Skip to main content
Log in

Impact of Technique and Technology on Mitral Isthmus Ablation

  • Arrhythmia (R Kabra, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

Mitral isthmus ablation is an established strategy in the treatment of peri-mitral atrial flutter and as an adjunct to pulmonary vein isolation. The objective of this review is to summarize the techniques and specific strategies that allow for increased success and durability of mitral isthmus ablation.

Recent findings

Achieving bidirectional block across the mitral isthmus remains a challenge due to the increased thickness in this region, convective cooling as a result of coronary sinus blood flow, and the occurrence of epicardial connections. Several strategies to achieve durable mitral isthmus block, such as coronary sinus ablation, coronary sinus balloon occlusion, ethanol ablation via the vein of Marshall, and using alternate mitral lines in select cases, are described in detail in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hocini M, Jais P, Sanders P, Takahashi Y, Rotter M, Rostock T, et al. Techniques, evaluation, and consequences of linear block at the left atrial roof in paroxysmal atrial fibrillation: a prospective randomized study. Circulation. 2005;112(24):3688–96. https://doi.org/10.1161/CIRCULATIONAHA.105.541052.

    Article  PubMed  Google Scholar 

  2. Jais P, Hocini M, Hsu LF, Sanders P, Scavee C, Weerasooriya R, et al. Technique and results of linear ablation at the mitral isthmus. Circulation. 2004;110(19):2996–3002. https://doi.org/10.1161/01.CIR.0000146917.75041.58.

    Article  PubMed  Google Scholar 

  3. Luria DM, Nemec J, Etheridge SP, Compton SJ, Klein RC, Chugh SS, et al. Intra-atrial conduction block along the mitral valve annulus during accessory pathway ablation: evidence for a left atrial “isthmus”. J Cardiovasc Electrophysiol. 2001;12(7):744–9.

    Article  CAS  Google Scholar 

  4. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA. Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec. 1997;247(2):289–98. https://doi.org/10.1002/(SICI)1097-0185(199702)247:2<289::AID-AR15>3.0.CO;2-L.

    Article  CAS  PubMed  Google Scholar 

  5. Becker AE. Left atrial isthmus: anatomic aspects relevant for linear catheter ablation procedures in humans. J Cardiovasc Electrophysiol. 2004;15(7):809–12. https://doi.org/10.1046/j.1540-8167.2004.03651.x.

    Article  PubMed  Google Scholar 

  6. Wittkampf FH, van Oosterhout MF, Loh P, Derksen R, Vonken EJ, Slootweg PJ, et al. Where to draw the mitral isthmus line in catheter ablation of atrial fibrillation: histological analysis. Eur Heart J. 2005;26(7):689–95. https://doi.org/10.1093/eurheartj/ehi095.

    Article  PubMed  Google Scholar 

  7. Hwang C, Fishbein MC, Chen PS. How and when to ablate the ligament of Marshall. Heart Rhythm. 2006;3(12):1505–7. https://doi.org/10.1016/j.hrthm.2006.09.014.

    Article  PubMed  Google Scholar 

  8. Kim DT, Lai AC, Hwang C, Fan LT, Karagueuzian HS, Chen PS, et al. The ligament of Marshall: a structural analysis in human hearts with implications for atrial arrhythmias. J Am Coll Cardiol. 2000;36(4):1324–7.

    Article  CAS  Google Scholar 

  9. Tan AY, Chou CC, Zhou S, Nihei M, Hwang C, Peter CT, et al. Electrical connections between left superior pulmonary vein, left atrium, and ligament of Marshall: implications for mechanisms of atrial fibrillation. Am J Physiol Heart Circ Physiol. 2006;290(1):H312–22. https://doi.org/10.1152/ajpheart.00369.2005.

    Article  CAS  PubMed  Google Scholar 

  10. Fuller IA, Wood MA. Intramural coronary vasculature prevents transmural radiofrequency lesion formation: implications for linear ablation. Circulation. 2003;107(13):1797–803. https://doi.org/10.1161/01.CIR.0000058705.97823.F4.

