Skip to main content
Log in

Robotic Surgeries in Benign and Malignant Pancreatic Disease

  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of review

Pancreatic resection stands as one of the most challenging abdominal surgeries, primarily indicated for pancreatic malignancies such as pancreatic ductal adenocarcinoma (PDAC), pre-malignant conditions like intraductal papillary mucinous neoplasm (IPMN), and benign pathologies that manifest with significant symptoms, including intractable pain, often concomitant with endocrine or exocrine dysfunction. The inherent complexity and morbidity associated with pancreatic resection, exacerbated by the high risk of pancreatic anastomosis complications, including pancreatic leaks of amylase-rich fluid, is further amplified by the pancreas’s retroperitoneal location near vital anatomical structures. This underscores the imperative need for a thorough assessment of emerging surgical approaches, with particular attention to the application of robotic technology. This review appraises the impact of robotic-assisted surgery on the operative and oncological outcomes of patients afflicted with benign and malignant, pancreatic and peri-pancreatic, diseases.

Recent findings

Robotic surgery has exhibited a correlation with enhanced post-operative outcomes such as reduced morbidity and mortality following pancreatic resections. Furthermore, it has demonstrated a positive association with improved oncological resection and outcomes in patients diagnosed with pancreatic and peri-pancreatic cancer.

Summary

Minimally invasive surgery has substantially refined the landscape of pancreatic resections, offering diminished post-operative pain and reduced hospital stay. Robotic surgery, distinguished by its superior visualization and meticulous tissue handling capabilities, enables precise dissection and seamless anastomosis in the complex realm of pancreatic surgery. Consequently, this has translated into ameliorated morbidity and mortality in this patient cohort, emphasizing the critical role of surgeon proficiency and case volume.

Minimally invasive resection in the context of malignancy has demonstrated favorable oncological outcomes. This is potentially attributed to improved oncological resection (increased negative margins and lymph node yield) expedited post-operative recovery, facilitating prompt initiation of adjuvant therapy and attenuating surgical stress-induced tumorigenesis.

Nonetheless, future randomized controlled trials are indispensable to comprehensively elucidate the impact of robotic resection on the host immune response and long-term outcomes following pancreatic resections, encompassing both benign and malignant etiologies. Such investigations hold the promise of advancing our understanding and optimizing the role of robotic surgery in the context of pancreatic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lefor AK. Robotic and laparoscopic surgery of the pancreas: an historical review. BMC Biomed Eng. 2019;1:2. https://doi.org/10.1186/s42490-019-0001-4. Published 2019 Jan 30.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Giulianotti PC, Mangano A, Bustos RE, et al. Operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique : lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc. 2018;32(10):4329–36. https://doi.org/10.1007/s00464-018-6228-7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chan KS, Wang ZK, Syn N, Goh BKP. Learning curve of laparoscopic and robotic pancreas resections: a systematic review. Surgery. 2021;170(1):194–206. https://doi.org/10.1016/j.surg.2020.11.046.

    Article  PubMed  Google Scholar 

  4. • Müller PC, Kuemmerli C, Cizmic A, et al. Learning curves in open, laparoscopic, and robotic pancreatic surgery: a systematic review and proposal of a standardization. Ann Surg Open. 2022;3(1):e111 Published 2022 Jan 27. https://doi.org/10.1097/AS9.0000000000000111. This systemic analysis describes the learning curves and phases associated with open, laparoscopic and robotic pancreatoduodenectomy and distal pancreatectomy.

    Article  Google Scholar 

  5. Al Abbas AI, Wang C, Hamad AB, et al. Mentorship and formal robotic proficiency skills curriculum improve subsequent generations’ learning curve for the robotic distal pancreatectomy. HPB (Oxford). 2021;23(12):1849–55. https://doi.org/10.1016/j.hpb.2021.04.022.

    Article  PubMed  Google Scholar 

  6. Napoli N, Cacace C, Kauffmann EF, et al. The PD-ROBOSCORE: a difficulty score for robotic pancreatoduodenectomy. Surgery. 2023;173(6):1438–46. https://doi.org/10.1016/j.surg.2023.02.020.

    Article  PubMed  Google Scholar 

  7. Xu Q, Li P, Zhang H, et al. Identifying the preoperative factors predicting the surgical difficulty of robotic distal pancreatectomy. Surg Endosc. 2023;37(5):3823–31. https://doi.org/10.1007/s00464-023-09865-3.

    Article  PubMed  Google Scholar 

  8. • AlMasri S, Kraftician J, Zureikat A, Paniccia A. Management of intra-operative hemorrhage and safe venous resection in robotic-assisted pancreaticoduodenectomy: techniques to avoid open conversion. J Gastrointest Surg. 2023;27(8):1753–6. https://doi.org/10.1007/s11605-023-05684-y. This paper presents methods for safe vascular resection and reconstruction in robotic pancreatic surgery and highlights the feasibility of this procedure.

    Article  PubMed  Google Scholar 

  9. Kauffmann EF, Napoli N, Cacace C, et al. Resection or repair of large peripancreatic arteries during robotic pancreatectomy. Updates Surg. 2020;72(1):145–53. https://doi.org/10.1007/s13304-020-00715-8.

    Article  PubMed  Google Scholar 

  10. •• Asbun HJ, Moekotte AL, Vissers FL, et al. The Miami International Evidence-based Guidelines on minimally invasive pancreas resection. Ann Surg. 2020;271(1):1–14. https://doi.org/10.1097/SLA.0000000000003590. These guidelines represent an international consensus on the use and outcomes of minimally invasive pancreatic resections, including robotic techniques.

    Article  PubMed  Google Scholar 

  11. Hoehn RS, Nassour I, Adam MA, Winters S, Paniccia A, Zureikat AH. National trends in robotic pancreas surgery. J Gastrointest Surg. 2021;25(4):983–90. https://doi.org/10.1007/s11605-020-04591-w.

    Article  PubMed  Google Scholar 

  12. Weng Y, Jin J, Huo Z, et al. Robotic-assisted versus open distal pancreatectomy for benign and low-grade malignant pancreatic tumors: a propensity score-matched study. Surg Endosc. 2021;35(5):2255–64. https://doi.org/10.1007/s00464-020-07639-9.

    Article  PubMed  Google Scholar 

  13. Song Y, Zou W, Gao Y, et al. Short- and long-term outcomes of robotic versus open radical antegrade modular pancreatosplenectomy: a retrospective propensity score-matched cohort study. Surg Endosc. Published online December 18, 2023. https://doi.org/10.1007/s00464-023-10635-4.

  14. Zhou J, Lv Z, Zou H, et al. Up-to-date comparison of robotic-assisted versus open distal pancreatectomy: a PRISMA-compliant meta-analysis. Medicine (Baltimore). 2020;99(23):e20435. https://doi.org/10.1097/MD.0000000000020435.

    Article  PubMed  Google Scholar 

  15. Chen H, Shen Z, Ying X, et al. Robotic distal pancreatectomy reduces pancreatic fistula in patients without visceral obesity as compared to open distal pancreatectomy: a propensity score matching retrospective cohort study. Int J Surg. 2021;90:105960. https://doi.org/10.1016/j.ijsu.2021.105960.

    Article  PubMed  Google Scholar 

  16. Lof S, van der Heijde N, Abuawwad M, et al. Robotic versus laparoscopic distal pancreatectomy: multicentre analysis. Br J Surg. 2021;108(2):188–95. https://doi.org/10.1093/bjs/znaa039.

    Article  CAS  PubMed  Google Scholar 

  17. Li P, Zhang H, Chen L, Liu T, Dai M. Robotic versus laparoscopic distal pancreatectomy on perioperative outcomes: a systematic review and meta-analysis. Updates Surg. 2023;75(1):7–21. https://doi.org/10.1007/s13304-022-01413-3.

    Article  PubMed  Google Scholar 

  18. van Ramshorst TME, van Bodegraven EA, Zampedri P, Kasai M, Besselink MG, Abu HM. Robot-assisted versus laparoscopic distal pancreatectomy: a systematic review and meta-analysis including patient subgroups. Surg Endosc. 2023;37(6):4131–43. https://doi.org/10.1007/s00464-023-09894-y.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Partelli S, Ricci C, Cinelli L, et al. Evaluation of cost-effectiveness among open, laparoscopic and robotic distal pancreatectomy: a systematic review and meta-analysis. Am J Surg. 2021;222(3):513–20. https://doi.org/10.1016/j.amjsurg.2021.03.066.

    Article  PubMed  Google Scholar 

  20. Shin D, Kwon J, Lee JH, et al. Robotic versus laparoscopic distal pancreatectomy for pancreatic ductal adenocarcinoma: a propensity score-matched analysis. Hepatobiliary Pancreat Dis Int. 2023;22(2):154–9. https://doi.org/10.1016/j.hbpd.2022.06.001.

    Article  PubMed  Google Scholar 

  21. Raoof M, Nota CLMA, Melstrom LG, et al. Oncologic outcomes after robot-assisted versus laparoscopic distal pancreatectomy: analysis of the National Cancer Database. J Surg Oncol. 2018;118(4):651–6. https://doi.org/10.1002/jso.25170.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ocuin LM, Miller-Ocuin JL, Novak SM, et al. Robotic and open distal pancreatectomy with celiac axis resection for locally advanced pancreatic body tumors: a single institutional assessment of perioperative outcomes and survival. HPB (Oxford). 2016;18(10):835–42. https://doi.org/10.1016/j.hpb.2016.05.003.

    Article  PubMed  Google Scholar 

  23. Chopra A, Nassour I, Zureikat A, Paniccia A. Perioperative and oncologic outcomes of open, laparoscopic, and robotic distal pancreatectomy for pancreatic adenocarcinoma. Updates Surg. 2021;73(3):947–53. https://doi.org/10.1007/s13304-020-00927-y.

    Article  PubMed  Google Scholar 

  24. Ausania F, Landi F, González-Abós C, et al. Robotic versus laparoscopic distal pancreatectomy for pancreatic adenocarcinoma in obese patients. Int J Med Robot. Published online November 8, 2023. https://doi.org/10.1002/rcs.2596.

  25. Nassour I, Winters SB, Hoehn R, et al. Long-term oncologic outcomes of robotic and open pancreatectomy in a national cohort of pancreatic adenocarcinoma. J Surg Oncol. 2020;122(2):234–42. https://doi.org/10.1002/jso.25958.

    Article  PubMed  Google Scholar 

  26. Müller PC, Breuer E, Nickel F, et al. Robotic distal pancreatectomy: a novel standard of care? Benchmark values for surgical outcomes from 16 international expert centers. Ann Surg. 2023;278(2):253–9. https://doi.org/10.1097/SLA.0000000000005601.

    Article  PubMed  Google Scholar 

  27. van Ramshorst TME, Giani A, Mazzola M, et al. Benchmarking of robotic and laparoscopic spleen-preserving distal pancreatectomy by using two different methods. Br J Surg. 2022;110(1):76–83. https://doi.org/10.1093/bjs/znac352.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Are C, Dhir M, Ravipati L. History of pancreaticoduodenectomy: early misconceptions, initial milestones and the pioneers. HPB (Oxford). 2011;13(6):377–84. https://doi.org/10.1111/j.1477-2574.2011.00305.x.

    Article  PubMed  Google Scholar 

  29. Aziz H, Khan M, Khan S, Serra GP, Goodman MD, Genyk Y, Sheikh MR. Assessing the perioperative complications and outcomes of robotic pancreaticoduodenectomy using the National Cancer Database: is it ready for prime time? J Robot Surg. 2022;16(3):687–94. https://doi.org/10.1007/s11701-021-01296-3.

    Article  PubMed  Google Scholar 

  30. •• Zureikat AH, Beane JD, Zenati MS, et al. 500 minimally invasive robotic pancreatoduodenectomies: one decade of optimizing performance. Ann Surg. 2021;273(5):966–72. https://doi.org/10.1097/SLA.0000000000003550. This is the first large scale study of its kind to include the highest number of robotic pancreatoduodenectomies at a single institute, which established benchmarks for RPD.

    Article  PubMed  Google Scholar 

  31. Fu Y, Qiu J, Yu Y, Wu D, Zhang T. Meta-analysis of robotic versus open pancreaticoduodenectomy in all patients and pancreatic cancer patients. Front Surg. 2022;9:989065. https://doi.org/10.3389/fsurg.2022.989065. Published 2022 Oct 11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kabir T, Tan HL, Syn NL, Wu EJ, Kam JH, Goh BKP. Outcomes of laparoscopic, robotic, and open pancreatoduodenectomy: a network meta-analysis of randomized controlled trials and propensity-score matched studies. Surgery. 2022;171(2):476–89. https://doi.org/10.1016/j.surg.2021.07.020.

    Article  PubMed  Google Scholar 

  33. • Meyyappan T, Wilson GC, Zeh HJ, et al. Robotic approach mitigates the effect of major complications on survival after pancreaticoduodenectomy for periampullary cancer. Surg Endosc. 2023;37(2):1181–7. https://doi.org/10.1007/s00464-022-09638-4. This study from a high-volume robotic pancreatectomy center reports superior oncological outcomes with robotic surgery when compared to the conventional open approach.

    Article  PubMed  Google Scholar 

  34. Zureikat AH, Postlewait LM, Liu Y, et al. A multi-institutional comparison of perioperative outcomes of robotic and open pancreaticoduodenectomy. Ann Surg. 2016;264(4):640–9. https://doi.org/10.1097/SLA.0000000000001869.

    Article  PubMed  Google Scholar 

  35. Guo W, Ye X, Li J, et al. Comparison of surgical outcomes among open, laparoscopic, and robotic pancreatoduodenectomy: a single-center retrospective study. BMC Surg. 2022;22(1):348. https://doi.org/10.1186/s12893-022-01797-4. Published 2022 Sep 22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kamarajah SK, Bundred J, Marc OS, et al. Robotic versus conventional laparoscopic pancreaticoduodenectomy a systematic review and meta-analysis. Eur J Surg Oncol. 2020;46(1):6–14. https://doi.org/10.1016/j.ejso.2019.08.007.

    Article  PubMed  Google Scholar 

  37. Lof S, Vissers FL, Klompmaker S, et al. Risk of conversion to open surgery during robotic and laparoscopic pancreatoduodenectomy and effect on outcomes: international propensity score-matched comparison study. Br J Surg. 2021;108(1):80–7. https://doi.org/10.1093/bjs/znaa026.

    Article  CAS  PubMed  Google Scholar 

  38. Ouyang L, Zhang J, Feng Q, Zhang Z, Ma H, Zhang G. Robotic versus laparoscopic pancreaticoduodenectomy: an up-to-date system review and meta-analysis. Front Oncol. 2022;12:834382. https://doi.org/10.3389/fonc.2022.834382. Published 2022 Feb 25.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Uijterwijk BA, Lemmers DHL, Bolm L, et al. Long-term outcomes after laparoscopic, robotic, and open pancreatoduodenectomy for distal cholangiocarcinoma: an international propensity score-matched cohort study. Ann Surg. 2023;278(3):e570–9. https://doi.org/10.1097/SLA.0000000000005743.

    Article  PubMed  Google Scholar 

  40. Nassour I, Wang SC, Porembka MR, et al. Robotic versus laparoscopic pancreaticoduodenectomy: a NSQIP analysis. J Gastrointest Surg. 2017;21(11):1784–92. https://doi.org/10.1007/s11605-017-3543-6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shyr BS, Wang SE, Chen SC, Shyr YM, Shyr BU. Surgical and survival outcomes after robotic and open pancreatoduodenectomy for ampullary cancer: a propensity score-matching comparison. Asian J Surg. Published online November 2, 2023. https://doi.org/10.1016/j.asjsur.2023.10.076.

  42. Liu Q, Zhao Z, Zhang X, et al. Perioperative and oncological outcomes of robotic versus open pancreaticoduodenectomy in low-risk surgical candidates: a multicenter propensity score-matched study. Ann Surg. 2023;277(4):e864–71. https://doi.org/10.1097/SLA.0000000000005160.

    Article  PubMed  Google Scholar 

  43. Mejia A, Shah J, Vivian E, Beard R, Acharya P, Gutierrez JCB. Outcomes in patients with pancreatic ductal adenocarcinoma (PDAC) undergoing robotic (RPD) or open pancreaticoduodenectomies (OPD): a propensity score-weighted survival analysis. J Robot Surg. 2023;17(3):1085–96. https://doi.org/10.1007/s11701-022-01510-w.

    Article  PubMed  Google Scholar 

  44. Weng Y, Jiang Y, Fu N, et al. Oncological outcomes of robotic-assisted versus open pancreatoduodenectomy for pancreatic ductal adenocarcinoma: a propensity score-matched analysis. Surg Endosc. 2021;35(7):3437–48. https://doi.org/10.1007/s00464-020-07791-2.

    Article  PubMed  Google Scholar 

  45. Nassour I, Choti MA, Porembka MR, Yopp AC, Wang SC, Polanco PM. Robotic-assisted versus laparoscopic pancreaticoduodenectomy: oncological outcomes. Surg Endosc. 2018;32(6):2907–13. https://doi.org/10.1007/s00464-017-6002-2.

    Article  PubMed  Google Scholar 

  46. Rosemurgy AS, Ross SB, Espeut A, et al. Survival and robotic approach for pancreaticoduodenectomy: a propensity score-match study. J Am Coll Surg. 2022;234(4):677–84. https://doi.org/10.1097/XCS.0000000000000137.

    Article  PubMed  Google Scholar 

  47. Kalabin A, Mani VR, Kruse RL, et al. New perspectives on robotic pancreaticoduodenectomy: an analysis of the National Cancer Database. World J Gastrointest Surg. 2023;15(1):60–71. https://doi.org/10.4240/wjgs.v15.i1.60.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Peng L, Lin S, Li Y, Xiao W. Systematic review and meta-analysis of robotic versus open pancreaticoduodenectomy. Surg Endosc. 2017;31(8):3085–97. https://doi.org/10.1007/s00464-016-5371-2.

    Article  PubMed  Google Scholar 

  49. Da Dong X, Felsenreich DM, Gogna S, et al. Robotic pancreaticoduodenectomy provides better histopathological outcomes as compared to its open counterpart: a meta-analysis. Sci Rep. 2021;11(1):3774. https://doi.org/10.1038/s41598-021-83391-x. Published 2021 Feb 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yan Q, Xu LB, Ren ZF, Liu C. Robotic versus open pancreaticoduodenectomy: a meta-analysis of short-term outcomes. Surg Endosc. 2020;34(2):501–9. https://doi.org/10.1007/s00464-019-07084-3.

    Article  PubMed  Google Scholar 

  51. Chun YS, Pawlik TM, Vauthey JN. 8th Edition of the AJCC cancer staging manual: pancreas and hepatobiliary cancers. Ann Surg Oncol. 2018;25(4):845–7.

    Article  PubMed  Google Scholar 

  52. Nassour I, Tohme S, Hoehn R, Adam MA, Zureikat AH, Alessandro P. Safety and oncologic efficacy of robotic compared to open pancreaticoduodenectomy after neoadjuvant chemotherapy for pancreatic cancer. Surg Endosc. 2021;35(5):2248–54. https://doi.org/10.1007/s00464-020-07638-w.

    Article  PubMed  Google Scholar 

  53. Jin J, Shi Y, Chen M, et al. Robotic versus Open Pancreatoduodenectomy for Pancreatic and Periampullary Tumors (PORTAL): a study protocol for a multicenter phase III non-inferiority randomized controlled trial. Trials. 2021;22(1):954. https://doi.org/10.1186/s13063-021-05939-6. Published 2021 Dec 27.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zwart MJW, Nota CLM, de Rooij T, et al. Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3). Ann Surg. 2022;276(6):e886–95. https://doi.org/10.1097/SLA.0000000000004783.

    Article  PubMed  Google Scholar 

  55. van Roessel S, Mackay TM, van Dieren S, et al. Textbook outcome: nationwide analysis of a novel quality measure in pancreatic surgery. Ann Surg. 2020;271(1):155–62. https://doi.org/10.1097/SLA.0000000000003451.

    Article  PubMed  Google Scholar 

  56. Beane JD, Borrebach JD, Zureikat AH, Kilbane EM, Thompson VM, Pitt HA. Optimal pancreatic surgery: are we making progress in North America? Ann Surg. 2021;274(4):e355–63. https://doi.org/10.1097/SLA.0000000000003628.

    Article  PubMed  Google Scholar 

  57. •• Augustinus S, Mackay TM, Andersson B, et al. Ideal outcome after pancreatoduodenectomy: a transatlantic evaluation of a harmonized composite outcome measure. Ann Surg. 2023;278(5):740–7. https://doi.org/10.1097/SLA.0000000000006037. This international retrospective analysis utilized a large heterogenous population to establish the “ideal outcome” following pancreatoduodenectomy and subsequently developed a tool to assess surgeon and institutional outcomes.

    Article  PubMed  Google Scholar 

  58. Wang W, Liu Q, Zhao Z, Tan X, Zhao G, Liu R. Robotic versus open total pancreatectomy: a retrospective cohort study. Langenbecks Arch Surg. 2021;406(7):2325–32. https://doi.org/10.1007/s00423-021-02202-z.

    Article  PubMed  Google Scholar 

  59. Weng Y, Chen M, Gemenetzis G, et al. Robotic-assisted versus open total pancreatectomy: a propensity score-matched study. Hepatobiliary Surg Nutr. 2020;9(6):759–70. https://doi.org/10.21037/hbsn.2020.03.19.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kauffmann EF, Napoli N, Genovese V, et al. Feasibility and safety of robotic-assisted total pancreatectomy: a pilot western series. Updates Surg. 2021;73(3):955–66. https://doi.org/10.1007/s13304-021-01079-3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Boggi U, Palladino S, Massimetti G, et al. Laparoscopic robot-assisted versus open total pancreatectomy: a case-matched study. Surg Endosc. 2015;29(6):1425–32. https://doi.org/10.1007/s00464-014-3819-9.

    Article  PubMed  Google Scholar 

  62. Chaouch MA, Gouader A, Mazzotta A, et al. Robotic versus open total pancreatectomy: a systematic review and meta-analysis. J Robot Surg. 2023;17(4):1259–70. https://doi.org/10.1007/s11701-023-01569-z.

    Article  PubMed  Google Scholar 

  63. Konstantinidis IT, Jutric Z, Eng OS, et al. Robotic total pancreatectomy with splenectomy: technique and outcomes. Surg Endosc. 2018;32(8):3691–6. https://doi.org/10.1007/s00464-017-6003-1.

    Article  PubMed  Google Scholar 

  64. Chen L, Xia N, Wang Z, Junjie X, Tian B. Minimally invasive versus open total pancreatectomy: a systematic review and meta-analysis. Int J Surg. 2023;109(7):2058–69. https://doi.org/10.1097/JS9.0000000000000392. Published 2023 Jul 1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ei S, Mihaljevic AL, Kulu Y, et al. Enucleation for benign or borderline tumors of the pancreas: comparing open and minimally invasive surgery. HPB (Oxford). 2021;23(6):921–6. https://doi.org/10.1016/j.hpb.2020.10.001.

    Article  PubMed  Google Scholar 

  66. Jin JB, Qin K, Li H, et al. Robotic enucleation for benign or borderline tumours of the pancreas: a retrospective analysis and comparison from a high-volume centre in Asia. World J Surg. 2016;40(12):3009–20. https://doi.org/10.1007/s00268-016-3655-2.

    Article  PubMed  Google Scholar 

  67. Huang Z, He A, Wang J, et al. Minimally invasive enucleation versus open enucleation for benign or low-grade malignant pancreatic neoplasms: effects on clinical outcomes and quality of life. J Minim Access Surg. 2023;19(3):419–26. https://doi.org/10.4103/jmas.jmas_182_21.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Roesel R, Bernardi L, Bonino MA, Popeskou SG, Garofalo F, Cristaudi A. Minimally-invasive versus open pancreatic enucleation: systematic review and metanalysis of short-term outcomes. HPB (Oxford). 2023;25(6):603–13. https://doi.org/10.1016/j.hpb.2023.02.014.

    Article  PubMed  Google Scholar 

  69. Yin ZZ, Gao YX, Zhao ZM, Hu MG, Tang WB, Liu R. Robotic versus laparoscopic surgery for sporadic benign insulinoma: short- and long-term outcomes. Hepatobiliary Pancreat Dis Int. Published online July 3, 2023. https://doi.org/10.1016/j.hbpd.2023.06.012.

  70. Hamad A, Zenati MS, Nguyen TK, Hogg ME, Zeh HJ 3rd, Zureikat AH. Safety and feasibility of the robotic platform in the management of surgical sequelae of chronic pancreatitis. Surg Endosc. 2018;32(2):1056–65. https://doi.org/10.1007/s00464-017-6010-2.

    Article  PubMed  Google Scholar 

  71. Kirks RC, Lorimer PD, Fruscione M, et al. Robotic longitudinal pancreaticojejunostomy for chronic pancreatitis: comparison of clinical outcomes and cost to the open approach. Int J Med Robot. 2017;13(3). https://doi.org/10.1002/rcs.1832

  72. Shukla A, Gnanasekaran S, Kalayarasan R, Pottakkat B. Early experience with robot-assisted Frey’s procedure surgical outcome and technique: Indian perspective [published correction appears in J Minim Invasive Surg. 2023 Mar 15;26(1):46]. J Minim Invasive Surg. 2022;25(4):145–51. https://doi.org/10.7602/jmis.2022.25.4.145.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zureikat AH, Nguyen T, Boone BA, et al. Robotic total pancreatectomy with or without autologous islet cell transplantation: replication of an open technique through a minimal access approach. Surg Endosc. 2015;29(1):176–83. https://doi.org/10.1007/s00464-014-3656-x.

    Article  PubMed  Google Scholar 

  74. Marangoni G, O’Sullivan A, Faraj W, Heaton N, Rela M. Pancreatectomy with synchronous vascular resection–an argument in favour. Surgeon. 2012;10(2):102–6. https://doi.org/10.1016/j.surge.2011.12.001.

    Article  PubMed  Google Scholar 

  75. Beane JD, Zenati M, Hamad A, Hogg ME, Zeh HJ 3rd, Zureikat AH. Robotic pancreatoduodenectomy with vascular resection: outcomes and learning curve. Surgery. 2019;166(1):8–14. https://doi.org/10.1016/j.surg.2019.01.037.

    Article  PubMed  Google Scholar 

  76. Shyr BU, Chen SC, Shyr YM, Wang SE. Surgical, survival, and oncological outcomes after vascular resection in robotic and open pancreaticoduodenectomy. Surg Endosc. 2020;34(1):377–83. https://doi.org/10.1007/s00464-019-06779-x.

    Article  PubMed  Google Scholar 

  77. Jin J, Yin SM, Weng Y, et al. Robotic versus open pancreaticoduodenectomy with vascular resection for pancreatic ductal adenocarcinoma: surgical and oncological outcomes from pilot experience. Langenbecks Arch Surg. 2022;407(4):1489–97. https://doi.org/10.1007/s00423-021-02364-w.

    Article  PubMed  Google Scholar 

  78. Krzystek-Korpacka M, Zawadzki M, Szufnarowski K, et al. The perioperative dynamics of IL-7 following robot-assisted and open colorectal surgery. Sci Rep. 2018;8(1):9126. https://doi.org/10.1038/s41598-018-27245-z. Published 2018 Jun 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shibata J, Ishihara S, Tada N, et al. Surgical stress response after colorectal resection: a comparison of robotic, laparoscopic, and open surgery. Tech Coloproctol. 2015;19(5):275–80. https://doi.org/10.1007/s10151-014-1263-4.

    Article  CAS  PubMed  Google Scholar 

  80. Khachfe HH, Nassour I, Hammad AY, et al. Robotic pancreaticoduodenectomy: increased adoption and improved outcomes: is laparoscopy still justified? Ann Surg. 2023;278(3):e563–9. https://doi.org/10.1097/SLA.0000000000005687.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The manuscript outline was designed by AP and AC. The manuscript draft was written by AC, JQ, and AT. Critical analysis and finalization of manuscript was done by all authors. The project was supervised at each step by AP.

Corresponding author

Correspondence to Alessandro Paniccia MD.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chopra, A., Qian, J., Tcharni, A. et al. Robotic Surgeries in Benign and Malignant Pancreatic Disease. Curr Treat Options Gastro 22, 87–103 (2024). https://doi.org/10.1007/s11938-024-00449-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-024-00449-1

Keywords

Navigation