Advertisement

Treatment of Primary Progressive Aphasia

  • Donna C. Tippett
  • Argye E. Hillis
  • Kyrana TsapkiniEmail author
Dementia (E McDade, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Dementia

Opinion statement

Primary progressive aphasia (PPA) is a neurodegenerative disease that primarily affects language functions and often begins in the fifth or sixth decade of life. The devastating effects on work and home life call for the investigation of treatment alternatives. In this paper, we present a review of the literature on treatment approaches for this neurodegenerative disease. We also present new data from two intervention studies we have conducted, a behavioral one and a neuromodulatory one using transcranial direct current stimulation (tDCS) combined with written production intervention. We show that speech-language intervention improves language outcomes in individuals with PPA, and especially in the short term, tDCS augments generalization and maintenance of positive language outcomes. We also outline current issues and challenges in intervention approaches in PPA.

Keywords

Dementia Primary progressive aphasia (PPA) Non-fluent agrammatic PPA Semantic variant PPA Logogpenic variant PPA Apraxia of speech (AOS) Transcranial direct current stimulation (tDCS) Neurodegeneration Neuromodulation 

Notes

Acknowledgments

Some of the research reported in this paper, as well as the authors of the paper, were supported by NIDCD through R01 14129060, R01 DC011317, R01 DC03681, and R01 DC014475 and by the Science of Learning Institute of Johns Hopkins University.

