Skip to main content
Log in

Optical Diagnosis of Colorectal Polyps: Recent Developments

  • Colon (J Anderson, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Abstract

Purpose of review

Optical diagnosis of diminutive colorectal polyps has been recently proposed as an alternative to histopathologic diagnosis. Recent developments in imaging techniques, new classification systems, and the use of artificial intelligence have allowed for increased viability of optical diagnosis. This review provides an up-to-date overview of optical diagnosis recommendations, classifications, outcomes, and recent developments.

Recent findings

There are currently seven major classification systems and three major society recommendations for quality benchmarks for optical diagnosis of diminutive polyps. The NICE classification has been extensively studied and meets quality benchmarks for most imaging techniques but does not allow for the diagnosis of sessile serrated polyps (SSPs). The SIMPLE classification has met quality benchmarks for NBI and i-Scan and allows for the diagnosis of SSPs. Other classification systems need to be further studied to validate effectiveness. Computer-assisted diagnosis of colorectal polyps is a very promising recent development with first studies showing that society-recommended quality benchmarks for real-time colonoscopies on patients are being met. Limitations include a non-negligible percentage of failure to diagnose, low specificity, and low number of real-time diagnostic studies. More research needs to be performed to further understand the value of artificial intelligence for optical polyp diagnosis.

Summary

Optical diagnosis of diminutive colorectal polyps is currently a viable strategy for experienced endoscopists using validated classifications and imaging-enhanced endoscopy. Artificial intelligence–based diagnosis could make optical diagnosis widely applicable but is currently in its early developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ASGE:

American Society for Gastrointestinal Endoscopy

CAD:

Computer-aided diagnostic

BLI:

Blue light imaging

ESGE:

European Society of Gastrointestinal Endoscopy

FICE:

Fujinon intelligent color enhancement

FIT:

Fecal immunochemical test

NBI:

Narrow-band imaging

NIHCE:

National Institute for Health and Care Excellence

NICE classification:

NBI International Colorectal Endoscopic Classification

NPV:

Negative predictive value

OE:

Optivista optical enhancement

SSP:

Sessile serrated polyp

SSA:

Sessile serrated adenoma

WASP:

Workgroup on serrAted polypS and Polyposis

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kessler WR, Imperiale TF, Klein RW, Wielage RC, Rex DK. A quantitative assessment of the risks and cost savings of forgoing histologic examination of diminutive polyps. Endoscopy. 2011;43(8):683–91.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta N, Bansal A, Rao D, Early DS, Jonnalagadda S, Wani SB, et al. Prevalence of advanced histological features in diminutive and small colon polyps. Gastrointest Endosc. 2012;75(5):1022–30.

    Article  PubMed  Google Scholar 

  3. Lieberman D, Moravec M, Holub J, Michaels L, Eisen G. Polyp size and advanced histology in patients undergoing colonoscopy screening: implications for CT colonography. Gastroenterology. 2008;135(4):1100–5.

    Article  PubMed  Google Scholar 

  4. Chandran S, Parker F, Lontos S, Vaughan R, Efthymiou M. Can we ease the financial burden of colonoscopy? Using real-time endoscopic assessment of polyp histology to predict surveillance intervals. Intern Med J. 2015;45(12):1293–9.

    Article  CAS  PubMed  Google Scholar 

  5. •• Rex DK, Kahi C, O'Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73(3):419–22 This is a major recommendation from the ASGE setting quality thresholds for optical diagnosis. These thresholds are the most commonly referred to for optical diagnosis studies.

    Article  PubMed  Google Scholar 

  6. •• Kamiński MF, Hassan C, Bisschops R, Pohl J, Pellisé M, Dekker E, et al. Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy. 2014;46(5):435–49 Major recommendation from the ESGE setting quality thresholds for optical diagnosis.

    Article  PubMed  Google Scholar 

  7. Virtual chromoendoscopy to assess colorectal polyps during colonoscopy. 2017. Available from: https://www.nice.org.uk/guidance/dg28/chapter/1-Recommendation. Major recommendation setting quality thresholds for optical diagnosis in the UK.

  8. • IJspeert JE, Bastiaansen BA, van Leerdam ME, Meijer GA, van Eeden S, Sanduleanu S, et al. Development and validation of the WASP classification system for optical diagnosis of adenomas, hyperplastic polyps and sessile serrated adenomas/polyps. Gut. 2016;65(6):963–70 Recent classification system. First system that sets criteria for the diagnosis of SSPs.

    Article  PubMed  Google Scholar 

  9. •• Hewett DG, Kaltenbach T, Sano Y, Tanaka S, Saunders BP, Ponchon T, et al. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology. 2012;143(3):599–607.e1 The most commonly used major classification system for optical diagnosis validated for multiple imaging technologies and capable of reaching society quality thresholds.

    Article  PubMed  Google Scholar 

  10. • Iacucci M, Trovato C, Daperno M, Akinola O, Greenwald D, Gross SA, et al. Development and validation of the SIMPLE endoscopic classification of diminutive and small colorectal polyps. Endoscopy. 2018;50(8):779–89. Recent classification system. Only of only two that set criteria for the diagnosis of SSPs.

    Article  PubMed  Google Scholar 

  11. Sano Y, Tanaka S, Kudo SE, Saito S, Matsuda T, Wada Y, et al. Narrow-band imaging (NBI) magnifying endoscopic classification of colorectal tumors proposed by the Japan NBI Expert Team. Dig Endosc. 2016;28(5):526–33

    Article  PubMed  Google Scholar 

  12. • McGill SK, Evangelou E, Ioannidis JP, Soetikno RM, Kaltenbach T. Narrow band imaging to differentiate neoplastic and non-neoplastic colorectal polyps in real time: a meta-analysis of diagnostic operating characteristics. Gut. 2013;62(12):1704–13. Recent meta-analysis has shown that in the hands of experienced endoscopists, real-time optical diagnosis can meet quality thresholds for concordance with pathology and NPV.

    Article  PubMed  Google Scholar 

  13. • Abu Dayyeh BK, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS, et al. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015;81(3):502 e1–502 e16. Recent meta-analysis has shown that in the hands of experienced endoscopists, real-time optical diagnosis can meet quality thresholds for concordance with pathology and NPV.

    Article  Google Scholar 

  14. McGill SK, Soetikno R, Rastogi A, Rouse RV, Sato T, Bansal A, et al. Endoscopists can sustain high performance for the optical diagnosis of colorectal polyps following standardized and continued training. Endoscopy. 2015;47(3):200–6.

    PubMed  Google Scholar 

  15. Vleugels JLA, Dijkgraaf MGW, Hazewinkel Y, Wanders LK, Fockens P, Dekker E, et al. Effects of training and feedback on accuracy of predicting rectosigmoid neoplastic lesions and selection of surveillance intervals by endoscopists performing optical diagnosis of diminutive polyps. Gastroenterology. 2018;154(6):1682–1693 e1.

    Article  PubMed  Google Scholar 

  16. Patel SG, Schoenfeld P, Kim HM, Ward EK, Bansal A, Kim Y, et al. Real-time characterization of diminutive colorectal polyp histology using narrow-band imaging: implications for the resect and discard strategy. Gastroenterology. 2016;150(2):406–18.

    Article  PubMed  Google Scholar 

  17. Patel SG, Rastogi A, Austin G, Hall M, Siller BA, Berman K, et al. Gastroenterology trainees can easily learn histologic characterization of diminutive colorectal polyps with narrow band imaging. Clin Gastroenterol Hepatol. 2013;11(8):997–1003 e1.

    Article  PubMed  Google Scholar 

  18. Rastogi A, Rao DS, Gupta N, Grisolano SW, Buckles DC, Sidorenko E, et al. Impact of a computer-based teaching module on characterization of diminutive colon polyps by using narrow-band imaging by non-experts in academic and community practice: a video-based study. Gastrointest Endosc. 2014;79(3):390–8.

    Article  PubMed  Google Scholar 

  19. Gellad ZF, Voils CI, Lin L, Provenzale D. Clinical practice variation in the management of diminutive colorectal polyps: results of a national survey of gastroenterologists. Am J Gastroenterol. 2013;108(6):873–8.

    Article  PubMed  Google Scholar 

  20. Huang CS, O’Brien MJ, Yang S, Farraye FA. Hyperplastic polyps, serrated adenomas, and the serrated polyp neoplasia pathway. Am J Gastroenterol. 2004;99(11):2242–55.

    Article  CAS  PubMed  Google Scholar 

  21. Repici A, Ciscato C, Correale L, Bisschops R, Bhandari P, Dekker E, et al. Narrow-band Imaging International Colorectal Endoscopic Classification to predict polyp histology: REDEFINE study (with videos). Gastrointest Endosc. 2016;84(3):479–486.e3.

    Article  PubMed  Google Scholar 

  22. Kanao H, Tanaka S, Oka S, Hirata M, Yoshida S, Chayama K. Narrow-band imaging magnification predicts the histology and invasion depth of colorectal tumors. Gastrointest Endosc. 2009;69(3 Pt 2):631–6.

    Article  PubMed  Google Scholar 

  23. Oba S, Tanaka S, Oka S, Kanao H, Yoshida S, Shimamoto F, et al. Characterization of colorectal tumors using narrow-band imaging magnification: combined diagnosis with both pit pattern and microvessel features. Scand J Gastroenterol. 2010;45(9):1084–92.

    Article  PubMed  Google Scholar 

  24. Oka S, Tanaka S, Takata S, Kanao H, Chayama K. Clinical usefulness of narrow band imaging magnifying classification for colorectal tumors based on both surface pattern and microvessel features. Dig Endosc. 2011;23(Suppl 1):101–5.

    Article  PubMed  Google Scholar 

  25. Sumimoto K, Tanaka S, Shigita K, Hayashi N, Hirano D, Tamaru Y, et al. Diagnostic performance of Japan NBI Expert Team classification for differentiation among noninvasive, superficially invasive, and deeply invasive colorectal neoplasia. Gastrointest Endosc. 2017;86(4):700–9.

    Article  PubMed  Google Scholar 

  26. Komeda Y, Kashida H, Sakurai T, Asakuma Y, Tribonias G, Nagai T, et al. Magnifying narrow band imaging (NBI) for the diagnosis of localized colorectal lesions using the Japan NBI Expert Team (JNET) classification. Oncology. 2017;93(Suppl 1):49–54.

    Article  PubMed  Google Scholar 

  27. Bisschops R, Hassan C, Bhandari P, Coron E, Neumann H, Pech O, et al. BASIC (BLI Adenoma Serrated International Classification) classification for colorectal polyp characterization with blue light imaging. Endoscopy. 2018;50(3):211–20.

    Article  PubMed  Google Scholar 

  28. Uraoka T, Saito Y, Ikematsu H, Yamamoto K, Sano Y. Sano’s capillary pattern classification for narrow-band imaging of early colorectal lesions. Dig Endosc. 2011;23(Suppl 1):112–5.

    Article  PubMed  Google Scholar 

  29. Sano Y, Ikematsu H, Fu KI, Emura F, Katagiri A, Horimatsu T, et al. Meshed capillary vessels by use of narrow-band imaging for differential diagnosis of small colorectal polyps. Gastrointest Endosc. 2009;69(2):278–83.

    Article  PubMed  Google Scholar 

  30. Katagiri A, Fu KI, Sano Y, Ikematsu H, Horimatsu T, Kaneko K, et al. Narrow band imaging with magnifying colonoscopy as diagnostic tool for predicting histology of early colorectal neoplasia. Aliment Pharmacol Ther. 2008;27(12):1269–74.

    Article  CAS  PubMed  Google Scholar 

  31. Ikematsu H, Matsuda T, Emura F, Saito Y, Uraoka T, Fu KI, et al. Efficacy of capillary pattern type IIIA/IIIB by magnifying narrow band imaging for estimating depth of invasion of early colorectal neoplasms. BMC Gastroenterol. 2010;10:33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Higashi R, Uraoka T, Kato J, Kuwaki K, Ishikawa S, Saito Y, et al. Diagnostic accuracy of narrow-band imaging and pit pattern analysis significantly improved for less-experienced endoscopists after an expanded training program. Gastrointest Endosc. 2010;72(1):127–35.

    Article  PubMed  Google Scholar 

  33. Henry ZH, Yeaton P, Shami VM, Kahaleh M, Patrie JT, Cox DG, et al. Meshed capillary vessels found on narrow-band imaging without optical magnification effectively identifies colorectal neoplasia: a North American validation of the Japanese experience. Gastrointest Endosc. 2010;72(1):118–26.

    Article  PubMed  Google Scholar 

  34. Robles-Medranda C, Del Valle RS, Lukashok HP, Abarca F, Robles-Jara C. Mo1662 Pentax I-SCAN™ with electronic magnification for the real-time histological prediction of colonic polyps: a prospective study using a new digital chromoendoscopy setting. Gastrointest Endosc. 2013;77(5):AB463.

  35. Pigò F, Bertani H, Manno M, Mirante V, Caruso A, Barbera C, et al. i-Scan high-definition white light endoscopy and colorectal polyps: prediction of histology, interobserver and intraobserver agreement. Int J Color Dis. 2013;28(3):399–406.

    Article  Google Scholar 

  36. Neumann H, Neumann sen H, Vieth M, Bisschops R, Thieringer F, Rahman KF, et al. Leaving colorectal polyps in place can be achieved with high accuracy using blue light imaging (BLI). United European Gastroenterol J. 2018;6(7):1099–105.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nakano A, Hirooka Y, Yamamura T, Watanabe O, Nakamura M, Funasaka K, et al. Comparison of the diagnostic ability of blue laser imaging magnification versus pit pattern analysis for colorectal polyps. Endosc Int Open. 2017;5(4):E224–31.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yamamura T, Watanabe O, Nakamura M, Matsushita M, Oshima H, Sato J, et al. Su1703 The study of diagnostic ability for the colorectal neoplasms by imaged enhanced endoscopy using by JNET (Japan NBI Expert Team) classification. Gastrointest Endosc. 2017;85(5, Supplement):AB402.

    Article  Google Scholar 

  39. Klenske E, Zopf S, Neufert C, Nägel A, Siebler J, Gschossmann J, et al. I-scan optical enhancement for the in vivo prediction of diminutive colorectal polyp histology: results from a prospective three-phased multicentre trial. PLoS One. 2018;13(5):e0197520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kaltenbach T, Rastogi A, Rouse RV, McQuaid KR, Sato T, Bansal A, et al. Real-time optical diagnosis for diminutive colorectal polyps using narrow-band imaging: the VALID randomised clinical trial. Gut. 2015;64(10):1569–77.

    Article  PubMed  Google Scholar 

  41. ASGE TECHNOLOGY COMMITTEE, Song LM, Adler DG, Conway JD, Diehl DL, Farraye FA, et al. Narrow band imaging and multiband imaging. Gastrointestinal Endoscopy. 2008;67(4):581–9.

    Article  Google Scholar 

  42. Ashktorab H, Etaati F, Rezaeean F, Nouraie M, Paydar M, Namin HH, et al. Can optical diagnosis of small colon polyps be accurate? Comparing standard scope without narrow banding to high definition scope with narrow banding. World J Gastroenterol. 2016;22(28):6539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klare P, Haller B, Wormbt S, Nötzel E, Hartmann D, Albert J, et al. Narrow-band imaging vs. high definition white light for optical diagnosis of small colorectal polyps: a randomized multicenter trial. Endoscopy. 2016;48(10):909–15.

    Article  PubMed  Google Scholar 

  44. Basford PJ, Longcroft-Wheaton G, Higgins B, Bhandari P. High-definition endoscopy with i-Scan for evaluation of small colon polyps: the HiSCOPE study. Gastrointest Endosc. 2014;79(1):111–8.

    Article  PubMed  Google Scholar 

  45. Hong SN, Choe WH, Lee JH, Kim SI, Kim JH, Lee TY, et al. Prospective, randomized, back-to-back trial evaluating the usefulness of i-SCAN in screening colonoscopy. Gastrointest Endosc. 2012;75(5):1011–1021.e2.

    Article  PubMed  Google Scholar 

  46. Shan J, Liu L, Sun X, Xi W, Yang M, Tang Y, et al. High-definition i-Scan colonoscopy is superior in the detection of diminutive polyps compared with high-definition white light colonoscopy: a prospective randomized-controlled trial. Eur J Gastroenterol Hepatol. 2017;29(11):1309–13.

    Article  PubMed  Google Scholar 

  47. Subramaniam S, Kandiah K, Aepli P, Bhandari P. PTH-029 Multicentre European evaluation of a novel technology (blue light imaging) in the optical diagnosis of small colorectal polyps. Gut. 2017;66(Suppl 2):A219–20.

    Google Scholar 

  48. Rondonotti E, Paggi S, Amato A, Mogavero G, Andrealli A, Apinzi G, et al. BLI (Blue Light Imaging)™ system for real-time histology prediction of subcentimetric colorectal polyps. Endoscopy. 2018;50(04):OP074.

    Google Scholar 

  49. Burggraaf J, Kamerling IMC, Gordon PB, Schrier L, de Kam ML, Kales AJ, et al. Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med. 2015;21(8):955–61.

    Article  CAS  PubMed  Google Scholar 

  50. Joshi BP, Dai Z, Gao Z, Lee JH, Ghimire N, Chen J, et al. Detection of sessile serrated adenomas in the proximal colon using wide-field fluorescence endoscopy. Gastroenterology. 2017;152(5):1002–1013 e9.

    Article  PubMed  Google Scholar 

  51. Kuiper T, Alderlieste YA, Tytgat KM, Vlug MS, Nabuurs JA, Bastiaansen BA, et al. Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy. 2015;47(1):56–62.

    PubMed  Google Scholar 

  52. Rath T, Tontini GE, Vieth M, Nägel A, Neurath MF, Neumann H. In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy. Endoscopy. 2016;48(6):557–62.

    Article  PubMed  Google Scholar 

  53. Mori Y, Kudo SE, Wakamura K, Misawa M, Ogawa Y, Kutsukawa M, et al. Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest Endosc. 2015;81(3):621–9.

    Article  PubMed  Google Scholar 

  54. • Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, Raytchev B, et al. Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc. 2016;83(3):643–9. First AI-assisted diagnosis paper that is capable of real-time diagnosis during colonoscopies. Performance also reaches ASGE thressholds.

    Article  PubMed  Google Scholar 

  55. Misawa M, Kudo SE, Mori Y, Nakamura H, Kataoka S, Maeda Y, et al. Characterization of colorectal lesions using a computer-aided diagnostic system for narrow-band imaging endocytoscopy. Gastroenterology. 2016;150(7):1531–1532 e3.

    Article  PubMed  Google Scholar 

  56. Mori Y, Kudo SE, Chiu PW, Singh R, Misawa M, Wakamura K. Impact of an automated system for endocytoscopic diagnosis of small colorectal lesions: an international web-based study. Endoscopy. 2016;48(12):1110–8.

    Article  PubMed  Google Scholar 

  57. Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, Kelly R, et al. Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut. 2019;68:94–100.

  58. Komeda Y, Handa H, Watanabe T, Nomura T, Kitahashi M, Sakurai T, et al. Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: preliminary experience. Oncology. 2017;93(Suppl 1):30–4.

    Article  PubMed  Google Scholar 

  59. Zhang R, Zheng Y, Mak TWC, Yu R, Wong SH, Lau JYW, et al. Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J Biomed Health Inform. 2017;21(1):41–7.

    Article  PubMed  Google Scholar 

  60. Chen PJ, Lin MC, Lai MJ, Lin JC, Lu HHS, Tseng VS. Accurate classification of diminutive colorectal polyps using computer-aided analysis. Gastroenterology. 2018;154(3):568–75.

    Article  PubMed  Google Scholar 

  61. Mori Y, Kudo S, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018. AI-assisted diagnosis paper that is capable of real-time diagnosis during colonoscopies.

  62. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, Karnes W, et al. Deep learning localizes and identifies polyps in real time with 96% accuracy in screening colonoscopy. Gastroenterology. 2018;155:1069–1078.e8.

    Article  PubMed  Google Scholar 

  63. Lieberman DA, Rex DK, Winawer SJ, Giardiello FM, Johnson DA, Levin TR. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology. 2012;143(3):844–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Roupen Djinbachian: literature review, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content.Anne-Julie Dubé: analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content.Daniel von Renteln: study concept and design, analysis and interpretation of data, drafting of the manuscript, critical revision of the manuscript for important intellectual content.

Corresponding author

Correspondence to Daniel von Renteln MD.

Ethics declarations

Conflict of Interest

Roupen Djinbachian declares that he has no conflict of interest. Anne-Julie Dubé declares that she has no conflict of interest. Daniel von Renteln is supported by a “Fonds de Recherche du Québec Santé” career development award and has received consultation fees from Boston Scientific and research funding from ERBE, Ventage and Pentax.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Colon

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djinbachian, R., Dubé, AJ. & von Renteln, D. Optical Diagnosis of Colorectal Polyps: Recent Developments. Curr Treat Options Gastro 17, 99–114 (2019). https://doi.org/10.1007/s11938-019-00220-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-019-00220-x

Keywords

Navigation