Skip to main content

Advertisement

Log in

Endoscopic Imaging

  • Endoscopy (I Waxman, Section Editor)
  • Published:
Current Treatment Options in Gastroenterology Aims and scope Submit manuscript

Opinion statement

The most important tools are the eye and the brain. A detailed white-light high-resolution examination and ability to recognize subtle lesions provide the foundation of the ability to detect lesions in the gastrointestinal tract. Novel technologies are now available to provide additional information with the goals of detection, delineation, or classification often with a focus on neoplasia in the gastrointestinal tract. The observer using these new tools must still recognize, interpret, and then make a clinically relevant conclusion. Therefore, the assessment of these tools may focus on both the technical feasibility to use the respective equipment to obtain an image and then also the associated cognitive-based criteria for image interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. ASGE Technology Committee. High-definition and high-magnification endoscopes. Gastrointest Endosc. 2014;80(6):919–27.

    Article  Google Scholar 

  2. Kudo S, Tamura S, Nakajima T, Yamano H, Kusaka H, Watanabe H. Diagnosis of colorectal tumorous lesions by magnifying endoscopy. Gastrointest Endosc. 1996;44(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  3. Subramanian V, Mannath J, Hawkey CJ, Ragunath K. High definition colonoscopy vs. standard video endoscopy for the detection of colonic polyps: a meta-analysis. Endoscopy. 2011;43(6):499–505.

    Article  CAS  PubMed  Google Scholar 

  4. Ngamruengphong S, Sharma V, Das A. Diagnostic yield of methylene blue chromoendoscopy for detecting specialized intestinal metaplasia and dysplasia in Barrett’s esophagus: a meta-analysis. Gastrointest Endosc. 2009;69(6):1021–8.

    Article  PubMed  Google Scholar 

  5. Soetikno R, Subramanian V, Kaltenbach T, Rouse RV, Sanduleanu S, Suzuki N, et al. The detection of nonpolypoid (flat and depressed) colorectal neoplasms in patients with inflammatory bowel disease. Gastroenterology. 2013;144(7):1349-52–1352.e1-6.

    Article  Google Scholar 

  6. Subramanian V, Mannath J, Ragunath K, Hawkey CJ. Meta-analysis: the diagnostic yield of chromoendoscopy for detecting dysplasia in patients with colonic inflammatory bowel disease. Aliment Pharmacol Ther. 2011;33(3):304–12.

    Article  CAS  PubMed  Google Scholar 

  7. Wu L, Li P, Wu J, Cao Y, Gao F. The diagnostic accuracy of chromoendoscopy for dysplasia in ulcerative colitis: meta-analysis of six randomized controlled trials. Colorectal Dis. 2012;14(4):416–20.

    Article  CAS  PubMed  Google Scholar 

  8. Kono Y, Takenaka R, Kawahara Y, Okada H, Hori K, Kawano S, et al. Chromoendoscopy of gastric adenoma using an acetic acid indigocarmine mixture. World J Gastroenterol. 2014;20(17):5092–7.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Lee BE, Kim GH, do Park Y, Kim DH, Jeon TY, Park SB, et al. Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: its usefulness according to histological type. BMC Gastroenterol. 2010;10:97.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Mönkemüller K, Wilcox CM. Interventional chromoendoscopy. Gastrointest Endosc. 2013;78(2):346–50. This article introduces the reader how chromoendoscopy specifically can be used to define lesions targeted for resection.

    Article  PubMed  Google Scholar 

  11. Tutticci N, Bourke MJ. Interventional chromoendoscopy: specific aspects for the colon. Gastrointest Endosc. 2014;79(3):536–8. This letter introduces the reader how chromoendoscopy may be used during colonic resection with topical submucosal chromoendoscopy.

    Article  PubMed  Google Scholar 

  12. Mannath J, Subramanian V, Hawkey CJ, Ragunath K. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett’s esophagus: a meta-analysis. Endoscopy. 2010;42(5):351–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma P, Hawes RH, Bansal A, Gupta N, Curvers W, Rastogi A, et al. Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett’s oesophagus: a prospective, international, randomised controlled trial. Gut. 2013;62(1):15–21. This prospective, multicenter study demonstrates the value of NBI in detection of dysplasia and in terms of yield in terms of number of biopsies.

    Article  PubMed  Google Scholar 

  14. Song J, Zhang J, Wang J, Guo X, Yu S, Wang J, Liu Y, Dong W. Meta-analysis of the effects of endoscopy with narrow band imaging in detecting dysplasia in Barrett’s esophagus. Dis Esophagus. 2014 Apr 24.

  15. Nagorni A, Bjelakovic G, Petrovic B. Narrow band imaging versus conventional white light colonoscopy for the detection of colorectal polyps. Cochrane Database Syst Rev. 2012;1:CD008361.

