Skip to main content

Advertisement

Log in

Myoclonus: Pathophysiology and Treatment Options

  • Movement Disorders (A Videnovich, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Treatment of myoclonus requires an understanding of the physiopathology of the condition. The first step in treatment is to determine if there is an epileptic component to the myoclonus and treat accordingly. Secondly, a review of medications (e.g., opiates) and comorbidities (e.g., hepatic or renal failure) is required to establish the possibility of iatrogenic and reversible conditions. Once those are eliminated, delineation between cortical, cortico-subcortical, subcortical, brainstem, and spinal generators can determine the first-line treatment. Cortical myoclonus can be treated with levetiracetam, valproic acid, and clonazepam as first-line agents. Phenytoin and carbamazepine may paradoxically worsen myoclonus. Subcortical and brainstem myoclonus can be treated with clonazepam as a first-line agent, but levetiracetam and valproic acid can be tried as well. l-5-Hydroxytryptophan and sodium oxybate are agents used for refractory cases. Spinal myoclonus does not respond to anti-epileptic drugs, and clonazepam is a first-line agent. Botulinum toxin treatment can be useful for focal cases of spinal myoclonus. The etiology of propriospinal myoclonus is controversial, and a functional etiology is suspected in most cases. Treatment can include clonazepam, levetiracetam, baclofen, valproate, carbamazepine, and zonisamide. Functional myoclonus requires multimodal and multidisciplinary treatment that may include psychotropic drugs and physical and occupational therapy. Close collaboration between neurologists and psychiatrists is required for effective treatment. Finally, deep brain stimulation targeting the globus pallidus pars-interna bilaterally has been used in myoclonus-dystonia when pharmacological treatments have been exhausted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Stanley Fahn JJ, Hallett M. Myoclonus: phenomenology, etiology, physiology, and treatment principles and practice of movement disorders. Edinburgh: Saunders; 2011. p. 447–64.

    Google Scholar 

  2. Ikeda A, Kakigi R, Funai N, et al. Cortical tremor: a variant of cortical reflex myoclonus. Neurology. 1990;40:1561–5.

    Article  CAS  PubMed  Google Scholar 

  3. Stanley Fahn JJ, Hallett M. Principles and practice of movement disorders. Edinburgh: Saunders; 2011.

    Google Scholar 

  4. Caviness JN, Brown P. Myoclonus: current concepts and recent advances. Lancet Neurol. 2004;3:598–607.

    Article  PubMed  Google Scholar 

  5. Espay AJ, Chen R. Myoclonus. Continuum (Minneap Minn). 2013;19:1264–86. This review focuses on the etiology, diagnosis, and electrophysiological evaluation of myoclonus as well as treatment.

    Google Scholar 

  6. Kurian M, Lalive PH, Dalmau JO, et al. Opsoclonus-myoclonus syndrome in anti-N-methyl-D-aspartate receptor encephalitis. Arch Neurol. 2010;67:118–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turner MR, Irani SR, Leite MI, et al. Progressive encephalomyelitis with rigidity and myoclonus: glycine and NMDA receptor antibodies. Neurology. 2011;77:439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erlich R, Morrison C, Kim B, et al. ANNA-2: an antibody associated with paraneoplastic opsoclonus in a patient with large-cell carcinoma of the lung with neuroendocrine features—correlation of clinical improvement with tumor response. Cancer Investig. 2004;22:257–61.

    Article  CAS  Google Scholar 

  9. Pike M. Opsoclonus-myoclonus syndrome. Handb Clin Neurol. 2013;112:1209–11.

    Article  PubMed  Google Scholar 

  10. Ganos C, Kassavetis P, Erro R, et al. The role of the cerebellum in the pathogenesis of cortical myoclonus. Mov Disord. 2014;29:437–43.

    Article  PubMed  Google Scholar 

  11. Terada K, Ikeda A, Van Ness PC, et al. Presence of bereitschaftspotential preceding psychogenic myoclonus: clinical application of jerk-locked back averaging. J Neurol Neurosurg Psychiatry. 1995;58:745–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roze E, Bounolleau P, Ducreux D, et al. Propriospinal myoclonus revisited: clinical, neurophysiologic, and neuroradiologic findings. Neurology. 2009;72:1301–9. Article summarizes the clinical, electrophysiological, and neuroimaging features of propriosimal myoclonus. They report microstructual injuries that may explain some idiopathic cases.

    Article  CAS  PubMed  Google Scholar 

  13. van der Salm SM, Erro R, Cordivari C, et al. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology. 2014;83:1862–70.

    Article  PubMed  PubMed Central  Google Scholar 

  14. van der Salm SM, Tijssen MA, Koelman JH, et al. The bereitschaftspotential in jerky movement disorders. J Neurol Neurosurg Psychiatry. 2012;83:1162–7.

    Article  PubMed  Google Scholar 

  15. Caviness JN. The clinical neurophysiology of myoclonus. In: Hallet M, editor. Handbook of clinical neurophysiology. Amsterdam: Elsevier; 2003.

    Google Scholar 

  16. Calandra-Buonaura G, Alessandria M, Liguori R, et al. Hypnic jerks: neurophysiological characterization of a new motor pattern. Sleep Med. 2014;15:725–7.

    Article  PubMed  Google Scholar 

  17. Caviness JN, Truong DD. Myoclonus. Handb Clin Neurol. 2011;100:399–420.

    Article  PubMed  Google Scholar 

  18. Angel MJ, Young GB. Metabolic encephalopathies. Neurol Clin. 2011;29:837–82.

    Article  PubMed  Google Scholar 

  19. Jimenez-Jimenez FJ, Puertas I, de Toledo-Heras M. Drug-induced myoclonus: frequency, mechanisms and management. CNS Drugs. 2004;18:93–104.

    Article  CAS  PubMed  Google Scholar 

  20. Deik AF, Shanker VL. A case of amiodarone-associated myoclonus responsive to levetiracetam. Can J Neurol Sci. 2012;39:680–1.

    Article  PubMed  Google Scholar 

  21. Brown P, Steiger MJ, Thompson PD, et al. Effectiveness of piracetam in cortical myoclonus. Mov Disord. 1993;8:63–8.

    Article  CAS  PubMed  Google Scholar 

  22. Obeso JA, Artieda J, Quinn N, et al. Piracetam in the treatment of different types of myoclonus. Clin Neuropharmacol. 1988;11:529–36.

    Article  CAS  PubMed  Google Scholar 

  23. Koskiniemi M, Van Vleymen B, Hakamies L, et al. Piracetam relieves symptoms in progressive myoclonus epilepsy: a multicentre, randomised, double blind, crossover study comparing the efficacy and safety of three dosages of oral piracetam with placebo. J Neurol Neurosurg Psychiatry. 1998;64:344–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mbizvo GK, Dixon P, Hutton JL, et al. The adverse effects profile of levetiracetam in epilepsy: a more detailed look. Int J Neurosci. 2014;124:627–34.

    Article  CAS  PubMed  Google Scholar 

  25. Striano P, Manganelli F, Boccella P, et al. Levetiracetam in patients with cortical myoclonus: a clinical and electrophysiological study. Mov Disord. 2005;20:1610–4.

    Article  PubMed  Google Scholar 

  26. Frucht SJ, Bordelon Y, Houghton WH, et al. A pilot tolerability and efficacy trial of sodium oxybate in ethanol-responsive movement disorders. Mov Disord. 2005;20:1330–7.

    Article  PubMed  Google Scholar 

  27. Genton P, Gelisse P. Antimyoclonic effect of levetiracetam. Epileptic Disord. 2000;2:209–12.

    CAS  PubMed  Google Scholar 

  28. Lexicomp Online®. Accessed October 17th, 2015.

  29. Shin JH, Park JM, Kim AR, et al. Lance-Adams syndrome. Ann Rehabil Med. 2012;36:561–4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Frucht SJ, Houghton WC, Bordelon Y, et al. A single-blind, open-label trial of sodium oxybate for myoclonus and essential tremor. Neurology. 2005;65:1967–9.

    Article  CAS  PubMed  Google Scholar 

  31. Menon MK. Antimyoclonic effect of sodium oxybate: clinical implications. JAMA. 1981;245:2495.

    Article  CAS  PubMed  Google Scholar 

  32. Arpesella R, Dallocchio C, Arbasino C, et al. A patient with intractable posthypoxic myoclonus (Lance-Adams syndrome) treated with sodium oxybate. Anaesth Intensive Care. 2009;37:314–8.

    CAS  PubMed  Google Scholar 

  33. Magnussen I, Dupont E, Engbaek F, et al. Post-hypoxic intention myoclonus treated with 5-hydroxy-tryptophan and an extracerebral decarboxylase inhibitor. Acta Neurol Scand. 1978;57:289–94.

    Article  CAS  PubMed  Google Scholar 

  34. Van Woert MH, Sethy VH. Therapy of intention myoclonus with L-5-hydroxytryptophan and a peripheral decarboxylase inhibitor, MK 486. Neurology. 1975;25:135–40.

    Article  PubMed  Google Scholar 

  35. Deuschl G, Wilms H. Palatal tremor: the clinical spectrum and physiology of a rhythmic movement disorder. Adv Neurol. 2002;89:115–30.

    PubMed  Google Scholar 

  36. Zadikoff C, Lang AE, Klein C. The ‘essentials’ of essential palatal tremor: a reappraisal of the nosology. Brain. 2006;129:832–40.

    Article  CAS  PubMed  Google Scholar 

  37. Stamelou M, Saifee TA, Edwards MJ, et al. Psychogenic palatal tremor may be underrecognized: reappraisal of a large series of cases. Mov Disord. 2012;27:1164–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kern DS, Lang AE. Successful treatment of functional palatal tremor: insights into pathogenesis and management. Mov Disord. 2015;30:875–6. This report highlights the evolving understanding of essential palatal tremor (myoclonus) and its functional etiology.

    Article  PubMed  Google Scholar 

  39. Nasr A, Brown N. Palatal myoclonus responding to lamotrigine. Seizure. 2002;11:136–7.

    Article  PubMed  Google Scholar 

  40. Penney SE, Bruce IA, Saeed SR. Botulinum toxin is effective and safe for palatal tremor: a report of five cases and a review of the literature. J Neurol. 2006;253:857–60.

    Article  CAS  PubMed  Google Scholar 

  41. Obeso JA. Therapy of myoclonus. Clin Neurosci. 1995;3:253–7.

    PubMed  Google Scholar 

  42. Keswani SC, Kossoff EH, Krauss GL, et al. Amelioration of spinal myoclonus with levetiracetam. J Neurol Neurosurg Psychiatry. 2002;73:457–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Siniscalchi A, Mancuso F, Russo E, et al. Spinal myoclonus responsive to topiramate. Mov Disord. 2004;19:1380–1.

    Article  PubMed  Google Scholar 

  44. Chiodo AE, Saval A. Intrathecal baclofen for the treatment of spinal myoclonus: a case series. J Spinal Cord Med. 2012;35:64–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Polo KB, Jabbari B. Effectiveness of botulinum toxin type A against painful limb myoclonus of spinal cord origin. Mov Disord. 1994;9:233–5.

    Article  CAS  PubMed  Google Scholar 

  46. Lagueny A, Tison F, Burbaud P, et al. Stimulus-sensitive spinal segmental myoclonus improved with injections of botulinum toxin type A. Mov Disord. 1999;14:182–5.

    Article  CAS  PubMed  Google Scholar 

  47. Vivancos-Matellano F, Arpa-Gutierrez FJ, Perez-Conde MC, et al. The effectiveness of Botulinum toxin type A in two cases of abdominal myoclonias refractory to conventional therapy. Rev Neurol. 2006;42:59–61.

    CAS  PubMed  Google Scholar 

  48. Esposito M, Erro R, Edwards MJ, et al. The pathophysiology of symptomatic propriospinal myoclonus. Mov Disord. 2014;29:1097–9.

    Article  PubMed  Google Scholar 

  49. Antelmi E, Provini F. Propriospinal myoclonus: the spectrum of clinical and neurophysiological phenotypes. Sleep Med Rev. 2015;22:54–63.

    Article  PubMed  Google Scholar 

  50. Jang W, Kim JS, Ahn JY, et al. Reversible propriospinal myoclonus due to thoracic disc herniation: long-term follow-up. J Neurol Sci. 2012;313:32–4.

    Article  PubMed  Google Scholar 

  51. Espay AJ, Ashby P, Hanajima R, et al. Unique form of propriospinal myoclonus as a possible complication of an enteropathogenic toxin. Mov Disord. 2003;18:942–8.

    Article  PubMed  Google Scholar 

  52. Erro R, Bhatia KP, Edwards MJ, et al. Clinical diagnosis of propriospinal myoclonus is unreliable: an electrophysiologic study. Mov Disord. 2013;28:1868–73. This article highlights that propriospinal myoclonus requires electrophysiological characterization and posists that the etiology in most cases may be functional.

    Article  PubMed  Google Scholar 

  53. Maltete D, Verdure P, Roze E, et al. TENS for the treatment of propriospinal myoclonus. Mov Disord. 2008;23:2256–7.

    Article  PubMed  Google Scholar 

  54. Hallett M. Psychogenic movement disorders: neurology and neuropsychiatry. Wolters Kluwer; 2005.

  55. Baizabal-Carvallo JF, Fekete R. Recognizing uncommon presentations of psychogenic (functional) movement disorders. Tremor Other Hyperkinet Mov (N Y). 2015;5:279.

    Google Scholar 

  56. Kompoliti K, Wilson B, Stebbins G, et al. Immediate vs. delayed treatment of psychogenic movement disorders with short term psychodynamic psychotherapy: randomized clinical trial. Parkinsonism Relat Disord. 2014;20:60–3. This article is a well designed randomized cross-over study that demonstrates that patients kept within the medical system and regularly evaluated by physicians with or without psychodynamic therapy can help treat functional movement disorders.

    Article  PubMed  Google Scholar 

  57. Hinson VK, Weinstein S, Bernard B, et al. Single-blind clinical trial of psychotherapy for treatment of psychogenic movement disorders. Parkinsonism Relat Disord. 2006;12:177–80.

    Article  PubMed  Google Scholar 

  58. Czarnecki K, Thompson JM, Seime R, et al. Functional movement disorders: successful treatment with a physical therapy rehabilitation protocol. Parkinsonism Relat Disord. 2012;18:247–51.

    Article  PubMed  Google Scholar 

  59. Dallocchio C, Arbasino C, Klersy C, et al. The effects of physical activity on psychogenic movement disorders. Mov Disord. 2010;25:421–5.

    Article  PubMed  Google Scholar 

  60. Jordbru AA, Smedstad LM, Klungsoyr O, et al. Psychogenic gait disorder: a randomized controlled trial of physical rehabilitation with one-year follow-up. J Rehabil Med. 2014;46:181–7.

    Article  PubMed  Google Scholar 

  61. Edwards MJ, Stone J, Nielsen G. Physiotherapists and patients with functional (psychogenic) motor symptoms: a survey of attitudes and interest. J Neurol Neurosurg Psychiatry. 2012;83:655–8.

    Article  PubMed  Google Scholar 

  62. Zesiewicz TA, Sullivan KL, Arnulf I, et al. Practice parameter: treatment of nonmotor symptoms of Parkinson disease: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2010;74:924–31.

    Article  CAS  PubMed  Google Scholar 

  63. Kobayashi K, Katayama Y, Otaka T, et al. Thalamic deep brain stimulation for the treatment of action myoclonus caused by perinatal anoxia. Stereotact Funct Neurosurg. 2010;88:259–63.

    Article  PubMed  Google Scholar 

  64. Yamada K, Sakurama T, Soyama N, et al. Gpi pallidal stimulation for Lance-Adams syndrome. Neurology. 2011;76:1270–2.

    Article  PubMed  Google Scholar 

  65. Trottenberg T, Meissner W, Kabus C, et al. Neurostimulation of the ventral intermediate thalamic nucleus in inherited myoclonus-dystonia syndrome. Mov Disord. 2001;16:769–71.

    Article  CAS  PubMed  Google Scholar 

  66. Azoulay-Zyss J, Roze E, Welter ML, et al. Bilateral deep brain stimulation of the pallidum for myoclonus-dystonia due to epsilon-sarcoglycan mutations: a pilot study. Arch Neurol. 2011;68:94–8.

    Article  PubMed  Google Scholar 

  67. Magarinos-Ascone CM, Regidor I, Martinez-Castrillo JC, et al. Pallidal stimulation relieves myoclonus-dystonia syndrome. J Neurol Neurosurg Psychiatry. 2005;76:989–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Starr PA. Deep brain stimulation for other tremors, myoclonus, and chorea. Handb Clin Neurol. 2013;116:209–15.

    Article  PubMed  Google Scholar 

  69. Rughani AI, Lozano AM. Surgical treatment of myoclonus dystonia syndrome. Mov Disord. 2013;28:282–7. This review of published cases compared different targets for functional neurosurgery in myoclonus dystonia syndrome. Both dystonia and myoclonus improved in their analysis. Globus pallidus targets improved dystonia to a greater extent than the thalamic one.

    Article  PubMed  Google Scholar 

  70. Sidiropoulos C, Mestre T, Hutchison W, et al. Bilateral pallidal stimulation for sargoglycan epsilon negative myoclonus. Parkinsonism Relat Disord. 2014;20:915–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Chen MA, MB BChir, MSc, FRCPC.

Ethics declarations

Conflict of Interest

Ariel Levy declares no conflict of interest.

Robert Chen received research grant from Medtronic Inc, honorarium from Allergan, and research grant and honorarium from Merz.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, A., Chen, R. Myoclonus: Pathophysiology and Treatment Options. Curr Treat Options Neurol 18, 21 (2016). https://doi.org/10.1007/s11940-016-0404-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0404-7

Keywords

Navigation