol. 2017;35:suppl; abstr 2061.Google Scholar
  23. 23.
    Congdon KL, Gedeon PC, Suryadevara CM, Caruso HG, Cooper LJ, Heimberger AB, et al. Epidermal growth factor receptor and variant III targeted immunotherapy. Neuro-Oncology. 2014;16(Suppl 8):viii20–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE 2nd, Lally-Goss D, et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8(10):2773–9.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology. 2015;17(6):854–61.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    • Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. Albeit negative, this is the first randomized double-blind phase 3 study testing the efficacy of a neoepitope-specific vaccine in glioblastoma.CrossRefPubMedGoogle Scholar
  27. 27.
    Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    van den Bent MJ, Gao Y, Kerkhof M, Kros JM, Gorlia T, van Zwieten K, et al. Changes in the EGFR amplification and EGFRvIII expression between paired primary and recurrent glioblastomas. Neuro-Oncology. 2015;17(7):935–41.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Platten M. EGFRvIII vaccine in glioblastoma-InACT-IVe or not ReACTive enough? Neuro-Oncology. 2017;19(11):1425–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Reardon DA, Schuster J, Tran DD, Fink KL, Nabors LB, Li G, et al. ReACT: overall survival from a randomized phase ii study of rindopepimut (CDX-110)plus bevacizumab in relapsed glioblastoma. J Clin Oncol. 2015;33:suppl; abstr 2009.Google Scholar
  31. 31.
    Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, et al. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest. 2015;125(2):593–606.PubMedPubMedCentralGoogle Scholar
  32. 32.
    •• Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512(7514):324–7. This paper identifies a common mutation in gliomas to result in a targetable neoepitope and demonstrates the therapeutic relevance of neoepitope-specific CD4 T cell responses.CrossRefPubMedGoogle Scholar
  33. 33.
    Schumacher T, Bunse L, Wick W, Platten M. Mutant IDH1: an immunotherapeutic target in tumors. Oncoimmunology. 2014;3(12):e974392.CrossRefPubMedGoogle Scholar
  34. 34.
    • Kreiter S, Vormehr M, van de Roemer N, Diken M, Lower M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520(7549):692–6. This paper defines a workflow for defining neoepitope-specific vaccines and characterizes their mode of action.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Platten M, Schilling D, Bunse T, Sahm F, Hueckelhoven A, Schenkel I, et al. A mutation-specific peptide vaccine targeting IDH1R132H in patients with newly diagnosed malignant astrocytomas: a first-in-man multicenter phase I clinical trial of the German Neurooncology Working Group (NOA-16). J Clin Oncol. 2016;34:suppl; abstr TPS2082.Google Scholar
  36. 36.
    Ochs K, Ott M, Bunse T, Sahm F, Bunse L, Deumelandt K, et al. K27M-mutant histone-3 as a novel target for glioma immunotherapy. Oncoimmunology. 2017;6(7):e1328340.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    • Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2017;215(1):141–57. First description of a neoepitope-specific T cell receptor in gliomas.CrossRefPubMedGoogle Scholar
  38. 38.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.CrossRefPubMedGoogle Scholar
  39. 39.
    Johanns TM, Dunn GP. Applied cancer immunogenomics: leveraging neoantigen discovery in glioblastoma. Cancer J. 2017;23(2):125–30.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    ••Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21. Both papers show a clinically applicable and effective workflow for individualized mutation-specific vaccines for the treatment of cancer.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    •• Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. Both papers show a clinically applicable and effective workflow for individualized mutation-specific vaccines for the treatment of cancer.CrossRefPubMedGoogle Scholar
  42. 42.
    Kranz LM, Diken M, Haas H, Kreiter S, Loquai C, Reuter KC, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016;534(7607):396–401.CrossRefPubMedGoogle Scholar
  43. 43.
    Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963–71.CrossRefPubMedGoogle Scholar
  44. 44.
    Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology. 2014;16(2):274–9.CrossRefPubMedGoogle Scholar
  45. 45.
    Terasaki M, Shibui S, Narita Y, Fujimaki T, Aoki T, Kajiwara K, et al. Phase I trial of a personalized peptide vaccine for patients positive for human leukocyte antigen—A24 with recurrent or progressive glioblastoma multiforme. J Clin Oncol. 2011;29(3):337–44.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Michael Platten
    • 1
    • 2
  • Lukas Bunse
    • 1
    • 3
  • Dennis Riehl
    • 1
    • 4
  • Theresa Bunse
    • 1
    • 2
  • Katharina Ochs
    • 1
    • 3
  • Wolfgang Wick
    • 3
    • 5
  1. 1.DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor ImmunologyGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of Neurology, Mannheim Medical CenterUniversity of HeidelbergMannheimGermany
  3. 3.Department of Neurology, Heidelberg Medical CenterUniversity of HeidelbergHeidelbergGermany
  4. 4.Immune Monitoring Unit, DKTKGerman Cancer Research Center and National Center for Tumor DiseasesHeidelbergGermany
  5. 5.DKTK Clinical Cooperation Unit NeurooncologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations