Skip to main content

Advertisement

Log in

CADASIL: Treatment and Management Options

  • Cerebrovascular Disorders (DG Jamieson, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

CADASIL is a life-threatening and disabling disease. Despite the progress achieved so far, no therapies able to limit the disease progression have been found and only empiric treatments can be employed to relieve the main disease symptoms. Further in vivo studies as well as data aggregation and multi-centre controlled clinical trials are needed to confirm the emerging findings in order to identify evidence-based therapies for CADASIL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ducros A, Nagy T, Alamowitch S, Nibbio A, Joutel A, Vahedi K, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, genetic homogeneity, and mapping of the locus within a 2-cM interval. Am J Hum Genet. 1996;58:171–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009;8:643–53.

    Article  PubMed  Google Scholar 

  3. Sourander P, Wålinder J. Hereditary multi-infarct dementia. Morphological and clinical studies of a new disease. Acta Neuropathol. 1977;39:247–54.

    Article  CAS  PubMed  Google Scholar 

  4. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a mendelian condition causing stroke and vascular dementia. Ann N Y Acad Sci. 1997;826:213–7.

    Article  CAS  PubMed  Google Scholar 

  5. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268:225–32.

    Article  CAS  PubMed  Google Scholar 

  6. Dichgans M, Mayer M, Uttner I, Brüning R, Müller-Höcker J, Rungger G, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44:731.

    Article  CAS  PubMed  Google Scholar 

  7. Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain. 2004;127:2533–9.

    Article  PubMed  Google Scholar 

  8. del Río-Espínola A, Mendióroz M, Domingues-Montanari S, Pozo-Rosich P, Solé E, Fernández-Morales J, et al. CADASIL management or what to do when there is little one can do. Expert Rev Neurother. 2009;9:197–210.

    Article  PubMed  Google Scholar 

  9. Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP. The natural history of CADASIL: a pooled analysis of previously published cases. Stroke. 1999;30:1230–3.

    Article  CAS  PubMed  Google Scholar 

  10. Bousser M, Tournier-Lasserve E. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: from stroke to vessel wall physiology. J Neurol Neurosurg Psychiatry. 2001;70:285–7S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singhal S, Bevan S, Barrick T, Rich P, Markus HS. The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain. 2004;127:2031–8.

    Article  PubMed  Google Scholar 

  12. Adib-Samii P, Brice G, Martin RJ, Markus HS. Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke. 2010;41:630–4.

    Article  PubMed  Google Scholar 

  13. Dichgans M. Cognition in CADASIL. Stroke. 2009;40:S45–7.

    Article  PubMed  Google Scholar 

  14. Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG, et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet. 1995;346:934–9.

    Article  CAS  PubMed  Google Scholar 

  15. Valenti R, Poggesi A, Pescini F, Inzitari D, Pantoni L. Psychiatric disturbances in CADASIL: a brief review. Acta Neurol Scand. 2008;118:291–5.

    Article  CAS  PubMed  Google Scholar 

  16. Choi JC, Kang SY, Kang JH, Park JK. Intracerebral hemorrhages in CADASIL. Neurology. 2006;67:2042–4.

    Article  PubMed  Google Scholar 

  17. Ragno M, Berbellini A, Cacchiò G, Manca A, Di Marzio F, Pianese L, et al. Parkinsonism is a late, not rare, feature of CADASIL: a study on Italian patients carrying the R1006C mutation. Stroke. 2013;44:1147–9.

    Article  PubMed  Google Scholar 

  18. Markus HS, Martin RJ, Simpson MA, Dong YB, Ali N, Crosby AH, et al. Diagnostic strategies in CADASIL. Neurology. 2002;59:1134–8.

    Article  CAS  PubMed  Google Scholar 

  19. • Zhu S, Nahas SJ. CADASIL: imaging characteristics and clinical correlation. Curr Pain Headache Rep. 2016;20:57. The study outlines the most important clinical and neuroimaging features of CADASIL confirming that subcortical ischemic changes, which occur early in CADASIL and typically progress to involve the anterior temporal poles, may differentiate CADASIL patients from other causes of small vessel ischemic disease

    Article  CAS  PubMed  Google Scholar 

  20. O’Sullivan M, Jarosz JM, Martin RJ, Deasy N, Powell JF, Markus HS. MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology. 2001;56:628–34.

    Article  PubMed  Google Scholar 

  21. Lesnik Oberstein SA, van den Boom R, van Buchem MA, van Houwelingen HC, Bakker E, Vollebregt E, et al. Dutch CADASIL research group. Cerebral microbleeds in CADASIL. Neurology. 2001;57:1066–70.

    Article  CAS  PubMed  Google Scholar 

  22. Joshi S, Yau W, Kermode A. CADASIL mimicking multiple sclerosis: the importance of clinical and MRI red flags. J Clin Neurosci. 2017;35:75–7.

    Article  PubMed  Google Scholar 

  23. • Pantoni L, Pescini F, Nannucci S, Sarti C, Bianchi S, Dotti MT, et al. Comparison of clinical, familial, and MRI features of CADASIL and NOTCH3-negative patients. Neurology. 2010;74:57–63. The authors did not find any clinical or neuroimaging findings that were pathognomonic for CADASIL, emphasizing that there are many patients with a CADASIL like phenotype, despite negative genetic testing

    Article  CAS  PubMed  Google Scholar 

  24. He D, Chen D, Li X, Hu Z, Yu Z, Wang W, et al. The comparisons of phenotype and genotype between CADASIL and CADASIL-like patients and population-specific evaluation of CADASIL scale in China. J Headache Pain. 2016;17:55.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Auer DP, Pütz B, Gössl C, Elbel G, Gasser T, Dichgans M. Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison. Radiology. 2001;218:443–51.

    Article  CAS  PubMed  Google Scholar 

  26. •• Bersano A, Markus HS, Quaglini S, Arbustini E, Lanfranconi S, Micieli G, et al., Lombardia GENS Group*. Clinical pregenetic screening for stroke monogenic diseases: results from Lombardia GENS Registry. Stroke. 2016;47:1702–9. The authors underline the need of clinical criteria for CADASIL suspicion. By applying standardized algorithm they identified 7% of patients with monogenic disease highlighting the role of familial history in the clinical suspicion of monogenic disease and specifically CADASIL

    Article  CAS  PubMed  Google Scholar 

  27. Morroni M, Marzioni D, Ragno M, Di Bella P, Cartechini E, Pianese L, et al. Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One. 2013;8:e65482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tikka S, Mykkanen K, Ruchoux MM, Bergholm R, et al. Congruence between NOTCH3 mutations and GOM in 131 CADASIL patients. Brain. 2009;132:933–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peters N, Opherk C, Bergmann T, Castro M, Herzog J, Dichgans M. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies. Arch Neurol. 2005;62:1091–4.

    Article  PubMed  Google Scholar 

  30. Joutel A, Vahedi K, Corpechot C, Troesch A, Chabriat H, Vayssière C, et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet. 1997;350:1511–5.

    Article  CAS  PubMed  Google Scholar 

  31. Bersano A, Ranieri M, Ciammola A, Cinnante C, Lanfranconi S, Dotti MT, et al. Considerations on a mutation in the NOTCH3 gene sparing a cysteine residue: a rare polymorphism rather than a CADASIL variant. Funct Neurol. 2012;27:247–52.

    PubMed  Google Scholar 

  32. Rutten JW, Haan J, Terwindt GM, van Duinen SG, Boon EM, Lesnik Oberstein SA. Interpretation of NOTCH3 mutations in the diagnosis of CADASIL. Expert Rev Mol Diagn. 2014;14:593–603.

    Article  CAS  PubMed  Google Scholar 

  33. • Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770–6. In this review Notch signals is reported to control how cells respond to intrinsic or extrinsic developmental cues that are necessary to unfold specific developmental programs. It is also explained how Notch activity affects differentiation, proliferation, and apoptotic programs, providing a general developmental tool to influence organ formation and morphogenesis

    Article  CAS  PubMed  Google Scholar 

  34. • Joutel A, Corpechot C, Ducros A, Vahedi K, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 383:1996, 707–710. This research article first reported that specific mutations in the NOTCH3 gene cause serious disruption of the gene, indicating that Notch3 could be the defective protein in CADASIL patients

  35. Joutel A. Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. BioEssays. 2011;33:73–80.

    Article  CAS  PubMed  Google Scholar 

  36. Joutel A, Monet M, Domenga V, Riant F, Tournier-Lasserve E. Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling pathway. Am J Hum Genet. 2004;74:338–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dotti MT, Federico A, Mazzei R, Bianchi S, Scali O, Conforti FL, et al. The spectrum of Notch3 mutations in 28 Italian CADASIL families. J Neurol Neurosurg Psychiatry. 2005;76:736–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. •• Bianchi S, Zicari E, Carluccio A, Di Donato I, Pescini F, Nannucci S, et al. CADASIL in central Italy: a retrospective clinical and genetic study in 229 patients. J Neurol. 2015;262:134–41. This is the most extensive study on CADASIL in Italy. This study enlarges the number of pathogenic NOTCH3 gene mutations and highlights the heterogeneous mutational spectrum observed suggesting that full sequencing of exons 2–24 is mandatory for CADASIL screening in Italy

    Article  CAS  PubMed  Google Scholar 

  39. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol. 2007;6:149–61.

    Article  CAS  PubMed  Google Scholar 

  40. Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, et al. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet. 2011 Aug 15;20(16):3256–65.

    Article  CAS  PubMed  Google Scholar 

  41. Smith RA, Curtain R, Ovcaric M, Tajouri L, Macmillan J, Griffiths L. Investigation of the NOTCH3 and TNFSF7 genes on C19p13 as candidates for migraine. Open Neurol J. 2008;2:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Wollenweber FA, Hanecker P, Bayer-Karpinska A, Malik R, Bäzner H, Moreton F, et al. Cysteine-sparing CADASIL mutations in NOTCH3 show proaggregatory properties in vitro. Stroke. 2015;46:786–92. This paper discusses and provides recommendations for the interpretation of NOTCH3 gene mutations in the diagnosis of CADASIL

    Article  CAS  PubMed  Google Scholar 

  43. Joutel A, Monet-Leprêtre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120:433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105:597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358:2049–51.

    Article  CAS  PubMed  Google Scholar 

  46. Ishiko A, Shimizu A, Nagata E, Takahashi K, Tabira T, Suzuki N. Notch3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol. 2006;112:333–9.

    Article  CAS  PubMed  Google Scholar 

  47. • Ghosh M, Balbi M, Hellal F, Dichgans M, Lindauer U, Plesnila N. Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Ann Neurol. 2015;78:887–900. In this research article pericytes are reported to be the first cells affected by Notch3 aggregation in CADASIL mice, causing opening of the blood brain barrier and microvascular dysfunction. Therefore, protecting pericytes may represent a novel therapeutic strategy for vascular dementia

    Article  CAS  PubMed  Google Scholar 

  48. Monet-Leprêtre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain. 2013;136:1830–45.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O’Brien C, et al. Notch and vascular smooth muscle cell phenotype. Circ Res. 2008;103:1370–82.

    Article  CAS  PubMed  Google Scholar 

  50. Krebs LT, Xue Y, Norton CR, Sundberg JP, Beatus P, Lendahl U, et al. Characterization of Notch3-deficient mice: normal embryonic development and absence of genetic interactions with a Notch1 mutation. Genesis. 2003 Nov;37(3):139–43.

  51. Domenga V, Fardoux P, Lacombe P, Monet M, Maciazek J, Krebs LT, et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 2004;18:2730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Belin de Chantemèle EJ, Retailleau K, Pinaud F, Vessières E, Bocquet A, Guihot AL, et al. Notch3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol. 2008;28:2216–24.

    Article  PubMed  Google Scholar 

  53. Rutten JW, Klever RR, Hegeman IM, Poole DS, Dauwerse HG, Broos LA, et al. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation. Acta Neuropathol Commun. 2015;3:89.

    Article  PubMed  PubMed Central  Google Scholar 

  54. •• Di Donato I, Bianchi S, De Stefano N, Dchgans M, Dotti MT, Duering M, et al. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Med. 15(1):41. The paper is an important updated review on clinical, neuroimaging, neuropathological, genetic, and therapeutic aspects based on literature and on the personal experience of the authors, with a wide expertise in CADASIL research and care

  55. Khan MT, Murray A, Smith M. Successful use of intravenous tissue plasminogen activator as treatment for a patient with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: acase report and review of literature. J Stroke Cerebrovasc Dis. 2016;25:e53–7.

  56. Dichgans M, Petersen D. Angiographic complications in CADASIL. Lancet. 1997;349:776–7.

    Article  CAS  PubMed  Google Scholar 

  57. Holtmannspötter M, Peters N, Opherk C, Martin D, Herzog J, Brückmann H, et al. Diffusion magnetic resonance histograms as a surrogate marker and predictor of disease progression in CADASIL: a two-year follow-up study. Stroke. 2005;36:2559–65.

    Article  PubMed  Google Scholar 

  58. Viswanathan A, Guichard JP, Gschwendtner A, Buffon F, Cumurcuic R, Boutron C, et al. Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain. 2006;129:2375–8.

    Article  PubMed  Google Scholar 

  59. Peters N, Holtmannspötter M, Opherk C, Gschwendtner A, Herzog J, Sämann P, et al. Brain volume changes in CADASIL: a serial MRI study in pure subcortical ischemic vascular disease. Neurology. 2006;66:1517–22.

    Article  CAS  PubMed  Google Scholar 

  60. Guo Z, Qiu C, Viitanen M, Fastbom J, Winblad B, Fratiglioni L. Blood pressure and dementia in persons 75+ years old: 3-year follow-up results from the Kungsholmen Project. J Alzheimers Dis. 2001;3:585–91.

    Article  PubMed  Google Scholar 

  61. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ. Low blood pressure and the risk of dementia in very old individuals. Neurology. 2003;61:1667–72.

    Article  CAS  PubMed  Google Scholar 

  62. Rufa A, Dotti MT, Franchi M, Stromillo ML, Cevenini G, Bianchi S, et al. Systemic blood pressure profile in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2005;36:2554–8.

    Article  PubMed  Google Scholar 

  63. Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD. Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet. 2005;365:224–32.

    Article  CAS  PubMed  Google Scholar 

  64. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.

    Article  CAS  PubMed  Google Scholar 

  65. Hassan A, Hunt BJ, O’Sullivan M, Bell R, D’Souza R, Jeffery S, et al. Homocysteine is a risk factor for cerebral small vessel disease, acting via endothelial dysfunction. Brain. 2004;127:212–9.

    Article  PubMed  Google Scholar 

  66. Flemming KD, Nguyen TT, Abu-Lebdeh HS, Parisi JE, Wiebers DO, Sicks JD, et al. Hyperhomocysteinemia in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Mayo Clin Proc. 2001 Dec;76:1213–8.

  67. Martí-Carvajal AJ, Solà I, Lathyris D. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev. 2015;1:CD006612.

    PubMed  Google Scholar 

  68. Park JH, Saposnik G, Ovbiagele B, Markovic D, Towfighi A. Effect of B-vitamins on stroke risk among individuals with vascular disease who are not on antiplatelets: a meta-analysis. Int J Stroke. 2016;11:206–11.

    Article  PubMed  Google Scholar 

  69. Lian L, Li D, Xue Z, Liang Q, Xu F, Kang H, et al. Spontaneous intracerebral hemorrhage in CADASIL. J Headache Pain. 2013;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rinnoci V, Nannucci S, Valenti R, Donnini I, Bianchi S, Pescini F, et al. Cerebral hemorrhages in CADASIL: report of four cases and a brief review. J Neurol Sci. 2013;330:45–51.

    Article  PubMed  Google Scholar 

  71. van den Boom R, Lesnik Oberstein SA, Spilt A, Behloul F, Ferrari MD, Haan J, et al. Cerebral hemodynamics and white matter hyperintensities in CADASIL. J Cereb Blood Flow Metab. 2003;23:599–604.

    Article  PubMed  Google Scholar 

  72. Chabriat H, Pappata S, Ostergaard L, Clark CA, Pachot-Clouard M, Vahedi K, et al. Cerebral hemodynamics in CADASIL before and after acetazolamide challenge assessed with MRI bolus tracking. Stroke. 2000;31:1904–12.

    Article  CAS  PubMed  Google Scholar 

  73. Tuominen S, Miao Q, Kurki T, Tuisku S, Pöyhönen M, Kalimo H, et al. Positron emission tomography examination of cerebral blood flow and glucose metabolism in young CADASIL patients. Stroke. 2004;35:1063–7.

    Article  PubMed  Google Scholar 

  74. Pfefferkorn T, von Stuckrad-Barre S, Herzog J, Gasser T, Hamann GF, Dichgans M. Reduced cerebrovascular CO(2) reactivity in CADASIL: a transcranial Doppler sonography study. Stroke. 2001;32:17–21.

    Article  CAS  PubMed  Google Scholar 

  75. Campolo J, De Maria R, Frontali M, Taroni F, Inzitari D, Federico A, et al. Impaired vasoreactivity in mildly disabled CADASIL patients. J Neurol Neurosurg Psychiatry. 2012;8:268–74.

    Article  Google Scholar 

  76. Peters N, Freilinger T, Opherk C, Pfefferkorn T, Dichgans M. Effects of short term atorvastatin treatment on cerebral hemodynamics in CADASIL. J Neurol Sci. 2007;260:100–5.

    Article  CAS  PubMed  Google Scholar 

  77. De Maria R, Campolo J, Frontali M, Taroni F, Federico A, Inzitari D, et al. Effects of sapropterin on endothelium-dependent vasodilation in patients with CADASIL: a randomized controlled trial. Stroke. 2014 Oct;45:2959–66.

  78. Huang L, Yang Q, Zhang L, Chen X, Huang Q, Wang H. Acetazolamide improves cerebral hemodynamics in CADASIL. J Neurol Sci. 2010;292:77–80.

    Article  CAS  PubMed  Google Scholar 

  79. Mizuno T, Kondo M, Ishigami N, Tamura A, Itsukage M, Koizumi H, et al. Cognitive impairment and cerebral hypoperfusion in a CADASIL patient improved during administration of lomerizine. Clin Neuropharmacol. 2009;32:113–6.

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein J, Hagen M, Gold M. Results of a multicenter, double-blind, randomized, parallel-group, placebo-controlled, single-dose study comparing the fixed combination of acetaminophen, acetylsalicylic acid, and caffeine with ibuprofen for acute treatment of patients with severe migraine. Cephalalgia. 2014;34:1070–8.

    Article  PubMed  Google Scholar 

  81. Ferrari MD, Roon KI, Lipton RB, Goadsby PJ. Oral triptans (serotonin 5-HT(1B/1D) agonists) in acute migraine treatment: a meta-analysis of 53 trials. Lancet. 2001 Nov 17;358(9294):1668–75.

  82. Tfelt-Hansen P, Saxena PR, Dahlöf C, Pascual J, Láinez M, Henry P, et al. Ergotamine in the acute treatment of migraine: a review and European consensus. Brain. 2000;123:9–18.

    Article  PubMed  Google Scholar 

  83. Martikainen MH, Roine S. Rapid improvement of a complex migrainous episode with sodium valproate in a patient with CADASIL. J Headache Pain. 2012;13:95–7.

    Article  PubMed  Google Scholar 

  84. Finocchi C, Villani V, Casucci G. Therapeutic strategies in migraine patients with mood and anxiety disorders: clinical evidence. Neurol Sci. 2010;31(Suppl 1):S95–8.

    Article  PubMed  Google Scholar 

  85. Donnini I, Nannucci S, Valenti R, Pescini F, Bianchi S, Inzitari D, et al. Acetazolamide for the prophylaxis of migraine in CADASIL: a preliminary experience. J Headache Pain. 2012;13:299–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lippi G, Mattiuzzi C, Meschi T, Cervellin G, Borghi L. Homocysteine and migraine. A narrative review. Clin Chim Acta. 2014;433:5–11.

    Article  CAS  PubMed  Google Scholar 

  87. Keverne JS, Low WC, Ziabreva I, Court JA, Oakley AE, Kalaria RN. Cholinergic neuronal deficits in CADASIL. Stroke. 2007;38:188–91.

    Article  CAS  PubMed  Google Scholar 

  88. Manganelli F, Ragno M, Cacchiò G, Iodice V, Trojano L, Silvaggio F, et al. Motor cortex cholinergic dysfunction in CADASIL: a transcranial magnetic demonstration. Clin Neurophysiol. 2008;119:351–5.

    Article  PubMed  Google Scholar 

  89. Dichgans M, Markus HS, Salloway S, Verkkoniemi A, Moline M, Wang Q, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol. 2008;7:310–8.

    Article  CAS  PubMed  Google Scholar 

  90. Schneider LS. Does donepezil improve executive function in patients with CADASIL? Lancet Neurol. 2008;7:287–9.

    Article  PubMed  Google Scholar 

  91. Posada IJ, Ferrero M, Lopez-Valdes E, Goni-Imizcoz M. Galantamine therapy in dementia associated with CADASIL. Rev Neurol. 2008;47:299–300.

    CAS  PubMed  Google Scholar 

  92. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006:CD003154.

  93. Ho RC, Cheung MW, Fu E, Win HH, Zaw MH, Ng A, et al. Is high homocysteine level a risk factor for cognitive decline in elderly? A systematic review, meta-analysis, and meta-regression. Am J Geriatr Psychiatry. 2011;19:607–17.

    Article  PubMed  Google Scholar 

  94. Clarke R, Bennett D, Parish S, Lewington S, Skeaff M, Eussen SJ, et al. Effects of homocysteine lowering with B vitamins on cognitive aging: meta-analysis of 11 trials with cognitive data on 22,000 individuals. Am J Clin Nutr. 2014;100:657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Andersson ER, Lendahl U. Therapeutic modulation of Notch signaling—are we there yet? Nat Rev Drug Discov. 2014;13:357–78.

    Article  CAS  PubMed  Google Scholar 

  96. Shin D, Oh YH, Eom CS, Park SM. Use of selective serotonin reuptake inhibitors and risk of stroke: a systematic review and meta-analysis. J Neurol. 2014;261:686–95.

    Article  CAS  PubMed  Google Scholar 

  97. Mead GE, Hsieh CF, Lee R, Kutlubaev MA, Claxton A, Hankey GJ, et al. Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery. Cochrane Database Syst Rev. 2012 Nov 14;11:CD009286.

  98. Park S, Park B, Koh MK, Joo YH. Case report: bipolar disorder as the first manifestation of CADASIL. BMC Psychiatry. 2014;14:175.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ho CS, Mondry A. CADASIL presenting as schizophreniform organic psychosis. Gen Hosp Psychiatry. 2015;37:273.e11–3.

    Article  Google Scholar 

  100. • Tikka S, Ng YP, Di Maio G, Mykkänen K, Siitonen M, Lepikhova T, et al. CADASIL mutations and shRNA silencing of NOTCH3 affect actin organization in cultured vascular smooth muscle cells. J Cereb Blood Flow Metab. 2012;32:2171–80. The results of the present study support the view that VSMCs in different vascular beds are dissimilar and consequently the pathogenic effects of mutated NOTCH3 gene are also dissimilar in different arteries

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. • Rutten JW, Dauwerse HG, Peters DJ, Goldfarb A, Venselaar H, Haffner C, et al. Therapeutic NOTCH3 cysteine correction in CADASIL using exon skipping: in vitro proof of concept. Brain. 2016;139:1123–35. This research article examined the technical feasibility of targeted NOTCH3 exon skipping, by designing antisense oligonucleotides targeting exons 2–3, 4–5 and 6, which together harbor the majority of distinct CADASIL-causing mutations. This novel application of exon skipping is a first step towards the development of a rational therapeutic approach applicable to up to 94% of CADASIL-causing mutations

    Article  PubMed  Google Scholar 

  102. Gong L, Liu X-Y, Fang M. Recent progress on small vessel disease with cognitive impairment. Int J Clin Exp Med. 2015;8:7701–9.

    PubMed  PubMed Central  Google Scholar 

  103. MacLeod R, Tibben A, Frontali M, Evers-Kiebooms G, Jones A, Martinez-Descales A, et al. Editorial Committee and Working Group ‘Genetic Testing Counselling’ of the European Huntington Disease Network. Recommendations for the predictive genetic test in Huntington’s disease. Clin Genet. 2013;83:221–31.

    Article  CAS  PubMed  Google Scholar 

  104. Tikka S, Baumann M, Siitonen M, Pasanen P, Pöyhönen M, Myllykangas L, et al. CADASIL and CARASIL. Brain Pathol. 201(24):525–44.

  105. Peters N, Herzog J, Opherk C, Dichgans M. A two-year clinical follow-up study in 80 CADASIL subjects: progression patterns and implications for clinical trials. Stroke. 2004;35:1603–8.

    Article  PubMed  Google Scholar 

  106. • Chabriat H, Hervé D, Duering M, Godin O, Jouvent E, Opherk C, et al. Predictors of clinical worsening in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: prospective cohort study. Stroke. 2016;47:4–11. This large prospective study on NOTCH3 gene mutation carriers reported that clinical status (particularly gait disturbance,) as well as the number of lacunes and brain volume, are a major independent predictor of clinical worsening

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bersano MD, PhD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cerebrovascular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersano, A., Bedini, G., Oskam, J. et al. CADASIL: Treatment and Management Options. Curr Treat Options Neurol 19, 31 (2017). https://doi.org/10.1007/s11940-017-0468-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-017-0468-z

Keywords

Navigation