The Role of Cardiac Computed Tomography in Valve Disease and Valve Intervention Planning


Purpose of review

This review aims to provide an overview of cardiac CT role in detection of valvular lesions and in transcatheter valve replacement.

Recent findings

Modern CT scans and protocols allow valve evaluation with high spatial and temporal resolution with reduced radiation dose. Cardiac CT is now mainstay of transcatheter aortic valve replacement (TAVR) planning. It plays a role in sizing of transcatheter aortic valve prosthesis, risk assessment for potential complications, prediction of ideal fluoroscopic angles, and selection of vascular access. Cardiac CT’s role in transcatheter mitral, pulmonic, and tricuspid valve replacements has evolved in conjunction with these new procedures.


We summarize the role of cardiac CT in the context of valvular diseases and transcatheter valve replacement planning.

This is a preview of subscription content, access via your institution.

Fig. 1

References and Recommended Reading

  1. 1.

    Godoy M, Mugharbil A, Anastasius M, Leipsic J. Cardiac computed tomography (CT) evaluation of valvular heart disease in transcatheter interventions. Curr Cardiol Rep. 2019;21(12):1–5.

    Google Scholar 

  2. 2.

    Abbara S, Arbab-Zadeh A, Callister TQ, Desai MY, Mamuya W, Thomson L, et al. SCCT guidelines for performance of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2009;3(3):190–204.

    PubMed  Google Scholar 

  3. 3.

    Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther. 2017;7(5):439–51.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hedgire SS, Baliyan V, Ghoshhajra BB, Kalra MK. Recent advances in cardiac computed tomography dose reduction strategies: a review of scientific evidence and technical developments. J Med Imaging. 2017;4(03):1.

    Google Scholar 

  5. 5.

    Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography. JCMG [Internet]. 2012;5(5):484–93.

    Article  Google Scholar 

  6. 6.

    Menke J, Unterberg-Buchwald C, Staab W, Sohns JM. Seif Amir Hosseini A, Schwarz A. Head-to-head comparison of prospectively triggered vs retrospectively gated coronary computed tomography angiography: meta-analysis of diagnostic accuracy, image quality, and radiation dose. Am Heart J [Internet]. 2013;165(2):154–163.e3.

    Article  Google Scholar 

  7. 7.

    Hedgire S, Ghoshhajra B, Kalra M. Dose optimization in cardiac CT. Phys Medica [Internet]. 2017;41(2017):97–103.

    Article  Google Scholar 

  8. 8.

    Scholtz JE, Baliyan V, Hedgire S, Mercaldo ND, Pierce TT, Missine GZS, et al. Randomized trial comparing transdermal with sublingual nitroglycerin administration for coronary vasodilation in CTA. JACC Cardiovasc Imaging. 2019;12(9):1890–3.

    PubMed  Google Scholar 

  9. 9.

    Harris BS, De Cecco CN, Schoepf UJ, Steinberg DH, Bayer RR, Krazinski AW, et al. Dual-source CT imaging to plan transcatheter aortic valve replacement: accuracy for diagnosis of obstructive coronary artery disease. Radiology. 2015;275(1):80–8.

    PubMed  Google Scholar 

  10. 10.

    Meyersohn NM, Ghemigian K, Shapiro MD, Shah SV, Ghoshhajra BB, Ferencik M. Role of computed tomography in assessment of the thoracic aorta. Curr Treat Options Cardiovasc Med. 2015;17(8):395.

    PubMed  Google Scholar 

  11. 11.

    Meyersohn NM, Szilveszter B, Staziaki PV, Scholtz JE, Takx RAP, Hoffmann U, et al. Coronary CT angiography in the emergency department utilizing second and third generation dual source CT. J Cardiovasc Comput Tomogr [Internet]. 2017;11(4):249–57.

    Article  Google Scholar 

  12. 12.

    Taylor AJ, Cerqueira M, Hodgson JMB, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate use criteria for cardiac computed tomography. J Cardiovasc Comput Tomogr [Internet]. 2010;4(6):407.e1–407.e33.

    Article  Google Scholar 

  13. 13.