Compliance with Ethics Guidelines

Conflict of Interest

Donna C. Tippett, Argye E. Hillis, and Kyrana Tsapkini declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.•
    Mesulam MM. Primary progressive aphasia. Ann Neurol. 2001;49(4):425–32. Seminal paper delineating the characteristics of PPA.PubMedGoogle Scholar
  2. 2.•
    Mesulam M, Weintraub S. Primary progressive aphasia and kindred disorders. Handb Clin Neurol. 2008;89:573–87. Follow-up and update paper with differential diagnosis of PPA.PubMedGoogle Scholar
  3. 3.•
    Gorno-Tempini ML, Hillis AE, Weintraub S, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14. Most recently used classification criteria for the diagnosis of PPA: state-of-the-art.PubMedCentralPubMedGoogle Scholar
  4. 4.
    Mesulam MM, Wieneke C, Hurley R, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain. 2013;136(Pt 2):601–18.PubMedCentralPubMedGoogle Scholar
  5. 5.•
    Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592–8. First paper describing characteristics of PPA even before this name was given.PubMedGoogle Scholar
  6. 6.
    Josephs KA, Duffy JR. Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol. 2008;21(6):688–92.PubMedGoogle Scholar
  7. 7.•
    Grossman M, Ash S. Primary progressive aphasia: a review. Neurocase. 2004;10(1):3–18. Critical review of the state-of-the art of PPA at the time of publication.PubMedGoogle Scholar
  8. 8.
    Hurley RS, Paller KA, Wieneke CA, et al. Electrophysiology of object naming in primary progressive aphasia. J Neurosci. 2009;29(50):15762–9.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Mesulam MM. Primary progressive aphasia and the language network: the 2013 H. Houston Merritt Lecture. Neurology. 2013;81(5):456–62.PubMedGoogle Scholar
  10. 10.
    Gorno-Tempini ML, Dronkers NF, Rankin KP, et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann Neurol. 2004;55(3):335–46.PubMedCentralPubMedGoogle Scholar
  11. 11.•
    Mesulam MM, Wieneke C, Thompson C, Rogalski E, Weintraub S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain. 2012;135(Pt 5):1537–53. State-of-the art in quantifying symptoms of PPA and differential diagnosis of variants.PubMedCentralPubMedGoogle Scholar
  12. 12.
    Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology. 2011;76(21):1804–10.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Hillis AE, Tuffiash E, Caramazza A. Modality-specific deterioration in naming verbs in nonfluent primary progressive aphasia. J Cogn Neurosci. 2002;14(7):1099–108.PubMedGoogle Scholar
  14. 14.•
    Hillis AE, Oh S, Ken L. Deterioration of naming nouns versus verbs in primary progressive aphasia. Ann Neurol. 2004;55(2):268–75. Deficits in noun and verb production in the three variants of PPA.PubMedGoogle Scholar
  15. 15.
    Hillis AE, Heidler‐Gary J, Newhart M, Chang S, Ken L, Bak TH. Naming and comprehension in primary progressive aphasia: the influence of grammatical word class. Aphasiology. 2006;20(02-04):246–56.Google Scholar
  16. 16.
    Gorno-Tempini ML, Ogar JM, Brambati SM, et al. Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology. 2006;67(10):1849–51.PubMedGoogle Scholar
  17. 17.
    Gorno-Tempini ML, Murray RC, Rankin KP, Weiner MW, Miller BL. Clinical, cognitive and anatomical evolution from nonfluent progressive aphasia to corticobasal syndrome: a case report. Neurocase. 2004;10(6):426–36.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Josephs KA, Whitwell JL, Duffy JR, et al. Progressive aphasia secondary to Alzheimer disease vs FTLD pathology. Neurology. 2008;70(1):25–34.PubMedCentralPubMedGoogle Scholar
  19. 19.
    Wilson SM, Galantucci S, Tartaglia MC, et al. Syntactic processing depends on dorsal language tracts. Neuron. 2011;72(2):397–403.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Hurley RS, Paller KA, Rogalski EJ, Mesulam MM. Neural mechanisms of object naming and word comprehension in primary progressive aphasia. J Neurosci. 2012;32(14):4848–55.PubMedCentralPubMedGoogle Scholar
  21. 21.
    Seeley WW, Bauer AM, Miller BL, et al. The natural history of temporal variant frontotemporal dementia. Neurology. 2005;64(8):1384–90.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Seeley WW, Matthews BR, Crawford RK, et al. Unravelling bolero: progressive aphasia, transmodal creativity and the right posterior neocortex. Brain. 2008;131(Pt 1):39–49.PubMedGoogle Scholar
  23. 23.•
    Gorno-Tempini ML, Brambati SM, Ginex V, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71(16):1227–34. Detailed description and characteristics of the logopenic variant of PPA.PubMedCentralPubMedGoogle Scholar
  24. 24.
