Advertisement

Management of Gait Changes and Fall Risk in MCI and Dementia

  • Gilles AllaliEmail author
  • Joe Verghese
Dementia (J Pillai, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dementia

Opinion statement

Gait disorders and falls are very prevalent in aging, especially in older adults with cognitive impairment: older adults with dementia are 2–3 times more likely to fall than their non-demented counterparts. The management of gait disorders and falls in older adults with mild cognitive impairment (MCI) or dementia begins by their identification with the use of specific screening tools, such as measuring gait speed, use of dual-task gait tests, or diagnosing motoric cognitive risk syndrome, a newly described pre-dementia syndrome. This clinical approach is useful to reveal subtle gait changes that may lead to an increased risk of falls in older adults. Various non-pharmacological interventions have been tested in older adults with MCI or dementia to reduce risk of falls. Physical activity interventions are feasible in older adults with cognitive impairments, and may improve gait, and thereby decrease risk of falls. Besides non-pharmacological interventions, identification and removal of potentially inappropriate medications (i.e., psychotropic drugs) is part of a comprehensive falls management strategy in older patients. The use of anti-dementia drugs, such as cholinesterase inhibitors or memantine, may help to improve gait in demented older adults. Adopting a multidisciplinary care strategy that integrates general practitioners, geriatricians, neurologists, cardiologists, physical therapists, and occupational therapists to identify older adults at increased risk of falling or with subtle gait changes, prior to applying individualized non-pharmacological and/or pharmacological interventions, is essential to reduce the burden of gait disorders and falls in older adults with cognitive impairment.

Keywords

Fall Gait disorders Aging Dementia Mild cognitive impairment Intervention 

Notes

Compliance with Ethical Standards

Conflict of Interest

Gilles Allali was supported by a grant from the Baasch-Medicus Foundation.

Joe Verghese was supported by supported by the National Institute on Aging grants (RO1 AGO44007 and R01 AG036921) and an intramural grant from the Resnick Gerontology Center, Albert Einstein College of Medicine, Bronx, NY, USA.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. 1.
    Verghese J, LeValley A, Hall CB, Katz MJ, Ambrose AF, Lipton RB. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc. 2006;54(2):255–61. doi: 10.1111/j.1532-5415.2005.00580.x.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, et al. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc. 2008;56(7):1244–51. doi: 10.1111/j.1532-5415.2008.01758.x.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Allan LM, Ballard CG, Burn DJ, Kenny RA. Prevalence and severity of gait disorders in Alzheimer’s and non-Alzheimer’s dementias. J Am Geriatr Soc. 2005;53(10):1681–7. doi: 10.1111/j.1532-5415.2005.53552.x.PubMedCrossRefGoogle Scholar
  4. 4.
    • Del Campo N, Payoux P, Djilali A, Delrieu J, Hoogendijk EO, Rolland Y, et al. Relationship of regional brain beta-amyloid to gait speed. Neurology. 2016;86(1):36–43. doi: 10.1212/WNL.0000000000002235. Cross-sectional study confirming the association between beta-amyloid deposition (assessed by PET) and gait speedPubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    • Allali G, Annweiler C, Blumen HM, Callisaya ML, De Cock AM, Kressig RW, et al. Gait phenotype from mild cognitive impairment to moderate dementia: results from the GOOD initiative. Eur J Neurol. 2016;23(3):527–41. doi: 10.1111/ene.12882. Multicenter cross-sectional study demonstrating that gait is more affected in non-Alzheimer dementia than Alzheimer dementia, and in the more advanced stages of dementiaPubMedCrossRefGoogle Scholar
  6. 6.
    Allali G, Verghese J, Mahoney JR. Contributions of mild parkinsonian signs to gait performance in the elderly. Age. 2014;36(4):9678. doi: 10.1007/s11357-014-9678-4.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Boyle PA, Wilson RS, Aggarwal NT, Arvanitakis Z, Kelly J, Bienias JL, et al. Parkinsonian signs in subjects with mild cognitive impairment. Neurology. 2005;65(12):1901–6. doi: 10.1212/01.wnl.0000188878.81385.73.PubMedCrossRefGoogle Scholar
  8. 8.
    Louis ED, Bennett DA. Mild Parkinsonian signs: an overview of an emerging concept. Mov Disord : Off J Mov Disord Soc. 2007;22(12):1681–8. doi: 10.1002/mds.21433.CrossRefGoogle Scholar
  9. 9.
    Amboni M, Barone P, Hausdorff JM. Cognitive contributions to gait and falls: evidence and implications. Mov Disord : Off J Mov Disord Soc. 2013;28(11):1520–33. doi: 10.1002/mds.25674.CrossRefGoogle Scholar
  10. 10.
    Beauchet O, Launay CP, Fantino B, Annweiler C, Allali G. Episodic memory and executive function impairments in non-demented older adults: which are the respective and combined effects on gait performances? Age. 2015;37(4):9812. doi: 10.1007/s11357-015-9812-y.PubMedCrossRefGoogle Scholar
  11. 11.
    Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM. Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc. 2012;60(11):2127–36. doi: 10.1111/j.1532-5415.2012.04209.x.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Sheridan PL, Solomont J, Kowall N, Hausdorff JM. Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer’s disease. J Am Geriatr Soc. 2003;51(11):1633–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35. doi: 10.1136/jnnp.2006.106914.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Buchman AS, Boyle PA, Leurgans SE, Barnes LL, Bennett DA. Cognitive function is associated with the development of mobility impairments in community-dwelling elders. Am J Geriatr Psychiatry : Off J Am Assoc Geriatr Psychiatry. 2011;19(6):571–80. doi: 10.1097/JGP.0b013e3181ef7a2e.CrossRefGoogle Scholar
  15. 15.
    Taniguchi Y, Kitamura A, Seino S, Murayama H, Amano H, Nofuji Y, et al. Gait performance trajectories and incident disabling dementia among community-dwelling older Japanese. J Am Med Dir Assoc. 2017;18(2):192 e13–20. doi: 10.1016/j.jamda.2016.10.015.CrossRefGoogle Scholar
  16. 16.
    Verghese J, Derby C, Katz MJ, Lipton RB. High risk neurological gait syndrome and vascular dementia. J Neural Transm. 2007;114(10):1249–52. doi: 10.1007/s00702-007-0762-0.PubMedCrossRefGoogle Scholar
  17. 17.
    Waite LM, Grayson DA, Piguet O, Creasey H, Bennett HP, Broe GA. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney older persons study. J Neurol Sci. 2005;229-230:89–93. doi: 10.1016/j.jns.2004.11.009.PubMedCrossRefGoogle Scholar
  18. 18.
    Beauchet O, Annweiler C, Callisaya ML, De Cock AM, Helbostad JL, Kressig RW, et al. Poor gait performance and prediction of dementia: results from a meta-analysis. J Am Med Dir Assoc. 2016; doi: 10.1016/j.jamda.2015.12.092.
  19. 19.
    • Bullain SS, Corrada MM, Perry SM, Kawas CH. Sound body sound mind? Physical performance and the risk of dementia in the oldest-old: the 90+ study. J Am Geriatr Soc. 2016;64(7):1408–15. doi: 10.1111/jgs.14224. Longitudinal study conducted on the oldest old showing that poor physical performance predicts dementia also in this populationPubMedCrossRefGoogle Scholar
  20. 20.
    Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. N Engl J Med. 2002;347(22):1761–8. doi: 10.1056/NEJMoa020441.PubMedCrossRefGoogle Scholar
  21. 21.
    Mielke MM, Roberts RO, Savica R, Cha R, Drubach DI, Christianson T, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic study of aging. J Gerontol A Biol Sci Med Sci. 2013;68(8):929–37. doi: 10.1093/gerona/gls256.PubMedCrossRefGoogle Scholar
  22. 22.
    Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8. doi: 10.1001/jama.2010.1923.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Allali G, Ayers EI, Verghese J. Multiple modes of assessment of gait are better than one to predict incident falls. Arch Gerontol Geriatr. 2015;60(3):389–93. doi: 10.1016/j.archger.2015.02.009.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Verghese J, Ambrose AF, Lipton RB, Wang C. Neurological gait abnormalities and risk of falls in older adults. J Neurol. 2010;257(3):392–8. doi: 10.1007/s00415-009-5332-y.PubMedCrossRefGoogle Scholar
  25. 25.
    Verghese J, Holtzer R, Lipton RB, Wang C. Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci. 2009;64(8):896–901. doi: 10.1093/gerona/glp033.PubMedCrossRefGoogle Scholar
  26. 26.
    Deandrea S, Lucenteforte E, Bravi F, Foschi R, La Vecchia C, Negri E. Risk factors for falls in community-dwelling older people: a systematic review and meta-analysis. Epidemiology. 2010;21(5):658–68. doi: 10.1097/EDE.0b013e3181e89905.PubMedCrossRefGoogle Scholar
  27. 27.
    Eriksson S, Strandberg S, Gustafson Y, Lundin-Olsson L. Circumstances surrounding falls in patients with dementia in a psychogeriatric ward. Arch Gerontol Geriatr. 2009;49(1):80–7. doi: 10.1016/j.archger.2008.05.005.PubMedCrossRefGoogle Scholar
  28. 28.
    •• Burns ER, Stevens JA, Lee R. The direct costs of fatal and non-fatal falls among older adults - United States. J Saf Res. 2016;58:99–103. doi: 10.1016/j.jsr.2016.05.001. Estimation of the cost of fatal and non-fatal falls in 2012 among U.S. older adultsCrossRefGoogle Scholar
  29. 29.
    Buchner DM, Larson EB. Falls and fractures in patients with Alzheimer-type dementia. JAMA. 1987;257(11):1492–5.PubMedCrossRefGoogle Scholar
  30. 30.
    van Doorn C, Gruber-Baldini AL, Zimmerman S, Hebel JR, Port CL, Baumgarten M, et al. Dementia as a risk factor for falls and fall injuries among nursing home residents. J Am Geriatr Soc. 2003;51(9):1213–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Thurman DJ, Stevens JA, Rao JK. Quality standards Subcommittee of the American Academy of N. Practice parameter: assessing patients in a neurology practice for risk of falls (an evidence-based review): report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2008;70(6):473–9. doi: 10.1212/01.wnl.0000299085.18976.20.PubMedCrossRefGoogle Scholar
  32. 32.
    Eshkoor SA, Hamid TA, Nudin SS, Mun CY. A research on functional status, environmental conditions, and risk of falls in dementia. Int J Alzheimers Dis. 2014;2014:769062. doi: 10.1155/2014/769062.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ogama N, Sakurai T, Shimizu A, Toba K. Regional white matter lesions predict falls in patients with amnestic mild cognitive impairment and Alzheimer’s disease. J Am Med Dir Assoc. 2014;15(1):36–41. doi: 10.1016/j.jamda.2013.11.004.PubMedCrossRefGoogle Scholar
  34. 34.
    Chen PY, Chiu HT, Chiu HY. Daytime sleepiness is independently associated with falls in older adults with dementia. Geriatr Gerontol Int. 2016;16(7):850–5. doi: 10.1111/ggi.12567.PubMedCrossRefGoogle Scholar
  35. 35.
    Allan LM, Ballard CG, Rowan EN, Kenny RA. Incidence and prediction of falls in dementia: a prospective study in older people. PLoS One. 2009;4(5):e5521. doi: 10.1371/journal.pone.0005521.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kropelin TF, Neyens JC, Halfens RJ, Kempen GI, Hamers JP. Fall determinants in older long-term care residents with dementia: a systematic review. Int Psychogeriatr. 2013;25(4):549–63. doi: 10.1017/S1041610212001937.PubMedCrossRefGoogle Scholar
  37. 37.
    Allali G, Launay CP, Blumen HM, Callisaya ML, De Cock AM, Kressig RW, et al. Falls, cognitive impairment, and gait performance: results from the GOOD initiative. J Am Med Dir Assoc. 2016; doi: 10.1016/j.jamda.2016.10.008.
  38. 38.
    Imamura T, Hirono N, Hashimoto M, Kazui H, Tanimukai S, Hanihara T, et al. Fall-related injuries in dementia with Lewy bodies (DLB) and Alzheimer’s disease. Eur J Neurol. 2000;7(1):77–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Ballard CG, Shaw F, Lowery K, McKeith I, Kenny R. The prevalence, assessment and associations of falls in dementia with Lewy bodies and Alzheimer’s disease. Dement Geriatr Cogn Disord. 1999;10(2):97–103.PubMedCrossRefGoogle Scholar
  40. 40.
    Srikanth V, Beare R, Blizzard L, Phan T, Stapleton J, Chen J, et al. Cerebral white matter lesions, gait, and the risk of incident falls: a prospective population-based study. Stroke. 2009;40(1):175–80. doi: 10.1161/STROKEAHA.108.524355.PubMedCrossRefGoogle Scholar
  41. 41.
    Callisaya ML, Beare R, Phan T, Blizzard L, Thrift AG, Chen J, et al. Progression of white matter hyperintensities of presumed vascular origin increases the risk of falls in older people. J Gerontol A Biol Sci Med Sci. 2015;70(3):360–6. doi: 10.1093/gerona/glu148.PubMedCrossRefGoogle Scholar
  42. 42.
    Delbaere K, Kochan NA, Close JC, Menant JC, Sturnieks DL, Brodaty H, et al. Mild cognitive impairment as a predictor of falls in community-dwelling older people. Am J Geriatr Psychiatry : Off J Am Assoc Geriatr Psychiatry. 2012;20(10):845–53. doi: 10.1097/JGP.0b013e31824afbc4.CrossRefGoogle Scholar
  43. 43.
    Mirelman A, Herman T, Brozgol M, Dorfman M, Sprecher E, Schweiger A, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One. 2012;7(6):e40297. doi: 10.1371/journal.pone.0040297.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Taylor ME, Lord SR, Delbaere K, Kurrle SE, Mikolaizak AS, Close JC. Reaction time and postural sway modify the effect of executive function on risk of falls in older people with mild to moderate cognitive impairment. Am J Geriatr Psychiatry : Off J Am Assoc for Geriatr Psychiatry. 2016; doi: 10.1016/j.jagp.2016.10.010.
  45. 45.
    Holtzer R, Friedman R, Lipton RB, Katz M, Xue X, Verghese J. The relationship between specific cognitive functions and falls in aging. Neuropsychology. 2007;21(5):540–8. doi: 10.1037/0894-4105.21.5.540.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol. 2000;41(1):49–100. doi: 10.1006/cogp.1999.0734.PubMedCrossRefGoogle Scholar
  47. 47.
    Shallice T, Burgess PW. Deficits in strategy application following frontal lobe damage in man. Brain : J Neurol. 1991;114(Pt 2):727–41.CrossRefGoogle Scholar
  48. 48.
    Panel on Prevention of Falls in Older Persons AGS, British Geriatrics S. Summary of the updated American Geriatrics Society/British geriatrics society clinical practice guideline for prevention of falls in older persons. J Am Geriatr Soc. 2011;59(1):148–57. doi: 10.1111/j.1532-5415.2010.03234.x.CrossRefGoogle Scholar
  49. 49.
    Covinsky KE, Kahana E, Kahana B, Kercher K, Schumacher JG, Justice AC. History and mobility exam index to identify community-dwelling elderly persons at risk of falling. J Gerontol A Biol Sci Med Sci. 2001;56(4):M253–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Leskinen R, Laatikainen T, Peltonen M, Levalahti E, Antikainen R. Prevalence, predictors and covariates of functional status impairment among Finnish second world war veterans during 1992-2004. Age Ageing. 2013;42(4):508–14. doi: 10.1093/ageing/aft051.PubMedCrossRefGoogle Scholar
  51. 51.
    Simonsick EM, Newman AB, Visser M, Goodpaster B, Kritchevsky SB, Rubin S, et al. Mobility limitation in self-described well-functioning older adults: importance of endurance walk testing. J Gerontol A Biol Sci Med Sci. 2008;63(8):841–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Swenor BK, Bandeen-Roche K, Munoz B, West SK. Does walking speed mediate the association between visual impairment and self-report of mobility disability? The Salisbury eye evaluation study. J Am Geriatr Soc. 2014;62(8):1540–5. doi: 10.1111/jgs.12937.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Abraham P, Ouedraogo N, Tew GA, Vielle B, Leftheriotis G, Mahe G. Aging reduces the accuracy of self-reported walking limitation in patients with vascular-type claudication. J Vasc Surg. 2012;56(4):1025–31. doi: 10.1016/j.jvs.2012.03.258.PubMedCrossRefGoogle Scholar
  54. 54.
    Verghese J. Person-centered fall risk awareness perspectives: clinical correlates and fall risk. J Am Geriatr Soc. 2016;64(12):2528–32. doi: 10.1111/jgs.14375.PubMedCrossRefGoogle Scholar
  55. 55.
    Mera TO, Filipkowski DE, Riley DE, Whitney CM, Walter BL, Gunzler SA, et al. Quantitative analysis of gait and balance response to deep brain stimulation in Parkinson’s disease. Gait Posture. 2013;38(1):109–14. doi: 10.1016/j.gaitpost.2012.10.025.PubMedCrossRefGoogle Scholar
  56. 56.
    Beauchet O, Fantino B, Allali G, Muir SW, Montero-Odasso M, Annweiler C. Timed up and go test and risk of falls in older adults: a systematic review. J Nutr Health Aging. 2011;15(10):933–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Podsiadlo D, Richardson S. The timed “up & go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Muir SW, Berg K, Chesworth B, Speechley M. Use of the berg balance scale for predicting multiple falls in community-dwelling elderly people: a prospective study. Phys Ther. 2008;88(4):449–59. doi: 10.2522/ptj.20070251.PubMedCrossRefGoogle Scholar
  59. 59.
    Tinetti ME, Baker DI, McAvay G, Claus EB, Garrett P, Gottschalk M, et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med. 1994;331(13):821–7. doi: 10.1056/NEJM199409293311301.PubMedCrossRefGoogle Scholar
  60. 60.
    Beauchet O, Kressig RW, Najafi B, Aminian K, Dubost V, Mourey F. Age-related decline of gait control under a dual-task condition. J Am Geriatr Soc. 2003;51(8):1187–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Konig A, Klaming L, Pijl M, Demeurraux A, David R, Robert P. Objective measurement of gait parameters in healthy and cognitively impaired elderly using the dual-task paradigm. Aging Clin Exp Res. 2017; doi: 10.1007/s40520-016-0703-6.
  62. 62.
    Montero-Odasso M, Oteng-Amoako A, Speechley M, Gopaul K, Beauchet O, Annweiler C, et al. The motor signature of mild cognitive impairment: results from the gait and brain study. J Gerontol A Biol Sci Med Sci. 2014;69(11):1415–21. doi: 10.1093/gerona/glu155.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Allali G, Assal F, Kressig RW, Dubost V, Herrmann FR, Beauchet O. Impact of impaired executive function on gait stability. Dement Geriatr Cogn Disord. 2008;26(4):364–9. doi: 10.1159/000162358.PubMedCrossRefGoogle Scholar
  64. 64.
    Allali G, Dubois B, Assal F, Lallart E, de Souza LC, Bertoux M, et al. Frontotemporal dementia: pathology of gait? Mov Disord : Off J Mov Disord Soc. 2010;25(6):731–7. doi: 10.1002/mds.22927.CrossRefGoogle Scholar
  65. 65.
    Allali G, Kressig RW, Assal F, Herrmann FR, Dubost V, Beauchet O. Changes in gait while backward counting in demented older adults with frontal lobe dysfunction. Gait Posture. 2007;26(4):572–6. doi: 10.1016/j.gaitpost.2006.12.011.PubMedCrossRefGoogle Scholar
  66. 66.
    Camicioli R, Bouchard T, Licis L. Dual-tasks and walking fast: relationship to extra-pyramidal signs in advanced Alzheimer disease. J Neurol Sci. 2006;248(1–2):205–9. doi: 10.1016/j.jns.2006.05.013.PubMedCrossRefGoogle Scholar
  67. 67.
    Camicioli R, Howieson D, Lehman S, Kaye J. Talking while walking: the effect of a dual task in aging and Alzheimer's disease. Neurology. 1997;48(4):955–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Fritz NE, Kegelmeyer DA, Kloos AD, Linder S, Park A, Kataki M, et al. Motor performance differentiates individuals with Lewy body dementia, Parkinson’s and Alzheimer’s disease. Gait Posture. 2016;50:1–7. doi: 10.1016/j.gaitpost.2016.08.009.PubMedCrossRefGoogle Scholar
  69. 69.
    Allali G, Laidet M, Beauchet O, Herrmann FR, Assal F, Armand S. Dual-task related gait changes after CSF tapping: a new way to identify idiopathic normal pressure hydrocephalus. J Neuroeng Rehabil. 2013;10:117. doi: 10.1186/1743-0003-10-117.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hausdorff JM, Yogev G, Springer S, Simon ES, Giladi N. Walking is more like catching than tapping: gait in the elderly as a complex cognitive task. Exp Brain Res. 2005;164(4):541–8. doi: 10.1007/s00221-005-2280-3.PubMedCrossRefGoogle Scholar
  71. 71.
    Holtzer R, Mahoney JR, Izzetoglu M, Izzetoglu K, Onaral B, Verghese J. fNIRS study of walking and walking while talking in young and old individuals. J Gerontol A Biol Sci Med Sci. 2011;66(8):879–87. doi: 10.1093/gerona/glr068.PubMedCrossRefGoogle Scholar
  72. 72.
    Holtzer R, Mahoney JR, Izzetoglu M, Wang C, England S, Verghese J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. NeuroImage. 2015;112:152–9. doi: 10.1016/j.neuroimage.2015.03.002.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Doi T, Makizako H, Shimada H, Park H, Tsutsumimoto K, Uemura K, et al. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a fNIRS study. Aging Clin Exp Res. 2013;25(5):539–44. doi: 10.1007/s40520-013-0119-5.PubMedCrossRefGoogle Scholar
  74. 74.
    Allali G, Annweiler C, Predovan D, Bherer L, Beauchet O. Brain volume changes in gait control in patients with mild cognitive impairment compared to cognitively healthy individuals; GAIT study results. Exp Gerontol. 2016;76:72–9. doi: 10.1016/j.exger.2015.12.007.PubMedCrossRefGoogle Scholar
  75. 75.
    Beauchet O, Annweiler C, Assal F, Bridenbaugh S, Herrmann FR, Kressig RW, et al. Imagined timed up & go test: a new tool to assess higher-level gait and balance disorders in older adults? J Neurol Sci. 2010;294(1–2):102–6. doi: 10.1016/j.jns.2010.03.021.PubMedCrossRefGoogle Scholar
  76. 76.
    Beauchet O, Launay CP, Fantino B, Allali G, Annweiler C. Respective and combined effects of impairments in sensorimotor systems and cognition on gait performance: a population-based cross-sectional study. PLoS One. 2015;10(5):e0125102. doi: 10.1371/journal.pone.0125102.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol. 1995;5(6):727–32.PubMedCrossRefGoogle Scholar
  78. 78.
    • Verghese J, Annweiler C, Ayers E, Barzilai N, Beauchet O, Bennett DA, et al. Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology. 2014;83(8):718–26. doi: 10.1212/WNL.0000000000000717. Worldwide prevalence of motoric cognitive risk (MCR) syndrome and establishment of the predicting value of MCR for dementiaPubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Verghese J, Wang C, Lipton RB, Holtzer R. Motoric cognitive risk syndrome and the risk of dementia. J Gerontol A Biol Sci Med Sci. 2013;68(4):412–8. doi: 10.1093/gerona/gls191.PubMedCrossRefGoogle Scholar
  80. 80.
    Allali G, Laidet M, Armand S, Elsworth-Edelsten C, Assal F, Lalive PH. Stride time variability as a marker for higher level of gait control in multiple sclerosis: its association with fear of falling. J Neural Transm. 2016;123(6):595–9. doi: 10.1007/s00702-016-1551-4.PubMedCrossRefGoogle Scholar
  81. 81.
    Callisaya ML, Ayers E, Barzilai N, Ferrucci L, Guralnik JM, Lipton RB, et al. Motoric cognitive risk syndrome and falls risk: a multi-center study. J Alzheimers Dis : JAD. 2016;53(3):1043–52. doi: 10.3233/JAD-160230.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Australian commission on safety and quality in health care. Falls prevention. https://www.safetyandquality.gov.au/our-work/falls-prevention/. Accessed March 6th, 2017.
  83. 83.
    National Institute for Clinical Excellence. Falls in older people: assessing risk and prevention. https://www.nice.org.uk/guidance/cg161. Accessed March 6th, 2017.
  84. 84.
    Neyens JC, Dijcks BP, van Haastregt JC, de Witte LP, van den Heuvel WJ, Crebolder HF, et al. The development of a multidisciplinary fall risk evaluation tool for demented nursing home patients in the Netherlands. BMC Public Health. 2006;6:74. doi: 10.1186/1471-2458-6-74.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Allali G, Ayers EI, Holtzer R, Verghese J. The role of postural instability/gait difficulty and fear of falling in predicting falls in non-demented older adults. Arch Gerontol Geriatr. 2017;69:15–20. doi: 10.1016/j.archger.2016.09.008.PubMedCrossRefGoogle Scholar
  86. 86.
    Nazir A, Mueller C, Perkins A, Arling G. Falls and nursing home residents with cognitive impairment: new insights into quality measures and interventions. J Am Med Dir Assoc. 2012;13(9):819 e1–6. doi: 10.1016/j.jamda.2012.07.018.CrossRefGoogle Scholar
  87. 87.
    Fonad E, Emami A, Wahlin TB, Winblad B, Sandmark H. Falls in somatic and dementia wards at community care units. Scand J Caring Sci. 2009;23(1):2–10. doi: 10.1111/j.1471-6712.2007.00574.x.PubMedCrossRefGoogle Scholar
  88. 88.
    Hamers JP, Huizing AR. Why do we use physical restraints in the elderly? Z Gerontol Geriatr. 2005;38(1):19–25. doi: 10.1007/s00391-005-0286-x.PubMedCrossRefGoogle Scholar
  89. 89.
    Shorr RI, Guillen MK, Rosenblatt LC, Walker K, Caudle CE, Kritchevsky SB. Restraint use, restraint orders, and the risk of falls in hospitalized patients. J Am Geriatr Soc. 2002;50(3):526–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Montero-Odasso M, Levinson P, Gore B, Epid D, Tremblay L, Bergman H. A flowchart system to improve fall data documentation in a long-term care institution: a pilot study. J Am Med Dir Assoc. 2007;8(5):300–6. doi: 10.1016/j.jamda.2006.12.031.PubMedCrossRefGoogle Scholar
  91. 91.
    Gietzelt M, Feldwieser F, Govercin M, Steinhagen-Thiessen E, Marschollek M. A prospective field study for sensor-based identification of fall risk in older people with dementia. Inform Health Soc Care. 2014;39(3–4):249–61. doi: 10.3109/17538157.2014.931851.PubMedCrossRefGoogle Scholar
  92. 92.
    Spears GV, Roth CP, Miake-Lye IM, Saliba D, Shekelle PG, Ganz DA. Redesign of an electronic clinical reminder to prevent falls in older adults. Med Care. 2013;51(3 Suppl 1):S37–43. doi: 10.1097/MLR.0b013e31827807f8.PubMedCrossRefGoogle Scholar
  93. 93.
    Rose DJ, Hernandez D. The role of exercise in fall prevention for older adults. Clin Geriatr Med. 2010;26(4):607–31. doi: 10.1016/j.cger.2010.07.003.PubMedCrossRefGoogle Scholar
  94. 94.
    •• Stubbs B, Brefka S, Denkinger MD. What works to prevent falls in community-dwelling older adults? Umbrella review of meta-analyses of randomized controlled trials. Phys Ther. 2015;95(8):1095–110. doi: 10.2522/ptj.20140461. This review of meta-analyses of randomized controlled trials for falls prevention confirmed that exercise and individually tailored interventions are effective in reducing fall in community-dwelling older adultsPubMedCrossRefGoogle Scholar
  95. 95.
    Fernandez-Arguelles EL, Rodriguez-Mansilla J, Antunez LE, Garrido-Ardila EM, Munoz RP. Effects of dancing on the risk of falling related factors of healthy older adults: a systematic review. Arch Gerontol Geriatr. 2015;60(1):1–8. doi: 10.1016/j.archger.2014.10.003.PubMedCrossRefGoogle Scholar
  96. 96.
    •• Stubbs B, Eggermont L, Soundy A, Probst M, Vandenbulcke M, Vancampfort D. What are the factors associated with physical activity (PA) participation in community dwelling adults with dementia? A systematic review of PA correlates. Arch Gerontol Geriatr. 2014;59(2):195–203. doi: 10.1016/j.archger.2014.06.006. This systematic review showed that poor cognition and increasing age does not influence physical activity participation in community dwelling adults with dementiaPubMedCrossRefGoogle Scholar
  97. 97.
    Cott CA, Dawson P, Sidani S, Wells D. The effects of a walking/talking program on communication, ambulation, and functional status in residents with Alzheimer disease. Alzheimer Dis Assoc Disord. 2002;16(2):81–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Taylor ME, Lord SR, Brodaty H, Kurrle SE, Hamilton S, Ramsay E, et al. A home-based, carer-enhanced exercise program improves balance and falls efficacy in community-dwelling older people with dementia. Int Psychogeriatr. 2017;29(1):81–91. doi: 10.1017/S1041610216001629.PubMedCrossRefGoogle Scholar
  99. 99.
    Smith-Ray RL, Irmiter C, Boulter K. Cognitive training among cognitively impaired older adults: a feasibility study assessing the potential improvement in balance. Front Public Health. 2016;4:219. doi: 10.3389/fpubh.2016.00219.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Ries JD, Hutson J, Maralit LA, Brown MB. Group balance training specifically designed for individuals with Alzheimer disease: impact on berg balance scale, timed up and go, gait speed, and mini-mental status examination. J Geriatr Phys Ther. 2015;38(4):183–93. doi: 10.1519/JPT.0000000000000030.PubMedCrossRefGoogle Scholar
  101. 101.
    Arcoverde C, Deslandes A, Moraes H, Almeida C, Araujo NB, Vasques PE, et al. Treadmill training as an augmentation treatment for Alzheimer’s disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014;72(3):190–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Cadore EL, Moneo AB, Mensat MM, Munoz AR, Casas-Herrero A, Rodriguez-Manas L, et al. Positive effects of resistance training in frail elderly patients with dementia after long-term physical restraint. Age. 2014;36(2):801–11. doi: 10.1007/s11357-013-9599-7.PubMedCrossRefGoogle Scholar
  103. 103.
    Wesson J, Clemson L, Brodaty H, Lord S, Taylor M, Gitlin L, et al. A feasibility study and pilot randomised trial of a tailored prevention program to reduce falls in older people with mild dementia. BMC Geriatr. 2013;13:89. doi: 10.1186/1471-2318-13-89.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Pitkala KH, Poysti MM, Laakkonen ML, Tilvis RS, Savikko N, Kautiainen H, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial. JAMA Intern Med. 2013;173(10):894–901. doi: 10.1001/jamainternmed.2013.359.PubMedCrossRefGoogle Scholar
  105. 105.
    Yoon JE, Lee SM, Lim HS, Kim TH, Jeon JK, Mun MH. The effects of cognitive activity combined with active extremity exercise on balance, walking activity, memory level and quality of life of an older adult sample with dementia. J Phys Ther Sci. 2013;25(12):1601–4. doi: 10.1589/jpts.25.1601.PubMedCrossRefGoogle Scholar
  106. 106.
    Vreugdenhil A, Cannell J, Davies A, Razay G. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12–9. doi: 10.1111/j.1471-6712.2011.00895.x.PubMedCrossRefGoogle Scholar
  107. 107.
    Suttanon P, Hill KD, Said CM, Williams SB, Byrne KN, LoGiudice D, et al. Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer’s disease: a pilot randomized controlled trial. Clin Rehabil. 2013;27(5):427–38. doi: 10.1177/0269215512460877.PubMedCrossRefGoogle Scholar
  108. 108.
    Ries JD, Drake JM, Marino C. A small-group functional balance intervention for individuals with Alzheimer disease: a pilot study. J Neurol Phys Ther : JNPT. 2010;34(1):3–10. doi: 10.1097/NPT.0b013e3181d00f2e.PubMedCrossRefGoogle Scholar
  109. 109.
    Santana-Sosa E, Barriopedro MI, Lopez-Mojares LM, Perez M, Lucia A. Exercise training is beneficial for Alzheimer’s patients. Int J Sports Med. 2008;29(10):845–50. doi: 10.1055/s-2008-1038432.PubMedCrossRefGoogle Scholar
  110. 110.
    Hageman PA, Thomas VS. Gait performance in dementia: the effects of a 6-week resistance training program in an adult day-care setting. Int J Geriatr Psychiatry. 2002;17(4):329–34. doi: 10.1002/gps.597.PubMedCrossRefGoogle Scholar
  111. 111.
    Rolland Y, Rival L, Pillard F, Lafont C, Rivere D, Albarede J, et al. Feasibility [corrected] of regular physical exercise for patients with moderate to severe Alzheimer disease. J Nutr Health Aging. 2000;4(2):109–13.PubMedGoogle Scholar
  112. 112.
    Doi T, Makizako H, Shimada H, Yoshida D, Tsutsumimoto K, Sawa R, et al. Effects of multicomponent exercise on spatial-temporal gait parameters among the elderly with amnestic mild cognitive impairment (aMCI): preliminary results from a randomized controlled trial (RCT). Arch Gerontol Geriatr. 2013;56(1):104–8. doi: 10.1016/j.archger.2012.09.003.PubMedCrossRefGoogle Scholar
  113. 113.
    McCaffrey R, Park J, Newman D, Hagen D. The effect of chair yoga in older adults with moderate and severe Alzheimer’s disease. Res Gerontol Nurs. 2014;7(4):375–81. doi: 10.3928/19404921-20140218-01.CrossRefGoogle Scholar
  114. 114.
    Leipzig RM, Cumming RG, Tinetti ME. Drugs and falls in older people: a systematic review and meta-analysis: I. Psychotropic drugs. J Am Geriatr Soc. 1999;47(1):30–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Woolcott JC, Richardson KJ, Wiens MO, Patel B, Marin J, Khan KM, et al. Meta-analysis of the impact of 9 medication classes on falls in elderly persons. Arch Intern Med. 2009;169(21):1952–60. doi: 10.1001/archinternmed.2009.357.PubMedCrossRefGoogle Scholar
  116. 116.
    Ensrud KE, Blackwell TL, Mangione CM, Bowman PJ, Whooley MA, Bauer DC, et al. Central nervous system-active medications and risk for falls in older women. J Am Geriatr Soc. 2002;50(10):1629–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with parkinsonism and anti-Parkinson drugs. Calcif Tissue Int. 2007;81(3):153–61. doi: 10.1007/s00223-007-9065-6.PubMedCrossRefGoogle Scholar
  118. 118.
    Takkouche B, Montes-Martinez A, Gill SS, Etminan M. Psychotropic medications and the risk of fracture: a meta-analysis. Drug Saf. 2007;30(2):171–84.PubMedCrossRefGoogle Scholar
  119. 119.
    Leipzig RM, Cumming RG, Tinetti ME. Drugs and falls in older people: a systematic review and meta-analysis: II. Cardiac and analgesic drugs. J Am Geriatr Soc. 1999;47(1):40–50.PubMedCrossRefGoogle Scholar
  120. 120.
    Sterke CS, Verhagen AP, van Beeck EF, van der Cammen TJ. The influence of drug use on fall incidents among nursing home residents: a systematic review. Int Psychogeriatr. 2008;20(5):890–910. doi: 10.1017/S104161020800714X.PubMedCrossRefGoogle Scholar
  121. 121.
    •• Berry SD, Placide SG, Mostofsky E, Zhang Y, Lipsitz LA, Mittleman MA, et al. Antipsychotic and benzodiazepine drug changes affect acute falls risk differently in the nursing home. J Gerontol A Biol Sci Med Sci. 2016;71(2):273–8. doi: 10.1093/gerona/glv091. Case-crossover study showing that the risk of falls after benzodiazepine initiation increases immediately (in the 24 hours) in older adults with dementia residing in a nursing homePubMedCrossRefGoogle Scholar
  122. 122.
    Kim DH, Brown RT, Ding EL, Kiel DP, Berry SD. Dementia medications and risk of falls, syncope, and related adverse events: meta-analysis of randomized controlled trials. J Am Geriatr Soc. 2011;59(6):1019–31. doi: 10.1111/j.1532-5415.2011.03450.x.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Beauchet O, Allali G, Launay C, Fantino B, Annweiler C. Does memantine improve the gait of individuals with Alzheimer’s disease? J Am Geriatr Soc. 2011;59(11):2181–2. doi: 10.1111/j.1532-5415.2011.03648.x.PubMedCrossRefGoogle Scholar
  124. 124.
    Beauchet O, Launay CP, Allali G, Annweiler C. Changes in gait variability with anti-dementia drugs: a systematic review and meta-analysis. CNS Drugs. 2014;28(6):513–8. doi: 10.1007/s40263-014-0170-6.PubMedCrossRefGoogle Scholar
  125. 125.
    Beauchet O, Launay CP, Allali G, Herrmann FR, Annweiler C. Gait changes with anti-dementia drugs: a prospective, open-label study combining single and dual task assessments in patients with Alzheimer’s disease. Drugs Aging. 2014;31(5):363–72. doi: 10.1007/s40266-014-0175-3.PubMedCrossRefGoogle Scholar
  126. 126.
    Beauchet O, Launay CP, Allali G, Watfa G, Gallouj K, Herrmann FR, et al. Anti-dementia drugs and changes in gait: a pre-post quasi-experimental pilot study. BMC Neurol. 2013;13:184. doi: 10.1186/1471-2377-13-184.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    • Beauchet O, Launay CP, Montero-Odasso M, Annweiler C, Allali G. Anti-dementia drugs-related changes in gait performance while single and dual tasking in patients with Alzheimer disease: a meta-analysis. Curr Alzheimer Res. 2015;12(8):761–71. Meta-analysis showing that anti-dementia drugs (i.e. acetylcholinesterase inhibitors and memantine) improve gait in older adults with dementia with a specific class effectPubMedCrossRefGoogle Scholar
  128. 128.
    Evans MD, Shinar R, Yaari R. Reversible dementia and gait disturbance after prolonged use of valproic acid. Seizure. 2011;20(6):509–11. doi: 10.1016/j.seizure.2011.02.009.PubMedCrossRefGoogle Scholar
  129. 129.
    Gallia GL, Rigamonti D, Williams MA. The diagnosis and treatment of idiopathic normal pressure hydrocephalus. Nat Clin Pract Neurol. 2006;2(7):375–81. doi: 10.1038/ncpneuro0237.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of MedicineYeshiva UniversityBronxUSA
  2. 2.Department of Clinical NeurosciencesGeneva University Hospitals and University of GenevaGenevaSwitzerland

Personalised recommendations