    Hillebrand M, Koschyk D, Ter Hark P, Schüler H, Rybczynski M, Berger J, et al. Diagnostic accuracy study of routine echocardiography for bicuspid aortic valve: a retrospective study and meta-analysis. Cardiovasc Diagn Ther. 2017;7(4):367–79.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Alkadhi H, Leschka S, Trindade PT, Feuchtner G, Stolzmann P, Plass A, et al. Cardiac CT for the differentiation of bicuspid and tricuspid aortic valves: comparison with echocardiography and surgery. Am J Roentgenol. 2010;195(4):900–8.

    Google Scholar 

  15. 15.

    Tzemos N, Therrien J, Yip J, Thanassoulis G, Tremblay S, Jamorski MT, et al. Outcomes in adults with bicuspid aortic valves. JAMA - J Am Med Assoc. 2008;300(11):1317–25.

    CAS  Google Scholar 

  16. 16.

    Driscoll DJ, Michels VV, Gersony WM, Hayes CJ, Keane JF, Kidd L, et al. Occurrence risk for congenital heart defects in relatives of patients with aortic stenosis, pulmonary stenosis, or ventricular septal defect. Circ (New York, NY). 1993;87(2 Suppl):I114.

    CAS  Google Scholar 

  17. 17.

    Waller BF, Howard J, Fess S. Clinical pathologic correlations: pathology of pulmonic valve stenosis and pure regurgitation. Clin Cardiol. 1995;18(1):45–50.

    CAS  PubMed  Google Scholar 

  18. 18.

    Fathallah M, Krasuski RA. Pulmonic valve disease: review of pathology and current treatment options. Curr Cardiol Rep. 2017;19(11):108.

    PubMed  Google Scholar 

  19. 19.

    van Praagh R, van Praagh S, Nebesar RA, Muster AJ, Sinha SN, Paul MH. Tetralogy of fallot: underdevelopment of the pulmonary infundibulum and its sequelae. Am J Cardiol. 1970;26(1):25–33.

    PubMed  Google Scholar 

  20. 20.

    Rowe RD. Cardiovascular disease in the rubella syndrome. Cardiovasc Clin. 1973;5(1):61.

    CAS  PubMed  Google Scholar 

  21. 21.

    Cabera A, Martinex P, Rumoroso JR, Alcibar J, Arriola J, Pastor E, et al. Double-chambered right ventricle. Eur Heart J. 1995;16(5):682–6.

    Google Scholar 

  22. 22.

    Jonas SN, Kligerman SJ, Burke AP, Frazier AA, White CS. Pulmonary valve anatomy and abnormalities: a pictorial essay of radiography, computed tomography (CT), and magnetic resonance imaging (MRI). J Thorac Imaging. 2016;31(1):W4–12.

    PubMed  Google Scholar 

  23. 23.

    Siu SC, Silversides CK. Bicuspid aortic valve disease. J Am Coll Cardiol [Internet]. 2010;55(25):2789–800.

    Article  Google Scholar 

  24. 24.

    Hurwitz LE, Roberts WC. Quadricuspid semilunar valve. Am J Cardiol. 1973;31(5):623–6.

    CAS  PubMed  Google Scholar 

  25. 25.

    Tsang MYC, Abudiab MM, Ammash NM, Naqvi TZ, Edwards WD, Nkomo VT, et al. Quadricuspid aortic valve: characteristics, associated structural cardiovascular abnormalities, and clinical outcomes. Circulation. 2016;133(3):312–9.

    PubMed  Google Scholar 

  26. 26.

    Waller BF. Morphological aspects of valvular heart disease: Part II. Curr Probl Cardiol. 1984;9(8):1–74.

    PubMed  Google Scholar 

  27. 27.

    Ascione L, Iengo R, Tuccillo B, D’Andrea A, De Michele M, Porto A, et al. Quadricuspid pulmonary valve diagnosed by cardiac magnetic resonance. J Cardiovasc Med. 2009;10(12):944–5.

    Google Scholar 

  28. 28.

    Ozturk S. Isolated anterior mitral cleft. Echocardiography. 2019;36(9):1769–70.

    PubMed  Google Scholar 

  29. 29.

    Shaw M, Sharma A, Pandey NN, Kumar S. Cleft on the left: imaging appearance on dual-source CT. BMJ Case Rep. 2018;2018:9–10.

    Google Scholar 

  30. 30.

    Jost CHA, Connolly HM, Dearani JA, Edwards WD, Danielson GK. Ebstein’s anomaly. Circulation. 2007;115(2):277–85.

    Google Scholar 

  31. 31.

    Aggarwala G, Thompson B, van Beek E, Jagasia D. Multislice computed tomography angiography of Ebstein anomaly and anomalous coronary artery. J Cardiovasc Comput Tomogr. 2007;1(3):168–9.

    PubMed  Google Scholar 

  32. 32.

    Shone JD, Sellers RD, Anderson RC, Adams P, Lillehei CW, Edwards JE. The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta. Am J Cardiol. 1963;11(6):714–25.

    CAS  PubMed  Google Scholar 

  33. 33.

    Bittencourt MS, Hulten E, Givertz MM, Shah AM, Blankstein R. Multimodality imaging of an adult with Shone complex. J Cardiovasc Comput Tomogr. 2013;7(1):62–5.

    PubMed  Google Scholar 

  34. 34.

    Feuchtner GM, Müller S, Bonatti J, Schachner T, Velik-Salchner C, Pachinger O, et al. Sixty-four slice CT evaluation of aortic stenosis using planimetry of the aortic valve area. Am J Roentgenol. 2007;189(1):197–203.

    Google Scholar 

  35. 35.

    Cowell SJ, Newby DE, Burton J, White A, Northridge DB, Boon NA, et al. Aortic valve calcification on computed tomography predicts the severity of aortic stenosis. Clin Radiol. 2003;58(9):712–6.

    CAS  PubMed  Google Scholar 

  36. 36.

    Pawade T, Clavel MA, Tribouilloy C, Dreyfus J, Mathieu T, Tastet L, et al. Computed tomography aortic valve calcium scoring in patients with aortic stenosis. Circ Cardiovasc Imaging. 2018;11(3):1–11.

    Google Scholar 

  37. 37.

    Feuchtner G. Imaging of cardiac valves by computed tomography. Scientifica (Cairo). 2013;2013:1–13.

    Google Scholar 

  38. 38.

    Messika-Zeitoun D. Research correspondence assessment of the mitral valve area in patients with mitral stenosis by. J Am Coll Cardiol. 2006;48(2):6–8.

    Google Scholar 

  39. 39.

    Brickner ME, Hillis LD, Lange RA. Congenital heart disease in adults. First of two parts. N Engl J Med. 2000;342(4):256.

    CAS  PubMed  Google Scholar 

  40. 40.

    Chen JJS, Jeudy J, Thorn EM, White CS. Computed tomography assessment of valvular morphology, function, and disease. J Cardiovasc Comput Tomogr [Internet]. 2009;3(1 SUPPL):S47–56.

    Article  Google Scholar 

  41. 41.

    Waller BF, Howard J, Fess S, Wuller B. Pathology of tricuspid valve stenosis and pure tricuspid regurgitation-Part I. Clin Cardiol (Mahwah, NJ). 1995;18(2):97–102.

    CAS  Google Scholar 

  42. 42.

    Manghat NE, Rachapalli V, Van Lingen R, Veitch AM, Roobottom CA, Morgan-Hughes GJ. Imaging the heart valves using ECG-gated 64-detector row cardiac CT. Br J Radiol. 2008;81(964):275–90.

    CAS  PubMed  Google Scholar 

  43. 43.

    Feuchtner GM, Dichtl W, Müller S, Jodocy D, Schachner T, Klauser A, et al. 64-MDCT for diagnosis of aortic regurgitation in patients referred to CT coronary angiography. Am J Roentgenol. 2008;191(1):1–7.

    Google Scholar 

  44. 44.

    Feuchtner GM, Alkadhi H, Karlo C, Sarwar A, Meier A, Dichtl W, et al. Cardiac CT angiography for the diagnosis of mitral valve prolapse: comparison with echocardiography. Radiology. 2010;254(2):374–83.

    PubMed  Google Scholar 

  45. 45.

    Morris MF, Maleszewski JJ, Suri RM, Burkhart HM, Foley TA, Bonnichsen CR, et al. CT and MR imaging of the mitral valve: radiologic-pathologic correlation. Radiographics. 2010;30(6):1603–20.

    PubMed  Google Scholar 

  46. 46.

    Dejgaard LA, Skjølsvik ET, Lie ØH, Ribe M, Stokke MK, Hegbom F, et al. The mitral annulus disjunction arrhythmic syndrome. J Am Coll Cardiol. 2018;72(14):1600–9.

    PubMed  Google Scholar 

  47. 47.

    Putnam AJ, Kebed K, Mor-Avi V, Rashedi N, Sun D, Patel B, et al. Prevalence of mitral annular disjunction in patients with mitral valve prolapse and severe regurgitation. Int J Cardiovasc Imaging [Internet]. 2020;36(7):1363–70.

    Article  Google Scholar 

  48. 48.

    Tamin SS, Maleszewski JJ, Scott CG, Khan SK, Edwards WD, Bruce CJ, et al. Prognostic and bioepidemiologic implications of papillary fibroelastomas. J Am Coll Cardiol [Internet]. 2015;65(22):2420–9.

    Article  Google Scholar 

  49. 49.

    Elgendy IY, Conti CR. Caseous calcification of the mitral annulus: a review. Clin Cardiol. 2013;36(10):27–31.

    Google Scholar 

  50. 50.

    Krauser DG, Cham MD, Tortolani AJ, Kim RJ, Yang XJ, Min JK, et al. Clinical utility of delayed-contrast computed tomography for tissue characterization of cardiac thrombus. J Cardiovasc Comput Tomogr. 2007;1(2):114–8.

    PubMed  Google Scholar 

  51. 51.

    Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, et al. ESC Guidelines for the management of infective endocarditis. Vol. 36. Eur Heart J. 2015;2015 3075–3123 p.

  52. 52.

    Kim IC, Chang S, Hong GR, Lee SH, Lee S, Ha JW, et al. Comparison of cardiac computed tomography with transesophageal echocardiography for identifying vegetation and intracardiac complications in patients with infective endocarditis in the era of 3-dimensional images. Circ Cardiovasc Imaging. 2018;11(3):1–9.

    Google Scholar 

  53. 53.

    Salaun E, Sportouch L, Barral PA, Hubert S, Lavoute C, Casalta AC, et al. Diagnosis of infective endocarditis after TAVR: value of a multimodality imaging approach. JACC Cardiovasc Imaging. 2018;11(1):143–6.

    PubMed  Google Scholar 

  54. 54.

    Yan AT, Koh M, Chan KK, Guo H, Alter DA, Austin PC, et al. Association between cardiovascular risk factors and aortic stenosis: the CANHEART Aortic Stenosis Study. J Am Coll Cardiol. 2017;69(12):1523–32.

    PubMed  Google Scholar 

  55. 55.

    Kapadia SR, Leon MB, Makkar RR, Tuzcu EM, Svensson LG, Kodali S, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet [Internet]. 2015;385(9986):2485–91.

    Article  Google Scholar 

  56. 56.

    Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.

    CAS  PubMed  Google Scholar 

  57. 57.

    Reardon MJ, Van Mieghem NM, Popma JJ, Kleiman NS, Sondergaard L, Mumtaz M, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31.

    PubMed  Google Scholar 

  58. 58.

    Popma JJ, Michael Deeb G, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med. 2019;380(18):1706–15.

    PubMed  Google Scholar 

  59. 59.

    Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med. 2019;380(18):1695–705.

    PubMed  Google Scholar 

  60. 60.

    Blanke P, Weir-McCall JR, Achenbach S, Delgado V, Hausleiter J, Jilaihawi H, et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI) / transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr. 2019;13(1):1–20.

    PubMed  Google Scholar 

  61. 61.

    Barbanti M, Yang TH, Rodès Cabau J, Tamburino C, Wood DA, Jilaihawi H, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation. 2013;128(3):244–53.

    PubMed  Google Scholar 

  62. 62.

    Pollari F, Dell’Aquila AM, Söhn C, Marianowicz J, Wiehofsky P, Schwab J, et al. Risk factors for paravalvular leak after transcatheter aortic valve replacement. J Thorac Cardiovasc Surg. 2019;157(4):1406–1415.e3.

    PubMed  Google Scholar 

  63. 63.

    Willson AB, Webb JG, Freeman M, Wood DA, Gurvitch R, Thompson CR, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput Tomogr [Internet]. 2012;6(6):406–14.

    Article  Google Scholar 

  64. 64.

    Blanke P, Russe M, Leipsic J, Reinöhl J, Ebersberger U, Suranyi P, et al. Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement. JACC Cardiovasc Interv [Internet]. 2012;5(9):984–94.

    Article  Google Scholar 

  65. 65.

    Jilaihawi H, Makkar RR, Kashif M, Okuyama K, Chakravarty T, Shiota T, et al. A revised methodology for aortic-valvar complex calcium quantification for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2014;15(12):1324–32.

    PubMed  Google Scholar 

  66. 66.

    Khalique OK, Hahn RT, Gada H, Nazif TM, Vahl TP, George I, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014;7(8):885–94.

    PubMed  Google Scholar 

  67. 67.

    Fujita B, Kütting M, Seiffert M, Scholtz S, Egron S, Prashovikj E, et al. Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging. 2016;17(12):1385–93.

    PubMed  Google Scholar 

  68. 68.

    Hansson NC, Nørgaard BL, Barbanti M, Nielsen NE, Yang TH, Tamburino C, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2015;9(5):382–92.

    PubMed  Google Scholar 

  69. 69.

    Ribeiro HB, Webb JG, Makkar RR, Cohen MG, Kapadia SR, Kodali S, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry. J Am Coll Cardiol [Internet]. 2013;62(17):1552–62.

    Article  Google Scholar 

  70. 70.

    Rodés-Cabau J, Webb JG, Cheung A, Ye J, Dumont E, Feindel CM, et al. Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk. Acute and Late Outcomes of the Multicenter Canadian Experience. J Am Coll Cardiol [Internet]. 2010;55(11):1080–90.

    Article  PubMed  Google Scholar 

  71. 71.

    Dvir D, Webb J, Brecker S, Bleiziffer S, Hildick-Smith D, Colombo A, et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry. Circulation. 2012;126(19):2335–44.

    PubMed  Google Scholar 

  72. 72.

    Blanke P, Soon J, Dvir D, Park JK, Naoum C, Kueh SH, et al. Computed tomography assessment for transcatheter aortic valve in valve implantation: the Vancouver approach to predict anatomical risk for coronary obstruction and other considerations. J Cardiovasc Comput Tomogr [Internet]. 2016;10(6):491–9.

    Article  Google Scholar 

  73. 73.

    Hell MM, Biburger L, Marwan M, Schuhbaeck A, Achenbach S, Lell M, et al. Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters. Eur Heart J Cardiovasc Imaging. 2017;18(8):906–14.

    PubMed  Google Scholar 

  74. 74.

    Van Mieghem NM, Tchetche D, Chieffo A, Dumonteil N, Messika-Zeitoun D, Van Der Boon RMA, et al. Incidence, predictors, and implications of access site complications with transfemoral transcatheter aortic valve implantation. Am J Cardiol [Internet]. 2012;110(9):1361–7.

    Article  Google Scholar 

  75. 75.

    Mack MJ, Brennan JM, Brindis R, Carroll J, Edwards F, Grover F, et al. Outcomes following transcatheter aortic valve replacement in the United States. JAMA - J Am Med Assoc. 2013;310(19):2069–77.

    CAS  Google Scholar 

  76. 76.

    Généreux P, Webb JG, Svensson LG, Kodali SK, Satler LF, Fearon WF, et al. Vascular complications after transcatheter aortic valve replacement: insights from the PARTNER (placement of AoRTic TraNscathetER valve) trial. J Am Coll Cardiol. 2012;60(12):1043–52.

    PubMed  Google Scholar 

  77. 77.

    Yoon SH, Ahn JM, Hayashida K, Watanabe Y, Shirai S, Kao HL, et al. Clinical outcomes following transcatheter aortic valve replacement in Asian population. JACC Cardiovasc Interv. 2016;9(9):926–33.

    PubMed  Google Scholar 

  78. 78.

    Yoon SH, Bleiziffer S, De Backer O, Delgado V, Arai T, Ziegelmueller J, et al. Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol [Internet]. 2017;69(21):2579–89.

    Article  Google Scholar 

  79. 79.

    Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.

    PubMed  Google Scholar 

  80. 80.

    Jilaihawi H, Chen M, Webb J, Himbert D, Ruiz CE, Rodés-Cabau J, et al. A bicuspid aortic valve imaging classification for the TAVR era. JACC Cardiovasc Imaging. 2016;9(10):1145–58.

    PubMed  Google Scholar 

  81. 81.

    Kappetein AP, Head SJ, Généreux P, Piazza N, Van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: the valve academic research consortium-2 consensus document. J Am Coll Cardiol [Internet]. 2012;60(15):1438–54.

    Article  Google Scholar 

  82. 82.

    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Vol. 135. Circulation. 2017;2017:1159–95.

    Google Scholar 

  83. 83.

    Stortecky S, Heg D, Tueller D, Pilgrim T, Muller O, Noble S, et al. Infective endocarditis after transcatheter aortic valve replacement. J Am Coll Cardiol. 2020;75(24):3020–30.

    PubMed  Google Scholar 

  84. 84.

    Kanjanauthai S, Pirelli L, Nalluri N, Kliger CA. Subclinical leaflet thrombosis following transcatheter aortic valve replacement. J Interv Cardiol. 2018;31(5):640–7.

    PubMed  Google Scholar 

  85. 85.

    Makkar RR, Fontana G, Jilaihawi H, Chakravarty T, Kofoed KF, De Backer O, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N Engl J Med. 2015;373(21):2015–24.

    CAS  PubMed  Google Scholar 

  86. 86.

    Yanagisawa R, Hayashida K, Yamada Y, Tanaka M, Yashima F, Inohara T, et al. Incidence, predictors, and mid-term outcomes of possible leaflet thrombosis after TAVR. JACC Cardiovasc Imaging. 2017;10(1):1–11.

    Google Scholar 

  87. 87.

    Jilaihawi H, Asch FM, Manasse E, Ruiz CE, Jelnin V, Kashif M, et al. Systematic CT Methodology for the evaluation of subclinical leaflet thrombosis. JACC Cardiovasc Imaging [Internet]. 2017;10(4):461–70.

    Article  Google Scholar 

  88. 88.

    Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A, Modine T, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interven. Eur J Cardio-thoracic Surg. 2017;52(3):408–17.

    Google Scholar 

  89. 89.

    Dangas GD, Weitz JI, Giustino G, Makkar R, Mehran R. Prosthetic heart valve thrombosis. J Am Coll Cardiol. 2016;68(24):2670–89.

    PubMed  Google Scholar 

  90. 90.

    Webb JG, Mack MJ, White JM, Dvir D, Blanke P, Herrmann HC, et al. Transcatheter aortic valve implantation within degenerated aortic surgical bioprostheses: PARTNER 2 Valve-in-Valve Registry. J Am Coll Cardiol. 2017;69(18):2253–62.

    PubMed  Google Scholar 

  91. 91.

    Ribeiro HB, Rodés-Cabau J, Blanke P, Leipsic J, Kwan Park J, Bapat V, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry. Eur Heart J. 2018;39(8):687–95.

    PubMed  Google Scholar 

  92. 92.

    Blanke P, Dvir D, Cheung A, Ye J, Levine RA, Precious B, et al. A simplified D-shaped model of the mitral annulus to facilitate CT-based sizing before transcatheter mitral valve implantation. J Cardiovasc Comput Tomogr [Internet]. 2014;8(6):459–67.

    Article  Google Scholar 

  93. 93.

    Blanke P, Naoum C, Dvir D, Bapat V, Ong K, Muller D, et al. Predicting LVOT obstruction in transcatheter mitral valve implantation: concept of the Neo-LVOT. JACC Cardiovasc Imaging. 2017;10(4):482–5.

    PubMed  Google Scholar 

  94. 94.

    Guerrero M, Urena M, Himbert D, Wang DD, Eleid M, Kodali S, et al. 1-year outcomes of transcatheter mitral valve replacement in patients with severe mitral annular calcification. J Am Coll Cardiol. 2018;71(17):1841–53.

    PubMed  Google Scholar 

  95. 95.

    Kohli K, Wei ZA, Yoganathan AP, Oshinski JN, Leipsic J, Blanke P. Transcatheter mitral valve planning and the Neo-LVOT: utilization of virtual simulation models and 3D printing. Curr Treat Options Cardiovasc Med. 2018;20(12):99.

    PubMed  Google Scholar 

  96. 96.

    Praz F, Khalique OK, Lee R, Wu IY, Russell H, Guerrero M, et al. Imaging in patients with severe mitral annular calcification: insights from a multicentre experience using transatrial balloon-expandable valve replacement. Eur Heart J Cardiovasc Imaging. 2019;20(12):1395–406.

    PubMed  Google Scholar 

  97. 97.

    Harowicz MR, Shah A, Zimmerman SL. Preoperative planning for structural heart disease. Radiol Clin North Am [Internet]. 2020;58(4):733–51.

    Article  Google Scholar 

  98. 98.

    Murphy DJ, Ge Y, Don CW, Keraliya A, Aghayev A, Morgan R, et al. Use of cardiac computerized tomography to predict neo-left ventricular outflow tract obstruction before transcatheter mitral valve replacement. J Am Heart Assoc. 2017;6(11):1–13.

    Google Scholar 

  99. 99.

    Blanke P, Naoum C, Webb J, Dvir D, Hahn RT, Grayburn P, et al. Multimodality imaging in the context of transcatheter mitral valve replacement establishing consensus among modalities and disciplines. JACC Cardiovasc Imaging [Internet]. 2015;8(10):1191–208.

    Article  Google Scholar 

  100. 100.

    Movahed MR, Saito Y, Ahmadi-Kashani M, Ebrahimi R. Mitral annulus calcification is associated with valvular and cardiac structural abnormalities. Cardiovasc Ultrasound. 2007;5:1–4.

    Google Scholar 

  101. 101.

    Fox CS, Vasan RS, Parise H, Levy D, O’Donnell CJ, D’Agostino RB, et al. Mitral annular calcification predicts cardiovascular morbidity and mortality: the Framingham Heart Study. Circulation. 2003;107(11):1492–6.

    PubMed  Google Scholar 

  102. 102.

    Guerrero M, Wang DD, Pursnani A, Eleid M, Khalique O, Urena M, et al. A cardiac computed tomography–based score to categorize mitral annular calcification severity and predict valve embolization. JACC Cardiovasc Imaging. 2020;7:1–13.

    Google Scholar 

  103. 103.

    Pomerance A. Pathological and clinical study of calcification of the mitral valve ring. J Clin Pathol. 1970;23(4):354–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Cheatham JP, Hellenbrand WE, Zahn EM, Jones TK, Berman DP, Vincent JA, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation. 2015;131(22):1960–70.

    PubMed  Google Scholar 

  105. 105.

    Zahn EM, Hellenbrand WE, Lock JE, McElhinney DB. Implantation of the melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit. Early Results From the U.S. Clinical Trial. J Am Coll Cardiol [Internet]. 2009;54(18):1722–9.

    Article  Google Scholar 

  106. 106.

    Chung R, Taylor AM. Imaging for preintervention planning transcatheter pulmonary valve therapy. Circ Cardiovasc Imaging. 2014;7(1):182–9.

    PubMed  Google Scholar 

  107. 107.

    Alkashkari W, Alsubei A, Hijazi ZM. Transcatheter pulmonary valve replacement: current state of art. Curr Cardiol Rep. 2018;20(4):27.

    PubMed  Google Scholar 

  108. 108.

    Prihadi EA, Delgado V, Hahn RT, Leipsic J, Min JK, Bax JJ. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc Imaging. 2018;11(5):736–54.

    PubMed  Google Scholar 

  109. 109.

    Díez-Villanueva P, Gutiérrez-Ibañes E, Cuerpo-Caballero GP, Sanz-Ruiz R, Abeytua M, Soriano J, et al. Direct injury to right coronary artery in patients undergoing tricuspid annuloplasty. Ann Thorac Surg. 2014;97(4):1300–5.

    PubMed  Google Scholar 

  110. 110.

    Van Rosendael PJ, Kamperidis V, Kong WKF, Van Rosendael AR, Van Der Kley F, Marsan NA, et al. Computed tomography for planning transcatheter tricuspid valve therapy. Eur Heart J. 2017;38(9):665–74.

    PubMed  Google Scholar 

  111. 111.

    Agricola E, Asmarats L, Maisano F, Cavalcante JL, Liu S, Milla F, et al. Imaging for tricuspid valve repair and replacement. JACC Cardiovasc Imaging. 2020:Aug 18;S1936-878X(20)30537-4.

Download references

Author information



Corresponding author

Correspondence to Sandeep Hedgire MD.

Ethics declarations

Conflict of Interest

Brian B. Ghoshhajra (Siemens Healthcare, Inc.) declares unrelated educational consulting for valve replacement imaging. Angelo K Takigami and Sandeep Hedgire declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Valvular Heart Disease

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takigami, A.K., Ghoshhajra, B. & Hedgire, S. The Role of Cardiac Computed Tomography in Valve Disease and Valve Intervention Planning. Curr Treat Options Cardio Med 23, 3 (2021).

Download citation


  • Cardiac computed tomography
  • Valve disease
  • Transcatheter valve replacement
  • TAVR
  • TMVR
  • TPVI
  • TTVI