    Rohrer JD, Caso F, Mahoney C, et al. Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia. Brain Lang. 2013;127(2):121–6.PubMedCentralPubMedGoogle Scholar
  25. 25.
    Beeson PM, King RM, Bonakdarpour B, Henry ML, Cho H, Rapcsak SZ. Positive effects of language treatment for the logopenic variant of primary progressive aphasia. J Mol Neurosci. 2011;45(3):724–36.PubMedCentralPubMedGoogle Scholar
  26. 26.
    Henry ML, Beeson PM, Rapcsak SZ. Treatment for anomia in semantic dementia. Semin Speech Lang. 2008;29(1):60–70.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Henry ML, Beeson PM, Alexander GE, Rapcsak SZ. Written language impairments in primary progressive aphasia: a reflection of damage to central semantic and phonological processes. J Cogn Neurosci. 2011.Google Scholar
  28. 28.••
    Rapp B, Glucroft B. The benefits and protective effects of behavioural treatment for dysgraphia in a case of primary progressive aphasia. Aphasiology. 2009;23(2):236–65. Behavioral treatment of written language lexical deficits in a case of logopenic PPA.PubMedCentralPubMedGoogle Scholar
  29. 29.••
    Tsapkini K, Hillis AE. Spelling intervention in post-stroke aphasia and primary progressive aphasia. Behav Neurol. 2013;26(1-2):55–66. Commonalities and differences in the treatment trajectory of spelling deficits between a case of post-stroke aphasia and a case of PPA.PubMedCentralPubMedGoogle Scholar
  30. 30.
    Budd MA, Kortte K, Cloutman L, et al. The nature of naming errors in primary progressive aphasia versus acute post-stroke aphasia. Neuropsychology. 2010;24(5):581–9.PubMedCentralPubMedGoogle Scholar
  31. 31.•
    Sepelyak K, Crinion J, Molitoris J, et al. Patterns of breakdown in spelling in primary progressive aphasia. Cortex. 2011;47(3):342–52. Spelling deficits in the three variants of PPA and neural correlates.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Ellis AW. Reading, writing and dyslexia: a cognitive analysis. Psychology Press, 1993.Google Scholar
  33. 33.
    Ellis AW, Young AW. Human cognitive neuropsychology. Hillsdale: Lawrence Erlbaum Associates; 1988.Google Scholar
  34. 34.
    Kiran S, Thompson CK, Hashimoto N. Training grapheme to phoneme conversion in patients with oral reading and naming deficits: a model-based approach. Aphasiology. 2001;15(9):855–76.Google Scholar
  35. 35.
    Kiran S. Training phoneme to grapheme conversion for patients with written and oral production deficits: a model-based approach. Aphasiology. 2005;19(1):53–76.Google Scholar
  36. 36.
    Beeson PM, Rising K, Volk J. Writing treatment for severe aphasia: who benefits? J Speech Lang Hear Res. 2003;46(5):1038–60.PubMedGoogle Scholar
  37. 37.
    Beeson PM, Egnor H. Combining treatment for written and spoken naming. J Int Neuropsychol Soc. 2006;12(6):816–27.PubMedCentralPubMedGoogle Scholar
  38. 38.
    Best W, Nickels L. From theory to therapy in aphasia: where are we now and where to next? Neuropsychol Rehabil. 2000;10(3):231–47.Google Scholar
  39. 39.
    Bastiaanse R, Bosje M, Franssen M. Deficit-oriented treatment of word-finding problems: another replication. Aphasiology. 1996;10(4):363–83.Google Scholar
  40. 40.
    Hillis AE. Efficacy and generalization of treatment for aphasic naming errors. Arch Phys Med Rehabil. 1989;70(8):632–6.PubMedGoogle Scholar
  41. 41.
    DeDe G, Parris D, Waters G. Teaching self-cues: a treatment approach for verbal naming. Aphasiology. 2003;17(5):465–80.Google Scholar
  42. 42.•
    Grossman M. Progressive aphasic syndromes: clinical and theoretical advances. Curr Opin Neurol. 2002;15(4):409–13. Classification of aphasic symptoms in PPA.PubMedGoogle Scholar
  43. 43.
    Thompson CK, Lukic S, King MC, Mesulam MM, Weintraub S. Verb and noun deficits in stroke-induced and primary progressive aphasia: the northwestern naming battery. Aphasiology. 2012;26(5):632–55.PubMedCentralPubMedGoogle Scholar
  44. 44.
    Corbett F, Jefferies E, Ehsan S, Lambon Ralph MA. Different impairments of semantic cognition in semantic dementia and semantic aphasia: evidence from the non-verbal domain. Brain. 2009;132(Pt 9):2593–608.PubMedCentralPubMedGoogle Scholar
  45. 45.••
    Croot K, Nickels L, Laurence F, Manning M. Impairment‐and activity/participation-directed interventions in progressive language impairment: clinical and theoretical issues. Aphasiology. 2009;23(2):125–60. Examples and directions for treatment of aphasic symptoms in PPA.Google Scholar
  46. 46.••
    Graham KS, Patterson K, Pratt KH, Hodges JR. Relearning and subsequent forgetting of semantic category exemplars in a case of semantic dementia. Neuropsychology. 1999;13(3):359–80. Behavioral treatment of semantic deficits in a case of semantic variant PPA.PubMedGoogle Scholar