    PubMed  Google Scholar 

  16. Li M, Ali SM, Umm-a-OmarahGilani S, Liu J, Li YQ, Zuo XL. Kudo’s pit pattern classification for colorectal neoplasms: a meta-analysis. World J Gastroenterol. 2014;20(35):12649–56. This meta-analysis demonstrates how Kudo’s pit pattern can accurately differentiate colon lesions.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Hewett DG, Kaltenbach T, Sano Y, Tanaka S, Saunders BP, Ponchon T, et al. Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology. 2012;143(3):599–607.e1. This manuscript develops and validates a simple classification for colon polyps with NBI.

    Article  PubMed  Google Scholar 

  18. Hassan C, Pickhardt PJ, Rex DK. A resect and discard strategy would improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol. 2010;8(10):865-9–869.e1-3.

    Article  Google Scholar 

  19. Rex DK, Kahi C, O’Brien M, Levin TR, Pohl H, Rastogi A, et al. The American Society for Gastrointestinal Endoscopy PIVI (Preservation and Incorporation of Valuable Endoscopic Innovations) on real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2011;73(3):419–22.

    Article  PubMed  Google Scholar 

  20. ASGE Technology Committee, Abu Dayyeh BK, Thosani N, Konda V, Wallace MB, Rex DK, Chauhan SS, Hwang JH, Komanduri S, Manfredi M, Maple JT, Murad FM, Siddiqui UD, Banerjee S. ASGE Technology Committee systematic review and meta-analysis assessing the ASGE PIVI thresholds for adopting real-time endoscopic assessment of the histology of diminutive colorectal polyps. Gastrointest Endosc. 2015 Jan 5. [Epub ahead of print].This manuscript conducts a meta-analysis on imaging tools and the diagnostic parameters with specific thresholds in mind for incorporation of a resect and discard strategy for small diminutive colorectal polyps.

  21. McGill SK, Soetikno R, Rastogi A, Rouse RV, Sato T, Bansal A, McQuaid K, Kaltenbach T. Endoscopists can sustain high performance for the optical diagnosis of colorectal polyps following standardized and continued training. Endoscopy. 2014 Sep 29. [Epub ahead of print] PubMed This article assesses learning curve and sustained performance for the classification of colon polyps using NBI.

  22. Kara MA, Peters FP, Fockens P, ten Kate FJ, Bergman JJ. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett’s esophagus. Gastrointest Endosc. 2006;64(2):176–85.

    Article  PubMed  Google Scholar 

  23. Curvers WL, Singh R, Song LM, Wolfsen HC, Ragunath K, Wang K, et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett’s oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut. 2008;57(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  24. Boerwinkel DF, Holz JA, Kara MA, Meijer SL, Wallace MB, Wong Kee Song LM, et al. Effects of autofluorescence imaging on detection and treatment of early neoplasia in patients with Barrett’s esophagus. Clin Gastroenterol Hepatol. 2014;12(5):774–81.

    Article  PubMed  Google Scholar 

  25. di Pietro M, Boerwinkel DF, Shariff MK, Liu X, Telakis E, Lao-Sirieix P, et al. The combination of autofluorescence endoscopy and molecular biomarkers is a novel diagnostic tool for dysplasia in Barrett’s oesophagus. Gut. 2015;64(1):49–56. This article demonstrates how a biomarker panel tested on tissue detected with AFI can detect dysplasia.

    Article  PubMed Central  PubMed  Google Scholar 

  26. van den Broek FJ, Fockens P, Van Eeden S, Kara MA, Hardwick JC, Reitsma JB, et al. Clinical evaluation of endoscopic trimodal imaging for the detection and differentiation of colonic polyps. Clin Gastroenterol Hepatol. 2009;7(3):288–95.

    Article  PubMed  Google Scholar 

  27. Sato R, Fujiya M, Watari J, Ueno N, Moriichi K, Kashima S, et al. The diagnostic accuracy of high-resolution endoscopy, autofluorescence imaging and narrow-band imaging for differentially diagnosing colon adenoma. Endoscopy. 2011;43(10):862–8.

    Article  CAS  PubMed  Google Scholar 

  28. Wallace MB, Meining A, Canto MI, Fockens P, Miehlke S, Roesch T, et al. The safety of intravenous fluorescein for confocal laser endomicroscopy in the gastrointestinal tract. Aliment Pharmacol Ther. 2010;31(5):548–52.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma P, Meining AR, Coron E, Lightdale CJ, Wolfsen HC, Bansal A, et al. Real-time increased detection of neoplastic tissue in Barrett’s esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74(3):465–72.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Canto MI, Anandasabapathy S, Brugge W, Falk GW, Dunbar KB, Zhang Z, et al. Confocal Endomicroscopy for Barrett’s Esophagus or Confocal Endomicroscopy for Barrett’s Esophagus (CEBE) Trial Group. In vivo endomicroscopy improves detection of Barrett’s esophagus-related neoplasia: a multicenter international randomized controlled trial (with video). Gastrointest Endosc. 2014;79(2):211–21. This prospective, randomized, multicenter trial demonstrates improved yield of neoplasia with targeted biopsies with endoscope based CLE compared to white light examination plus random biopsies.

    Article  PubMed  Google Scholar 

  31. Gupta A, Attar BM, Koduru P, Murali AR, Go BT, Agarwal R. Utility of confocal laser endomicroscopy in identifying high-grade dysplasia and adenocarcinoma in Barrett’s esophagus: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2014;26(4):369–77.

    Article  PubMed  Google Scholar 

  32. Wu J, Pan YM, Wang TT, Hu B. Confocal laser endomicroscopy for detection of neoplasia in Barrett’s esophagus: a meta-analysis. Dis Esophagus. 2014;27(3):248–54. doi:10.1111/dote.12085.

    Article  CAS  PubMed  Google Scholar 

  33. Wanders LK, East JE, Uitentuis SE, Leeflang MM, Dekker E. Diagnostic performance of narrowed spectrum endoscopy, autofluorescence imaging, and confocal laser endomicroscopy for optical diagnosis of colonic polyps: a meta-analysis. Lancet Oncol. 2013;14(13):1337–47. This meta-analysis summarizes the diagnostic parameters for digital chromoendoscopy, AFI, and CLE for the classification of colorectal polyps.

    Article  PubMed  Google Scholar 

  34. Shahid MW, Buchner AM, Coron E, Woodward TA, Raimondo M, Dekker E, et al. Diagnostic accuracy of probe-based confocal laser endomicroscopy in detecting residual colorectal neoplasia after EMR: a prospective study. Gastrointest Endosc. 2012;75(3):525–33.

    Article  PubMed  Google Scholar 

  35. Li Z, Zuo XL, Yu T, Gu XM, Zhou CJ, Li CQ, et al. Confocal laser endomicroscopy for in vivo detection of gastric intestinal metaplasia: a randomized controlled trial. Endoscopy. 2014;46(4):282–90.

    Article  PubMed  Google Scholar 

  36. Neumann H, Vieth M, Atreya R, Grauer M, Siebler J, Bernatik T, et al. Assessment of Crohn’s disease activity by confocal laser endomicroscopy. Inflamm Bowel Dis. 2012;18(12):2261–9.

    Article  PubMed  Google Scholar 

  37. van den Broek FJ, van Es JA, van Eeden S, Stokkers PC, Ponsioen CY, Reitsma JB, et al. Pilot study of probe-based confocal laser endomicroscopy during colonoscopic surveillance of patients with longstanding ulcerative colitis. Endoscopy. 2011;43(2):116–22.

    Article  PubMed  Google Scholar 

  38. Konda VJ, Meining A, Jamil LH, Giovannini M, Hwang JH, Wallace MB, et al. A pilot study of in vivo identification of pancreatic cystic neoplasms with needle-based confocal laser endomicroscopy under endosonographic guidance. Endoscopy. 2013;45(12):1006–13. This pilot study demonstrates in vivo microscopic imaging of the pancreas with CLE through a EUS FNA needle and identifies characteristics for normal pancreas and pancreatic cystic neoplasms.

    Article  PubMed  Google Scholar 

  39. Napoléon B, Lemaistre AI, Pujol B, Caillol F, Lucidarme D, Bourdariat R, et al. A novel approach to the diagnosis of pancreatic serous cystadenoma: needle-based confocal laser endomicroscopy. Endoscopy. 2015;47(1):26–32. This study of the pancreas with CLE through a EUS FNA needle and identifies characteristics for serous cystadenomas.

    PubMed  Google Scholar 

  40. Suter MJ, Vakoc BJ, Yachimski PS, Shishkov M, Lauwers GY, Mino-Kenudson M, et al. Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging. Gastrointest Endosc. 2008;68(4):745–53.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sauk J, Coron E, Kava L, Suter M, Gora M, Gallagher K, et al. Interobserver agreement for the detection of Barrett’s esophagus with optical frequency domain imaging. Dig Dis Sci. 2013;58(8):2261–5. This study validates OFDI in the detection of Barrett’s esophagus.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zhou C, Tsai TH, Lee HC, Kirtane T, Figueiredo M, Tao YK, et al. Characterization of buried glands before and after radiofrequency ablation by using 3-dimensional optical coherence tomography (with videos). Gastrointest Endosc. 2012;76(1):32–40.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Leggett CL, Gorospe E, Owens VL, Anderson M, Lutzke L, Wang KK. Volumetric laser endomicroscopy detects subsquamous Barrett’s adenocarcinoma. Am J Gastroenterol. 2014;109(2):298–9.

    Article  PubMed  Google Scholar 

  44. Konda VJ, Koons A, Siddiqui UD, Xiao SY, Turner JR, Waxman I. Optical biopsy approaches in Barrett’s esophagus with next-generation optical coherence tomography. Gastrointest Endosc. 2014;80(3):516–7.

    Article  PubMed  Google Scholar 

  45. Gora MJ, Sauk JS, Carruth RW, Gallagher KA, Suter MJ, Nishioka NS, et al. Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure. Nat Med. 2013;19(2):238–40. This manuscript introduces a novel tool that is a tethered device that provides OFDI images of the esophagus without the need for endoscopy.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Minami H, Inoue H, Yokoyama A, Ikeda H, Satodate H, Hamatani S, et al. Recent advancement of observing living cells in the esophagus using CM double staining: endocytoscopic atypia classification. Dis Esophagus. 2012;25(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  47. Sato H, Inoue H, Hayee B, Ikeda H, Sato C, Phalanusitthepha C, Santi EG, Kobayashi Y, Kudo SE. In vivo histopathology using endocytoscopy for non-neoplastic changes in the gastric mucosa: a prospective pilot study (with video). Gastrointest Endosc. 2014 Oct 13. [Epub ahead of print]

  48. Kudo SE, Mori Y, Wakamura K, Ikehara N, Ichimasa K, Wada Y, et al. Endocytoscopy can provide additional diagnostic ability to magnifying chromoendoscopy for colorectal neoplasms. J Gastroenterol Hepatol. 2014;29(1):83–90. This study demonstrates how endocytoscopy which provides cellular visualization better characterizes information about invasive colon cancer compared to surface mucosal pit patterns.

    Article  PubMed  Google Scholar 

  49. Ichimasa K, Kudo SE, Mori Y, Wakamura K, Ikehara N, Kutsukawa M, et al. Double staining with crystal violet and methylene blue is appropriate for colonic endocytoscopy: an in vivo prospective pilot study. Dig Endosc. 2014;26(3):403–8.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Karstensen JG, Klausen PH, Saftoiu A, Vilmann P. Molecular confocal laser endomicroscopy: a novel technique for in vivo cellular characterization of gastrointestinal lesions. World J Gastroenterol. 2014;20(24):7794–800.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Boerwinkel DF, Shariff MK, di Pietro M, Holz JA, Aalders MC, Curvers WL, et al. Fluorescence imaging for the detection of early neoplasia in Barrett’s esophagus: old looks or new vision? Eur J Gastroenterol Hepatol. 2014;26(7):691–8.

    Article  CAS  PubMed  Google Scholar 

  52. Liu L, Yin J, Liu C, Guan G, Shi D, Wang X, et al. In vivo molecular imaging of gastric cancer in human-murine xenograft models with confocal laser endomicroscopy using a tumor vascular homing peptide. Cancer Lett. 2015;356(2 Pt B):891–8.

    Article  CAS  PubMed  Google Scholar 

  53. Bird-Lieberman EL, Neves AA, Lao-Sirieix P, O’Donovan M, Novelli M, Lovat LB, et al. Molecular imaging using fluorescent lectins permits rapid endoscopic identification of dysplasia in Barrett’s esophagus. Nat Med. 2012;18((2):315–21. This study examines the potential of wheat germ agglutinin binding to dysplastic tissue in Barrett’s esophagus.

    Article  Google Scholar 

  54. Atreya R, Neumann H, Neufert C, Waldner MJ, Billmeier U, Zopf Y, et al. In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med. 2014;20(3):313–8. This manuscript explores the potential of the fluorescent antibodies to provide predictive information on biological treatment response. This platform demonstrates how imaging can contribute to personalized medicine.

    Article  CAS  PubMed  Google Scholar 

  55. Ma X, Devi G, Qu Q, Toh DF, Chen G, Zhao Y. Intracellular delivery of antisense peptide nucleic acid by fluorescent mesoporous silica nanoparticles. Bioconjug Chem. 2014;25(8):1412–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Vani J.A. Konda has received grant support from Olympus and honoraria from Mauna Kea Technology.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani J. A. Konda M.D., F.A.S.G.E.

Additional information

This article is part of the Topical Collection on Endoscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konda, V.J.A. Endoscopic Imaging. Curr Treat Options Gastro 13, 198–205 (2015). https://doi.org/10.1007/s11938-015-0052-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11938-015-0052-0

Keywords

Navigation