    Article  PubMed  Google Scholar 

  11. Fassini G, Riva S, Chiodelli R, Trevisi N, Berti M, Carbucicchio C, et al. Left mitral isthmus ablation associated with PV isolation: long-term results of a prospective randomized study. J Cardiovasc Electrophysiol. 2005;16(11):1150–6. https://doi.org/10.1111/j.1540-8167.2005.50192.x.

    Article  PubMed  Google Scholar 

  12. Hocini M, Shah AJ, Nault I, Rivard L, Linton N, Narayan S, et al. Mitral isthmus ablation with and without temporary spot occlusion of the coronary sinus: a randomized clinical comparison of acute outcomes. J Cardiovasc Electrophysiol. 2012;23(5):489–96. https://doi.org/10.1111/j.1540-8167.2011.02248.x.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Knecht S, Hocini M, Wright M, Lellouche N, O'Neill MD, Matsuo S, et al. Left atrial linear lesions are required for successful treatment of persistent atrial fibrillation. Eur Heart J. 2008;29(19):2359–66. https://doi.org/10.1093/eurheartj/ehn302.

    Article  PubMed  Google Scholar 

  14. Willems S, Klemm H, Rostock T, Brandstrup B, Ventura R, Steven D, et al. Substrate modification combined with pulmonary vein isolation improves outcome of catheter ablation in patients with persistent atrial fibrillation: a prospective randomized comparison. Eur Heart J. 2006;27(23):2871–8. https://doi.org/10.1093/eurheartj/ehl093.

    Article  PubMed  Google Scholar 

  15. • Barkagan M, Shapira-Daniels A, Leshem E, Shen C, Anter E. Pseudoblock of the posterior mitral line with epicardial bridging connections is a frequent cause of complex perimitral tachycardias. Circ Arrhythm Electrophysiol. 2019;12(1):e006933. https://doi.org/10.1161/CIRCEP.118.006933. This article describes the limitations of standard criteria to determine bidirectional mitral isthmus block and the importance of high density mapping in identifying and targeting epicardial bridging connections and their insertion sites.

    Article  PubMed  Google Scholar 

  16. Cho Y, Lee W, Park EA, Oh IY, Choi EK, Seo JW, et al. The anatomical characteristics of three different endocardial lines in the left atrium: evaluation by computed tomography prior to mitral isthmus block attempt. Europace. 2012;14(8):1104–11. https://doi.org/10.1093/europace/eus051.

    Article  PubMed  Google Scholar 

  17. Wong KC, Jones M, Sadarmin PP, De Bono J, Qureshi N, Rajappan K, et al. Larger coronary sinus diameter predicts the need for epicardial delivery during mitral isthmus ablation. Europace. 2011;13(4):555–61. https://doi.org/10.1093/europace/eur019.

    Article  PubMed  Google Scholar 

  18. Hasdemir C, Yavuzgil O, Payzin S, Aydin M, Ulucan C, Kayikcioglu M, et al. Angiographic analysis of the anatomic relation of coronary arteries to mitral and tricuspid annulus and implications for radiofrequency ablation. Am J Cardiol. 2007;100(4):666–71. https://doi.org/10.1016/j.amjcard.2007.03.082.

    Article  PubMed  Google Scholar 

  19. Takahashi Y, Jais P, Hocini M, Sanders P, Rotter M, Rostock T, et al. Acute occlusion of the left circumflex coronary artery during mitral isthmus linear ablation. J Cardiovasc Electrophysiol. 2005;16(10):1104–7. https://doi.org/10.1111/j.1540-8167.2005.50124.x.

    Article  PubMed  Google Scholar 

  20. Wong KC, Lim C, Sadarmin PP, Jones M, Qureshi N, De Bono J, et al. High incidence of acute sub-clinical circumflex artery ‘injury’ following mitral isthmus ablation. Eur Heart J. 2011;32(15):1881–90. https://doi.org/10.1093/eurheartj/ehr117.

    Article  PubMed  Google Scholar 

  21. Kurotobi T, Shimada Y, Kino N, Iwakura K, Inoue K, Kimura R, et al. Local coronary flow is associated with an unsuccessful complete block line at the mitral isthmus in patients with atrial fibrillation. Circ Arrhythm Electrophysiol. 2011;4(6):838–43. https://doi.org/10.1161/CIRCEP.111.964478.

    Article  PubMed  Google Scholar 

  22. Chauvin M, Shah DC, Haissaguerre M, Marcellin L, Brechenmacher C. The anatomic basis of connections between the coronary sinus musculature and the left atrium in humans. Circulation. 2000;101(6):647–52.

    Article  CAS  Google Scholar 

  23. Miyazaki S, Shah AJ, Haissaguerre M. Recurrent perimitral tachycardia using epicardial coronary sinus connection to bypass endocardial conduction block at the mitral isthmus. Circ Arrhythm Electrophysiol. 2011;4(4):e39–41. https://doi.org/10.1161/CIRCEP.111.963157.

    Article  PubMed  Google Scholar 

  24. Matsuo S, Wright M, Knecht S, Nault I, Lellouche N, Lim KT, et al. Peri-mitral atrial flutter in patients with atrial fibrillation ablation. Heart Rhythm. 2010;7(1):2–8. https://doi.org/10.1016/j.hrthm.2009.09.067.

    Article  PubMed  Google Scholar 

  25. Weerasooriya R, Jais P, Wright M, Matsuo S, Knecht S, Nault I, et al. Catheter ablation of atrial tachycardia following atrial fibrillation ablation. J Cardiovasc Electrophysiol. 2009;20(7):833–8. https://doi.org/10.1111/j.1540-8167.2009.01454.x.

    Article  PubMed  Google Scholar 

  26. Anousheh R, Sawhney NS, Panutich M, Tate C, Chen WC, Feld GK. Effect of mitral isthmus block on development of atrial tachycardia following ablation for atrial fibrillation. Pacing Clin Electrophysiol. 2010;33(4):460–8. https://doi.org/10.1111/j.1540-8159.2009.02625.x.

    Article  PubMed  Google Scholar 

  27. • Pathik B, Choudry S, Whang W, D'Avila A, Koruth J, Sofi A, et al. Mitral isthmus ablation: a hierarchical approach guided by electroanatomic correlation. Heart Rhythm. 2019;16(4):632–7. https://doi.org/10.1016/j.hrthm.2018.10.005. This article describes a stepwise hierarchical approach at Mount Sinai Medical Center to achieve bidirectional mitral isthmus block with a detailed description of coronary sinus balloon occlusion and Vein of Marshall ablation.

    Article  PubMed  Google Scholar 

  28. Wong KC, Jones M, Qureshi N, Sadarmin PP, De Bono J, Rajappan K, et al. Balloon occlusion of the distal coronary sinus facilitates mitral isthmus ablation. Heart Rhythm. 2011;8(6):833–9. https://doi.org/10.1016/j.hrthm.2011.01.042.

    Article  CAS  PubMed  Google Scholar 

  29. D'Avila A, Thiagalingam A, Foley L, Fox M, Ruskin JN, Reddy VY. Temporary occlusion of the great cardiac vein and coronary sinus to facilitate radiofrequency catheter ablation of the mitral isthmus. J Cardiovasc Electrophysiol. 2008;19(6):645–50. https://doi.org/10.1111/j.1540-8167.2008.01185.x.

    Article  PubMed  Google Scholar 

  30. Jiang CX, Dong JZ, Long DY, Yu RH, Tang RB, Sang CH, et al. Ridge-related reentry despite apparent bidirectional mitral isthmus block. Heart Rhythm. 2016;13(9):1845–51. https://doi.org/10.1016/j.hrthm.2016.06.018.

    Article  PubMed  Google Scholar 

  31. Han S, Joung B, Scanavacca M, Sosa E, Chen PS, Hwang C. Electrophysiological characteristics of the Marshall bundle in humans. Heart Rhythm. 2010;7(6):786–93. https://doi.org/10.1016/j.hrthm.2010.02.028.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baez-Escudero JL, Morales PF, Dave AS, Sasaridis CM, Kim YH, Okishige K, et al. Ethanol infusion in the vein of Marshall facilitates mitral isthmus ablation. Heart Rhythm. 2012;9(8):1207–15. https://doi.org/10.1016/j.hrthm.2012.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Briceno DF, Valderrabano M. Recurrent perimitral flutter due to vein of Marshall epicardial connections bypassing the mitral isthmus: response to ethanol infusion. Circ Arrhythm Electrophysiol. 2014;7(5):988–9. https://doi.org/10.1161/CIRCEP.114.001631.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chiang SJ, Tsao HM, Wu MH, Tai CT, Chang SL, Wongcharoen W, et al. Anatomic characteristics of the left atrial isthmus in patients with atrial fibrillation: lessons from computed tomographic images. J Cardiovasc Electrophysiol. 2006;17(12):1274–8. https://doi.org/10.1111/j.1540-8167.2006.00645.x.

    Article  PubMed  Google Scholar 

  35. Maurer T, Metzner A, Ho SY, Wohlmuth P, Reissmann B, Heeger C, et al. Catheter ablation of the superolateral mitral isthmus line: a novel approach to reduce the need for epicardial ablation. Circ Arrhythm Electrophysiol. 2017;10(10). https://doi.org/10.1161/CIRCEP.117.005191.

  36. Ammar S, Luik A, Hessling G, Bruhm A, Reents T, Semmler V, et al. Ablation of perimitral flutter: acute and long-term success of the modified anterior line. Europace. 2015;17(3):447–52. https://doi.org/10.1093/europace/euu297.

    Article  PubMed  Google Scholar 

  37. Berruezo A, Bisbal F, Fernandez-Armenta J, Calvo N, Cabrera JA, Sanchez-Quintana D, et al. Transthoracic epicardial ablation of mitral isthmus for treatment of recurrent perimitral flutter. Heart Rhythm. 2014;11(1):26–33. https://doi.org/10.1016/j.hrthm.2013.10.030.

    Article  PubMed  Google Scholar 

  38. Miyazaki S, Kusa S, Hachiya H, Iesaka Y. Fulfilling current criteria of bidirectional mitral isthmus linear block is necessary but not sufficient for prevention of recurrent peri-mitral atrial tachycardia. Int J Cardiol. 2014;172(3):e494–7. https://doi.org/10.1016/j.ijcard.2014.01.057.

    Article  PubMed  Google Scholar 

  39. Shah AJ, Pascale P, Miyazaki S, Liu X, Roten L, Derval N, et al. Prevalence and types of pitfall in the assessment of mitral isthmus linear conduction block. Circ Arrhythm Electrophysiol. 2012;5(5):957–67. https://doi.org/10.1161/CIRCEP.112.971259.

    Article  PubMed  Google Scholar 

  40. Pascale P, Shah AJ, Roten L, Whinnett Z, Wilton SB, Jadidi AS, et al. Disparate activation of the coronary sinus and inferior left atrium during atrial tachycardia after persistent atrial fibrillation ablation: prevalence, pitfalls, and impact on mapping. J Cardiovasc Electrophysiol. 2012;23(7):697–707. https://doi.org/10.1111/j.1540-8167.2011.02266.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Naniwadekar MD.

Ethics declarations

Conflict of Interest

Aditi Naniwadekar and Jacob Koruth declare that they have no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Arrhythmia

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naniwadekar, A., Koruth, J. Impact of Technique and Technology on Mitral Isthmus Ablation. Curr Treat Options Cardio Med 21, 46 (2019). https://doi.org/10.1007/s11936-019-0752-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0752-1

Keywords

Navigation