  47. 47.••
    Henry ML, Beeson PM, Rapcsak SZ. Treatment for lexical retrieval in progressive aphasia. Aphasiology. 2008;22(7-8):826–38. Behavioral treatment of oral and written production in PPA.PubMedCentralPubMedGoogle Scholar
  48. 48.••
    Jokel R, Rochon E, Leonard C. Treating anomia in semantic dementia: improvement, maintenance, or both? Neuropsychol Rehabil. 2006;16(3):241–56. Anomia treatment in semantic variant PPA.PubMedGoogle Scholar
  49. 49.••
    Jokel R, Rochon E, Anderson ND. Errorless learning of computer-generated words in a patient with semantic dementia. Neuropsychol Rehabil. 2010;20(1):16–41. Errorless learning as a treatment approach in semantic variant PPA.PubMedGoogle Scholar
  50. 50.
    Jokel R, Anderson ND. Quest for the best: effects of errorless and active encoding on word re-learning in semantic dementia. Neuropsychol Rehabil. 2012;22(2):187–214.PubMedGoogle Scholar
  51. 51.••
    McNeil M, Small S, Masterson RJ, Fossett T. Behavioural and pharmacological treatment of lexical-semantic deficits in a single patient with primary progressive aphasia. A J Speech Lang Pathol. 1995;4(4):76–87. Effects of behavioral treatment of cueing hierarchy of predicative adjectives combined with dextroamphetamine treatment.Google Scholar
  52. 52.
    Schneider S, Thompson C, Luring B. Effects of verbal plus gestural matrix training on sentence production in a patient with primary progressive aphasia. Aphasiology. 1996;10(3):297–317.Google Scholar
  53. 53.
    Henry ML, Beeson PM, Alexander GE, Rapcsak SZ. Written language impairments in primary progressive aphasia: a reflection of damage to central semantic and phonological processes. J Cogn Neurosci. 2012;24(2):261–75.PubMedCentralPubMedGoogle Scholar
  54. 54.••
    Newhart M, Davis C, Kannan V, Heidler‐Gary J, Cloutman L, Hillis AE. Therapy for naming deficits in two variants of primary progressive aphasia. Aphasiology. 2009;23(7-8):823–34. Variation of therapeutic approaches and results in a case of semantic and a case of logopenic PPA.Google Scholar
  55. 55.••
    Beeson PM, King RM, Bonakdarpour B, Henry ML, Cho H, Rapcsak SZ. Positive effects of language treatment for the logopenic variant of primary progressive aphasia. J Mol Neurosci. 2011;45(3):724–36. Improvement of oral and written naming after treatment in logopenic variant PPA.PubMedCentralPubMedGoogle Scholar
  56. 56.••
    Henry ML, Beeson PM, Rapcsak SZ. Treatment for anomia in semantic dementia. Semin Speech Lang. 2008;29(1):60–70. Improvement in naming in semantic variant PPA.PubMedCentralPubMedGoogle Scholar
  57. 57.
    Meyer A, Getz H, Snider S, et al. Remediation and prophylaxis of anomia in primary progressive aphasia. Procedia Soc Behav Sci. 2013;94:275–6.PubMedCentralPubMedGoogle Scholar
  58. 58.
    Henry ML, Meese MV, Truong S, Babiak MC, Miller BL, Gorno-Tempini ML. Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behav Neurol 2013;26(1–2):77–88.Google Scholar
  59. 59.••
    Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36. Seminal study on using tDCS in post-stroke remediation of naming deficits.PubMedCentralPubMedGoogle Scholar
  60. 60.••
    Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–21. Follow-up study on RT improvement in naming in post-stroke aphasia using tDCS.PubMedGoogle Scholar
  61. 61.••
    Dmochowski JP, Datta A, Huang Y, et al. Targeted transcranial direct current stimulation for rehabilitation after stroke. Neuroimage. 2013;75:12–9. Optimization of electrode placement for tDCS in naming remediation in post-stroke aphasia.PubMedCentralPubMedGoogle Scholar
  62. 62.••
    Boggio PS, Khoury LP, Martins DC, Martins OE, de Macedo EC, Fregni F. Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80(4):444–7. tDCS contributed to longer lasting visual memories in AD than sham.PubMedGoogle Scholar
  63. 63.••
    Boggio PS, Valasek CA, Campanha C, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol Rehabil. 2011;21(5):703–16. tDCS modulates neuroplasticity in AD.PubMedGoogle Scholar
  64. 64.
    Hansen N. Action mechanisms of transcranial direct current stimulation in Alzheimer’s disease and memory loss. Front Psychiatry. 2012;3:48.PubMedCentralPubMedGoogle Scholar
  65. 65.••
    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53. tDCS acts at the synaptic level of neuronal transmission.PubMedGoogle Scholar
  66. 66.
    Nardone R, Bergmann J, Christova M, et al. Effect of transcranial brain stimulation for the treatment of Alzheimer disease: a review. Int J Alzheimers Dis. 2012;2012:687909.PubMedCentralPubMedGoogle Scholar
  67. 67.
    Monte-Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–32.PubMedGoogle Scholar
  68. 68.
    Meinzer M, Lindenberg R, Darkow R, Ulm L, Copland D, Floel A. Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. J Vis Exp. 2014; (86). doi(86): 10.3791/51730.
  69. 69.
    Price CJ, Mechelli A. Reading and reading disturbance. Curr Opin Neurobiol. 2005;15(2):231–8.PubMedGoogle Scholar
  70. 70.••
    Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–36. Specifications of using tDCS in post-stroke aphasia.PubMedCentralPubMedGoogle Scholar
  71. 71.
    Reis J, Fritsch B. Modulation of motor performance and motor learning by transcranial direct current stimulation. Curr Opin Neurol. 2011;24(6):590–6.PubMedGoogle Scholar
  72. 72.••
    Monte-Silva K, Kuo MF, Hessenthaler S, et al. Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 2013;6(3):424–32. The mechanism of action of repeated tDCS is by inducing LTP-like plasticity.PubMedGoogle Scholar
  73. 73.
    Reis J, Schambra HM, Cohen LG, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–5.PubMedCentralPubMedGoogle Scholar
  74. 74.
    Meinzer M, Jahnigen S, Copland DA, et al. Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary. Cortex. 2014;50:137–47.PubMedGoogle Scholar
  75. 75.••
    Fridriksson J, Richardson JD, Baker JM, Rorden C. Transcranial direct current stimulation improves naming reaction time in fluent aphasia: a double-blind, sham-controlled study. Stroke. 2011;42(3):819–21. Treatment of patients with posterior lesions using tDCS.PubMedGoogle Scholar
  76. 76.
    Fridriksson J, Hubbard HI, Hudspeth SG. Transcranial brain stimulation to treat aphasia: a clinical perspective. Semin Speech Lang. 2012;33(3):188–202.PubMedGoogle Scholar
  77. 77.••
    Boggio PS, Valasek CA, Campanha C, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol Rehabil. 2011;21(5):703–16. Establishing tDCS as a method to modulate neuronal plasticity in neural degeneration.PubMedGoogle Scholar
  78. 78.••
    Boggio PS, Ferrucci R, Mameli F, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 2012;5(3):223–30. tDCS improves visual memories in patients with AD.PubMedGoogle Scholar
  79. 79.••
    Boggio PS, Ferrucci R, Rigonatti SP, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249(1):31–8. tDCS improves working memory in patients with Parkinson’s disease.PubMedGoogle Scholar
  80. 80.••
    Boggio PS, Ferrucci R, Mameli F, et al. Prolonged visual memory enhancement after direct current stimulation in Alzheimer’s disease. Brain Stimul. 2012;5(3):223–30. tDCS improves visual memory in AD.PubMedGoogle Scholar
  81. 81.
    Polania R, Paulus W, Nitsche MA. Reorganizing the intrinsic functional architecture of the human primary motor cortex during rest with non-invasive cortical stimulation. PLoS One. 2012;7(1):e30971.PubMedCentralPubMedGoogle Scholar
  82. 82.
    Polania R, Paulus W, Antal A, Nitsche MA. Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. Neuroimage. 2011;54(3):2287–96.PubMedGoogle Scholar
  83. 83.
    Polania R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2011.Google Scholar
  84. 84.
    Fritsch B, Reis J, Martinowich K, et al. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron. 2010;66(2):198–204.PubMedCentralPubMedGoogle Scholar
  85. 85.
    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37–53.PubMedGoogle Scholar
  86. 86.
    Fiori V, Coccia M, Marinelli CV, et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–23.PubMedGoogle Scholar
  87. 87.••
    Marangolo P, Marinelli CV, Bonifazi S, et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225(2):498–504. tDCS improves outcome of apraxia of speech treatment more than sham in post-stroke aphasia.PubMedGoogle Scholar
  88. 88.
    Fiori V, Cipollari S, Di Paola M, Razzano C, Caltagirone C, Marangolo P. tDCS stimulation segregates words in the brain: evidence from aphasia. Front Hum Neurosci. 2013;7:269.PubMedCentralPubMedGoogle Scholar
  89. 89.••
    Marangolo P, Fiori V, Calpagnano MA, et al. tDCS over the left inferior frontal cortex improves speech production in aphasia. Front Hum Neurosci. 2013;7:539. tDCS improves speech production more than shamin post-stroke aphasia.PubMedCentralPubMedGoogle Scholar
  90. 90.
    Chrysikou EG, Hamilton RH. Noninvasive brain stimulation in the treatment of aphasia: exploring interhemispheric relationships and their implications for neurorehabilitation. Restor Neurol Neurosci. 2011.Google Scholar
  91. 91.••
    Monti A, Cogiamanian F, Marceglia S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–3. Cathodal tDCS improves naming in post-stroke aphasia.PubMedGoogle Scholar
