Skip to main content

Advertisement

Log in

Non-invasive Assessment of Liver Fibrosis

  • Liver (J Bajaj,, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of review

In the USA, there is a growing prevalence of liver disease, particularly from alcohol and fatty liver, as well as improvements in hepatitis C therapy that should be adjusted for level of fibrosis. There is accordingly a great need for rapid non-invasive fibrosis testing (NIT) to determine who should be referred for specialty care, started on specific therapies, screened for varices and malignancy, and selected for clinical trials.

Recent findings

It is not only the accuracy of NIT that matters, but the order in which they are applied and the population selected for screening. All NIT to date have high negative predictive value for ruling out advanced fibrosis, and despite high specificity, have limited positive predictive value due to the relative infrequency of advanced fibrosis in screened populations.

Summary

A testing algorithm based on primary care screening (e.g., with FIB-4) followed by referral for specialty confirmatory testing (e.g., vibration-controlled transient elastography) would best fit most practice models. This focused review will characterize the most validated non-invasive blood tests and imaging and discuss their practical applications for real-world use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

  1. Dulai PS, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: systematic review and meta-analysis. Hepatology. 2017;65:1557–65. https://doi.org/10.1002/hep.29085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Angulo P, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–397.e310. https://doi.org/10.1053/j.gastro.2015.04.043.

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Franchis R. Expanding consensus in portal hypertension: report of the Baveno VI Consensus Workshop: stratifying risk and individualizing care for portal hypertension. J Hepatol. 2015;63:743–52. https://doi.org/10.1016/j.jhep.2015.05.022.

    Article  PubMed  Google Scholar 

  4. Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. https://doi.org/10.1002/hep.28431.

    Article  Google Scholar 

  5. Kabbany MN, Conjeevaram Selvakumar PK, Watt K, Lopez R, Akras Z, Zein N, et al. Prevalence of nonalcoholic steatohepatitis-associated cirrhosis in the United States: an analysis of National Health and Nutrition Examination Survey Data. Am J Gastroenterol. 2017;112:581–7. https://doi.org/10.1038/ajg.2017.5.

    Article  PubMed  Google Scholar 

  6. Dang K, Hirode G, Singal A, Sundaram V, Wong RJ. Alcoholic liver disease epidemiology in the United States: a retrospective analysis of 3 US databases. Am J Gastroenterol. 2019. https://doi.org/10.14309/ajg.0000000000000380.

  7. Xiao G, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology. 2017;66:1486–501. https://doi.org/10.1002/hep.29302.

    Article  CAS  PubMed  Google Scholar 

  8. Armstrong GL, Wasley A, Simard EP, McQuillan G, Kuhnert WL, Alter MJ. The prevalence of hepatitis C virus infection in the United States, 1999 through 2002. Ann Intern Med. 2006;144:705–14. https://doi.org/10.7326/0003-4819-144-10-200605160-00004.

    Article  PubMed  Google Scholar 

  9. Hofmeister MG, et al. Estimating prevalence of hepatitis C virus infection in the United States, 2013–2016. Hepatology. 2019;69:1020–31. https://doi.org/10.1002/hep.30297.

    Article  PubMed  Google Scholar 

  10. Kowdley KV, Wang CC, Welch S, Roberts H, Brosgart CL. Prevalence of chronic hepatitis B among foreign-born persons living in the United States by country of origin. Hepatology. 2012;56:422–33. https://doi.org/10.1002/hep.24804.

    Article  PubMed  Google Scholar 

  11. Kim WR. Epidemiology of hepatitis B in the United States. Hepatology. 2009;49:S28–34. https://doi.org/10.1002/hep.22975.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Patel EU, Thio CL, Boon D, Thomas DL, Tobian AAR. Prevalence of hepatitis B and hepatitis D virus infections in the United States, 2011-2016. Clin Infect Dis. 2019. https://doi.org/10.1093/cid/ciz001.

  13. Tabibian JH, Ali AH, Lindor KD. Primary sclerosing cholangitis, part 1: epidemiology, etiopathogenesis, clinical features, and treatment. Gastroenterol Hepatol. 2018;14:293–304.

    Google Scholar 

  14. Liang H, Manne S, Shick J, Lissoos T, Dolin P. Incidence, prevalence, and natural history of primary sclerosing cholangitis in the United Kingdom. Medicine. 2017;96:e7116. https://doi.org/10.1097/md.0000000000007116.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lu M, et al. Increasing prevalence of primary biliary cholangitis and reduced mortality with treatment. Clin Gastroenterol Hepatol. 2018;16:1342–1350.e1341. https://doi.org/10.1016/j.cgh.2017.12.033.

    Article  PubMed  Google Scholar 

  16. Francque S, Vonghia L, Ramon A, Michielsen P. Epidemiology and treatment of autoimmune hepatitis. Hepat Med. 2012;4:1–10. https://doi.org/10.2147/hmer.s16321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rockey DC, Caldwell SH, Goodman ZD, Nelson RC, Smith AD. Liver biopsy. Hepatology. 2009;49:1017–44. https://doi.org/10.1002/hep.22742.

    Article  PubMed  Google Scholar 

  18. Mehta SH, Lau B, Afdhal NH, Thomas DL. Exceeding the limits of liver histology markers. J Hepatol. 2009;50:36–41. https://doi.org/10.1016/j.jhep.2008.07.039.

    Article  PubMed  Google Scholar 

  19. Anstee QM, et al. Noninvasive tests accurately identify advanced fibrosis due to NASH: baseline data from the STELLAR Trials. Hepatology. 2019;70:1521–30. https://doi.org/10.1002/hep.30842.Large NASH population with both histopathology and NIT testing. Compares the predictive value of different NIT tests used in isolation, with variable cutoffs, combined, and sequentially.

    Article  PubMed  Google Scholar 

  20. Soresi M, Giannitrapani L, Cervello M, Licata A, Montalto G. Non invasive tools for the diagnosis of liver cirrhosis. World J Gastroenterol. 2014;20:18131–50. https://doi.org/10.3748/wjg.v20.i48.18131.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alkhouri N. Putting it all together: noninvasive diagnosis of fibrosis in nonalcoholic fatty liver disease in adults and children. Clin Liver Dis. 2017;9:134–7. https://doi.org/10.1002/cld.636.

    Article  Google Scholar 

  22. Asrani SK. Noninvasive diagnosis of liver fibrosis in adults. Clin Liver Dis. 2017;9:121–4. https://doi.org/10.1002/cld.632.

    Article  Google Scholar 

  23. Loomba R, et al. Validation of serum test for advanced liver fibrosis in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2019;17:1867–1876.e1863. https://doi.org/10.1016/j.cgh.2018.11.004.

    Article  CAS  PubMed  Google Scholar 

  24. Poynard T, Imbert-Bismut F, Munteanu M, Messous D, Myers RP, Thabut D, et al. Overview of the diagnostic value of biochemical markers of liver fibrosis (FibroTest, HCV FibroSure) and necrosis (ActiTest) in patients with chronic hepatitis C. Comp Hepatol. 2004;3:8. https://doi.org/10.1186/1476-5926-3-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sebastiani G, Castera L, Halfon P, Pol S, Mangia A, di Marco V, et al. The impact of liver disease aetiology and the stages of hepatic fibrosis on the performance of non-invasive fibrosis biomarkers: an international study of 2411 cases. Aliment Pharmacol Ther. 2011;34:1202–16. https://doi.org/10.1111/j.1365-2036.2011.04861.x.

  26. Wei R, Wang J, Wang X, Xie G, Wang Y, Zhang H, et al. Clinical prediction of HBV and HCV related hepatic fibrosis using machine learning. EBioMedicine. 2018;35:124–32. https://doi.org/10.1016/j.ebiom.2018.07.041.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zarski JP, Sturm N, Guechot J, Paris A, Zafrani ES, Asselah T, et al. Comparison of nine blood tests and transient elastography for liver fibrosis in chronic hepatitis C: the ANRS HCEP-23 study. J Hepatol. 2012;56:55–62. https://doi.org/10.1016/j.jhep.2011.05.024.

    Article  PubMed  Google Scholar 

  28. Wai CT, et al. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology. 2003;38:518–26. https://doi.org/10.1053/jhep.2003.50346.

    Article  PubMed  Google Scholar 

  29. Vallet-Pichard A, et al. FIB-4: an inexpensive and accurate marker of fibrosis in HCV infection. comparison with liver biopsy and fibrotest. Hepatology. 2007;46:32–6. https://doi.org/10.1002/hep.21669.

    Article  CAS  PubMed  Google Scholar 

  30. Omran D, Yosry A, Darweesh SK, Nabeel MM, el-Beshlawey M, Saif S, et al. Enhanced liver fibrosis test using ELISA assay accurately discriminates advanced stage of liver fibrosis as determined by transient elastography fibroscan in treatment naive chronic HCV patients. Clin Exp Med. 2018;18:45–50. https://doi.org/10.1007/s10238-017-0463-4.

    Article  CAS  PubMed  Google Scholar 

  31. Harrison SA. Utilization of FibroScan testing in hepatitis C virus management. Gastroenterol Hepatol. 2015;11:187–9.

    Google Scholar 

  32. Vuppalanchi R, et al. Performance characteristics of vibration-controlled transient elastography for evaluation of nonalcoholic fatty liver disease. Hepatology. 2018;67:134–44. https://doi.org/10.1002/hep.29489.

    Article  PubMed  Google Scholar 

  33. Bonder A, Afdhal N. Utilization of FibroScan in clinical practice. Curr Gastroenterol Rep. 2014;16:372. https://doi.org/10.1007/s11894-014-0372-6.

    Article  PubMed  Google Scholar 

  34. Park CC, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease. Gastroenterology. 2017;152:598–607.e592. https://doi.org/10.1053/j.gastro.2016.10.026.

    Article  PubMed  Google Scholar 

  35. Imajo K, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology. 2016;150:626–637.e627. https://doi.org/10.1053/j.gastro.2015.11.048.

    Article  PubMed  Google Scholar 

  36. Bohte AE, de Niet A, Jansen L, Bipat S, Nederveen AJ, Verheij J, et al. Non-invasive evaluation of liver fibrosis: a comparison of ultrasound-based transient elastography and MR elastography in patients with viral hepatitis B and C. Eur Radiol. 2014;24:638–48. https://doi.org/10.1007/s00330-013-3046-0.

    Article  PubMed  Google Scholar 

  37. Thiele M, Madsen BS, Hansen JF, Detlefsen S, Antonsen S, Krag A. Accuracy of the enhanced liver fibrosis test vs FibroTest, elastography, and indirect markers in detection of advanced fibrosis in patients with alcoholic liver disease. Gastroenterology. 2018;154:1369–79. https://doi.org/10.1053/j.gastro.2018.01.005.

    Article  PubMed  Google Scholar 

  38. Cui J, Ang B, Haufe W, Hernandez C, Verna EC, Sirlin CB, et al. Comparative diagnostic accuracy of magnetic resonance elastography vs. eight clinical prediction rules for non-invasive diagnosis of advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease: a prospective study. Aliment Pharmacol Ther. 2015;41:1271–80. https://doi.org/10.1111/apt.13196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hagstrom H, Talback M, Andreasson A, Walldius G, Hammar N. Ability of noninvasive scoring systems to identify individuals in the population at risk for severe liver disease. Gastroenterology. 2020;158:200–14. https://doi.org/10.1053/j.gastro.2019.09.008. Large Swedish cohort determination of the predictive value of five noninvasive clinical fibrosis scores. Clinical scores have excellent NPV but poor PPV due to low prevalence of disease in the general population.

    Article  PubMed  Google Scholar 

  40. Afdhal NH, et al. Accuracy of fibroscan, compared with histology, in analysis of liver fibrosis in patients with hepatitis B or C: a United States multicenter study. Clin Gastroenterol Hepatol. 2015;13:772–779.e771–773. https://doi.org/10.1016/j.cgh.2014.12.014.

    Article  PubMed  Google Scholar 

  41. Cardoso AC, Carvalho-Filho RJ, Stern C, Dipumpo A, Giuily N, Ripault MP, et al. Direct comparison of diagnostic performance of transient elastography in patients with chronic hepatitis B and chronic hepatitis C. Liver Int. 2012;32:612–21. https://doi.org/10.1111/j.1478-3231.2011.02660.x.

    Article  CAS  PubMed  Google Scholar 

  42. Hartl J, et al. Transient elastography in autoimmune hepatitis: timing determines the impact of inflammation and fibrosis. J Hepatol. 2016;65:769–75. https://doi.org/10.1016/j.jhep.2016.05.023.

    Article  PubMed  Google Scholar 

  43. Siddiqui MS, et al. Vibration-controlled transient elastography to assess fibrosis and steatosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2019;17:156–163.e152. https://doi.org/10.1016/j.cgh.2018.04.043.

    Article  PubMed  Google Scholar 

  44. Cheung A, et al. Defining improvement in nonalcoholic steatohepatitis for treatment trial endpoints: recommendations from the liver forum. Hepatology. 2019;70:1841–55. https://doi.org/10.1002/hep.30672. Pertinent discussion on the need for NIT testing that can corrrelate with changes in histology and meaningful clinical outcomes.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Sterling MD, MSc.

Ethics declarations

Conflict of Interest

Joseph Redman declares that he has no conflict of interest. Richard K. Sterling declares that he has no conflict of interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Liver

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redman, J., Sterling, R.K. Non-invasive Assessment of Liver Fibrosis. Curr Treat Options Gastro 18, 255–269 (2020). https://doi.org/10.1007/s11938-020-00285-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-020-00285-z

Keywords

Navigation