  92. 92.••
    Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–74. tDCS Electrode placement according to individualized computational models of current flow.PubMedCentralPubMedGoogle Scholar
  93. 93.••
    Jo JM, Kim YH, Ko MH, Ohn SH, Joen B, Lee KH. Enhancing the working memory of stroke patients using tDCS. Am J Phys Med Rehabil. 2009;88(5):404–9. Working memory is improved with tDCS post-stroke.PubMedGoogle Scholar
  94. 94.
    Marangolo P, Marinelli CV, Bonifazi S, et al. Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behav Brain Res. 2011;225(2):498–504.PubMedGoogle Scholar
  95. 95.
    Kuo MF, Paulus W, Nitsche MA. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. Neuroimage. 2014;85(Pt 3):948–60.PubMedGoogle Scholar
  96. 96.
    Brunoni AR, Nitsche MA, Bolognini N, et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimul. 2011.Google Scholar
  97. 97.••
    Ferrucci R, Mameli F, Guidi I, et al. Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology. 2008;71(7):493–8. tDCS improves recognition in AD.PubMedGoogle Scholar
  98. 98.••
    Huey ED, Probasco JC, Moll J, et al. No effect of DC brain polarization on verbal fluency in patients with advanced frontotemporal dementia. Clin Neurophysiol. 2007;118(6):1417–8. No effects of tDCS after one application.PubMedCentralPubMedGoogle Scholar
  99. 99.••
    Cotelli M, Manenti R, Petesi M, et al. Treatment of primary progressive aphasias by transcranial direct current stimulation combined with language training. J Alzheimers Dis. 2014;39(4):799–808. tDCS improves naming in PPA.PubMedGoogle Scholar
  100. 100.••
    Tsapkini K, Frangakis C, Gomez Y, Davis C, Hillis AE. Augmentation of spelling therapy with transcranial direct current stimulation in primary progressive aphasia: preliminary results and challenges. Aphasiology. 2014;28(8-9):1112–30. tDCS improves spelling in PPA: effects are generalized and last longer than sham.PubMedCentralPubMedGoogle Scholar
  101. 101.
    Antal A, Terney D, Poreisz C, Paulus W. Towards unravelling task-related modulations of neuroplastic changes induced in the human motor cortex. Eur J Neurosci. 2007;26(9):2687–91.PubMedGoogle Scholar
  102. 102.
    Andrews SC, Hoy KE, Enticott PG, Daskalakis ZJ, Fitzgerald PB. Improving working memory: the effect of combining cognitive activity and anodal transcranial direct current stimulation to the left dorsolateral prefrontal cortex. Brain Stimul. 2011;4(2):84–9.PubMedGoogle Scholar
  103. 103.
    Segrave RA, Arnold S, Hoy K, Fitzgerald PB. Concurrent cognitive control training augments the antidepressant efficacy of tDCS: a pilot study. Brain Stimul. 2014;7(2):325–31.PubMedGoogle Scholar
  104. 104.
    Antal A, Polania R, Schmidt-Samoa C, Dechent P, Paulus W. Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage. 2011;55(2):590–6.PubMedGoogle Scholar
  105. 105.
    Antal A, Paulus W, Nitsche MA. Electrical stimulation and visual network plasticity. Restor Neurol Neurosci. 2011;29(6):365–74.PubMedGoogle Scholar
  106. 106.
    Finocchiaro C, Maimone M, Brighina F, Piccoli T, Giglia G, Fierro B. A case study of primary progressive aphasia: improvement on verbs after rTMS treatment. Neurocase. 2006;12(6):317–21.PubMedGoogle Scholar
  107. 107.••
    Trebbastoni A, Raccah R, de Lena C, Zangen A, Inghilleri M. Repetitive deep transcranial magnetic stimulation improves verbal fluency and written language in a patient with primary progressive aphasia-logopenic variant (LPPA). Brain Stimul. 2013;6(4):545–53. TMS improves verbal fluency and written language in PPA.PubMedGoogle Scholar
  108. 108.••
    Cotelli M, Manenti R, Alberici A, et al. Prefrontal cortex rTMS enhances action naming in progressive non-fluent aphasia. Eur J Neurol. 2012;19(11):1404–12. rTMS improves action naming in non-fluent variant PPA.PubMedGoogle Scholar
  109. 109.
    Decker DA, Heilman KM. Steroid treatment of primary progressive aphasia. Arch Neurol. 2008;65(11):1533–5.PubMedGoogle Scholar
  110. 110.
    Shankle WR, Hara J, Bjornsen L, et al. Omental therapy for primary progressive aphasia with tau negative histopathology: 3 year study. Neurol Res. 2009;31(7):766–9.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Donna C. Tippett
    • 1
    • 2
    • 3
  • Argye E. Hillis
    • 1
    • 3
    • 4
  • Kyrana Tsapkini
    • 1
    Email author
  1. 1.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Otolaryngology—Head and Neck SurgeryJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Physical Medicine and RehabilitationJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Department of Cognitive ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations