Skip to main content
Log in

An Update on Pediatric Cardiomyopathy

  • Pediatric and Congenital Heart Disease (G Singh, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

This review summarizes the clinical characteristics and updated outcomes of primary pediatric cardiomyopathies including dilated (DCM), hypertrophic (HCM), and restrictive cardiomyopathy (RCM), and briefly discusses left ventricular non-compaction (LVNC) and arrhythmogenic cardiomyopathy (ACM), primarily arrythmogenic right ventricular cardiomyopathy (ARVC).

Recent findings

Pediatric cardiomyopathies are diseases of the heart muscle with an estimated annual incidence of 1.1–1.5 cases per 100,000. They are progressive in nature and are frequently caused by a genetic mutation causing a structural abnormality in the myocyte. Dilated cardiomyopathy, characterized by left ventricular dilation and systolic dysfunction with normal left ventricular wall thickness, accounts for about 50–60% of all pediatric cardiomyopathy cases. This is followed by hypertrophic cardiomyopathy accounting for about 40%, characterized by abnormally thickened myocardium in the absence of another cause of hypertrophy with non-dilated left ventricle. Left ventricular non-compaction and restrictive cardiomyopathy each account for about 5% of the cases. Genetic mutations play a dominant role in the development of pediatric cardiomyopathies. While treatment for congestive heart failure and arrhythmias alleviates symptoms, it has not been shown to reduce the risk of sudden death. The 5-year transplant-free survival of DCM, HCM, RCM, and LVNC are 50%, 90%, 30%, and 60% respectively.

Summary

Pediatric cardiomyopathies while not common they are a significant cause of morbidity and mortality in afflicted children. Dilated forms are the most common followed by hypertrophic, left ventricular non-compaction, and restrictive cardiomyopathies. Arrhythmogenic cardiomyopathies tend to be diagnosed later in the teenage years. Treatment typically follows adult recommendations for which there is significantly more data on treatment benefits, although the indications for ICD placement in children remain even less clear, other than for secondary prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACTA:

Skeletal α-actin

ACTC:

Cardiac actin

ACTN2:

α-actinin

DES:

Desmin

DMD:

Dystrophin

DSC-2:

Desmocollin

DSG-2:

Desmoglein

DSP:

Desmoplakin

JUP:

Plakoglobin

LMNA:

Nuclear type A lamins

MYH6:

α-myosin heavy chain

MYH7:

β-myosin heavy chain

MYHC7:

β-myosin heavy chain

MYBPC3:

Cardiac myosin binding protein

MYL2:

Cardiac β-myosin heavy chain

MYL3:

Myosin cardiac ventricular essential light chain

MYOZ2:

Myozenin

PKP-2:

Plakophilin 2

RYR2:

Ryanodine receptor

SCN5A:

Sodium channels

TAZ:

Tafazzin

TGFβ-3:

Transforming growth factor β

TMEM43:

Response element for PPAR gamma

TNNT2:

Cardiac troponin T

TNNI3:

Cardiac troponin I

TNNC1:

Cardiac troponin C

TPM1:

Tropomyosin

TTN:

Titin

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.

    Article  PubMed  Google Scholar 

  2. • Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, et al. Pediatric cardiomyopathies. Circ Res. 2017;121(7):855–73. This is a recent article reviewing the four major categories of pediatric cardiomyopathy and their complications and outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lipshultz SE, Sleeper LA, Towbin JA, Lowe AM, Orav EJ, Cox GF, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348(17):1647–55.

    Article  PubMed  Google Scholar 

  4. Nugent AW, Daubeney PE, Chondros P, Carlin JB, Cheung M, Wilkinson LC, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639–46.

    Article  PubMed  Google Scholar 

  5. Wilkinson JD, Landy DC, Colan SD, Towbin JA, Sleeper LA, Orav EJ, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin. 2010;6(4):401–13vii.

    Article  PubMed  PubMed Central  Google Scholar 

  6. • Wilkinson JD, Westphal JA, Bansal N, Czachor JD, Razoky H, Lipshultz SE. Lessons learned from the Pediatric Cardiomyopathy Registry (PCMR) Study Group. Cardiol Young. 2015;25(Suppl 2):140–53. This article review the results from the pediatric cardiomyopathy registry (PCMR), a multi-center registry including the USA and Canada founded in 1994. This includes the etiology of cardiomyopathy, clinical course, and outcomes of 3500 patients under 18years of age, and also describes the avenues for further investigation.

    Article  PubMed  Google Scholar 

  7. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, Clunie S, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1867–76.

    Article  CAS  PubMed  Google Scholar 

  8. Jefferies JL, Towbin JA. Dilated cardiomyopathy. Lancet. 2010;375(9716):752–62.

    Article  PubMed  Google Scholar 

  9. Weintraub RG, Semsarian C, Macdonald P. Dilated cardiomyopathy. Lancet. 2017;390(10092):400–14.

    Article  CAS  PubMed  Google Scholar 

  10. Towbin JA. Inherited cardiomyopathies. Circ J. 2014;78(10):2347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McNally EM, Mestroni L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res. 2017;121(7):731–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hershberger RE, Hedges DJ, Morales A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol. 2013;10(9):531–47.

    Article  CAS  PubMed  Google Scholar 

  13. • Hershberger RE, Givertz MM, Ho CY, Judge DP, Kantor PF, McBride KL, et al. Genetic evaluation of cardiomyopathy: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(9):899–909. This article reviews the major genetic mutations as well as their prognostic significant for each category of cardiomyopathy, and details clinical guidelines for testing and counseling, including testing and counseling for family members.

    Article  PubMed  Google Scholar 

  14. Hershberger RE, Cowan J, Morales A, Siegfried JD. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ Heart Fail. 2009;2(3):253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garfinkel AC, Seidman JG, Seidman CE. Genetic pathogenesis of hypertrophic and dilated cardiomyopathy. Heart Fail Clin. 2018;14(2):139–46.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441–6.

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, et al. International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ranthe MF, Carstensen L, Øyen N, Jensen MK, Axelsson A, Wohlfahrt J, et al. Risk of cardiomyopathy in younger persons with a family history of death from cardiomyopathy: a nationwide family study in a cohort of 3.9 million persons. Circulation. 2015;132(11):1013–9.

    Article  PubMed  Google Scholar 

  19. Pahl E, Sleeper LA, Canter CE, Hsu DT, Lu M, Webber SA, et al. Incidence of and risk factors for sudden cardiac death in children with dilated cardiomyopathy: a report from the Pediatric Cardiomyopathy Registry. J Am Coll Cardiol. 2012;59(6):607–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bharucha T, Lee KJ, Daubeney PE, Nugent AW, Turner C, Sholler GF, et al. NACCS (National Australian Childhood Cardiomyopathy Study) Investigators. Sudden death in childhood cardiomyopathy: results from a long-term national population-based study. J Am Coll Cardiol. 2015;65(21):2302–10.

    Article  PubMed  Google Scholar 

  21. Grenier MA, Osganian SK, Cox GF, Towbin JA, Colan SD, Lurie PR, et al. Design and implementation of the North American Pediatric Cardiomyopathy Registry. Am Heart J. 2000;139(2 Pt 3):S86–95.

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez JA, Orav EJ, Wilkinson JD, Fleming LE, Lee DJ, Sleeper LA, et al. Competing risks for death and cardiac transplantation in children with dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. Circulation. 2011;124(7):814–23.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Daubeney PE, Nugent AW, Chondros P, Carlin JB, Colan SD, Cheung M, et al. Clinical features and outcomes of childhood dilated cardiomyopathy: results from a national population-based study. Circulation. 2006;114(24):2671–8.

    Article  PubMed  Google Scholar 

  24. Alexander PM, Daubeney PE, Nugent AW, Lee KJ, Turner C, Colan SD, et al. National Australian Childhood Cardiomyopathy Study. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: results from a national population-based study of childhood cardiomyopathy. Circulation. 2013;128(18):2039–46.

    Article  PubMed  Google Scholar 

  25. Everitt MD, Sleeper LA, Lu M, Canter CE, Pahl E, Wilkinson JD, et al. Recovery of echocardiographic function in children with idiopathic dilated cardiomyopathy: results from the pediatric cardiomyopathy registry. J Am Coll Cardiol. 2014;63(14):1405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Foerster SR, Canter CE, Cinar A, Sleeper LA, Webber SA, Pahl E, et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail. 2010;3(6):689–97.

    Article  PubMed  Google Scholar 

  27. Singh RK, Canter CE, Shi L, Colan SD, Dodd DA, Everitt MD, et al. Survival without cardiac transplantation among children with dilated cardiomyopathy. J Am Coll Cardiol. 2017;70(21):2663–73.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    Article  PubMed  Google Scholar 

  29. Maron BJ, Maron MS, Semsarian C. Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J Am Coll Cardiol. 2012;60(8):705–15.

    Article  PubMed  Google Scholar 

  30. Maskatia SA. Hypertrophic cardiomyopathy: infants, children, and adolescents. Congenit Heart Dis. 2012;7(1):84–92.

    Article  PubMed  Google Scholar 

  31. Lipshultz SE, Orav EJ, Wilkinson JD, Towbin JA, Messere JE, Lowe AM, et al. Colan SD; Pediatric Cardiomyopathy Registry Study Group. Risk stratification at diagnosis for children with hypertrophic cardiomyopathy: an analysis of data from the Pediatric Cardiomyopathy Registry. Lancet. 2013;382(9908):1889–97.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Colan SD. Hypertrophic cardiomyopathy in childhood. Heart Fail Clin. 2010;6(4):433–44vii-iii.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bos JM, Towbin JA, Ackerman MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol. 2009;54(3):201–11.

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Gruner C, Chan RH, Care M, Siminovitch K, Williams L, et al. Genotype-positive status in patients with hypertrophic cardiomyopathy is associated with higher rates of heart failure events. Circ Cardiovasc Genet. 2014;7(4):416–22.

    Article  CAS  PubMed  Google Scholar 

  35. Ho CY, Day SM, Ashley EA, Michels M, Pereira AC, Jacoby D, et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation. 2018;138(14):1387–98.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58(25):e212–60.

    Article  CAS  PubMed  Google Scholar 

  37. Vigneault DM, Yang E, Jensen PJ, Tee MW, Farhad H, Chu L, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac mr feature tracking. Radiology. 2018:180339. https://doi.org/10.1148/radiol.2018180339.

    Article  PubMed  Google Scholar 

  38. Farhad H, Seidelmann SB, Vigneault D, Abbasi SA, Yang E, Day SM, et al. Left atrial structure and function in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. J Cardiovasc Magn Reson. 2017;19(1):107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Maron MS. Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson. 2012;14(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Axelsson Raja A, Farhad H, Valente AM, Couce JP, Jefferies JL, Bundgaard H, et al. Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation. 2018;138(8):782–92.

    Article  PubMed  Google Scholar 

  41. Maurizi N, Passantino S, Spaziani G, Girolami F, Arretini A, Targetti M, et al. Long-term outcomes of pediatric-onset hypertrophic cardiomyopathy and age-specific risk factors for lethal arrhythmic events. JAMA Cardiol. 2018;3(6):520–5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maron BJ, Spirito P, Ackerman MJ, Casey SA, Semsarian C, Estes NA 3rd, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2013;61(14):1527–35.

    Article  PubMed  Google Scholar 

  43. Decker JA, Rossano JW, Smith EO, Cannon B, Clunie SK, Gates C, et al. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol. 2009;54(3):250–4.

    Article  PubMed  Google Scholar 

  44. Hoedemakers S, Vandenberk B, Liebregts M, Bringmans T, Vriesendorp P, Willems R, et al. Long-term outcome of conservative and invasive treatment in patients with hypertrophic obstructive cardiomyopathy. Acta Cardiol. 2018;17:1–9.

    Google Scholar 

  45. Schleihauf J, Cleuziou J, Pabst von Ohain J, Meierhofer C, Stern H, Shehu N, et al. Clinical long-term outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in infants. Eur J Cardiothorac Surg. 2018;53(3):538–44.

    Article  PubMed  Google Scholar 

  46. Altarabsheh SE, Dearani JA, Burkhart HM, Schaff HV, Deo SV, Eidem BW, et al. Outcome of septal myectomy for obstructive hypertrophic cardiomyopathy in children and young adults. Ann Thorac Surg. 2013;95(2):663–9discussion 669.

    Article  PubMed  Google Scholar 

  47. Batzner A, Pfeiffer B, Neugebauer A, Aicha D, Blank C, Seggewiss H. Survival after alcohol septal ablation in patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2018;72(24):3087–94.

    Article  PubMed  Google Scholar 

  48. Rigopoulos AG, Daci S, Pfeiffer B, Papadopoulou K, Neugebauer A, Seggewiss H. Low occurrence of ventricular arrhythmias after alcohol septal ablation in high-risk patients with hypertrophic obstructive cardiomyopathy. Clin Res Cardiol. 2016;105(11):953–61.

    Article  CAS  PubMed  Google Scholar 

  49. Liebregts M, Vriesendorp PA, Mahmoodi BK, Schinkel AF, Michels M, ten Berg JM. A systematic review and meta-analysis of long-term outcomes after septal reduction therapy in patients with hypertrophic cardiomyopathy. JACC Heart Fail. 2015;3(11):896–905.

    Article  PubMed  Google Scholar 

  50. Avula S, Nguyen TM, Marble M, Lilje C. Cardiac response to enzyme replacement therapy in infantile Pompe disease with severe hypertrophic cardiomyopathy. Echocardiography. 2017;34(4):621–4.

    Article  PubMed  Google Scholar 

  51. van Capelle CI, Poelman E, Frohn-Mulder IM, Koopman LP, van den Hout JMP, Régal L, et al. Cardiac outcome in classic infantile Pompe disease after 13 years of treatment with recombinant human acid alpha-glucosidase. Int J Cardiol. 2018;269:104–10.

    Article  PubMed  Google Scholar 

  52. Alexander PMA, Nugent AW, Daubeney PEF, Lee KJ, Sleeper LA, Schuster T, et al. National Australian Childhood Cardiomyopathy Study. Long-term outcomes of hypertrophic cardiomyopathy diagnosed during childhood: results from a national population-based study. Circulation. 2018;138(1):29–36.

    Article  PubMed  Google Scholar 

  53. Webber SA, Lipshultz SE, Sleeper LA, Lu M, Wilkinson JD, Addonizio LJ, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the Pediatric Cardiomyopathy Registry. Circulation. 2012;126(10):1237–44.

    Article  PubMed  Google Scholar 

  54. Wittekind SG, Ryan TD, Gao Z, Zafar F, Czosek RJ, Chin CW, et al. Contemporary outcomes of pediatric restrictive cardiomyopathy: a single-center experience. Pediatr Cardiol. 2018. https://doi.org/10.1007/s00246-018-2043-0.

    Article  PubMed  Google Scholar 

  55. Towbin JA, Lorts A, Jefferies JL. Left ventricular non-compaction cardiomyopathy. Lancet. 2015;386(9995):813–25.

    Article  PubMed  Google Scholar 

  56. Lal AK, Pruitt E, Hong BJ, Lin KY, Feingold B. Left ventricular non-compaction cardiomyopathy in children listed for heart transplant: analysis from the Pediatric Heart Transplant Study Group. J Heart Lung Transplant. 2016;35(4):540–2.

    Article  PubMed  Google Scholar 

  57. Oechslin E, Jenni R. Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J. 2011;32(12):1446–56.

    Article  PubMed  Google Scholar 

  58. Wang C, Hata Y, Hirono K, Takasaki A, Ozawa SW, Nakaoka H, et al. A wide and specific spectrum of genetic variants and genotype-phenotype correlations revealed by next-generation sequencing in patients with left ventricular noncompaction. J Am Heart Assoc. 2017;6(9).

  59. Stähli BE, Gebhard C, Biaggi P, Klaassen S, Valsangiacomo Buechel E, Attenhofer Jost CH, et al. Left ventricular non-compaction: prevalence in congenital heart disease. Int J Cardiol. 2013;167(6):2477–81.

    Article  PubMed  Google Scholar 

  60. Ramachandran P, Woo JG, Ryan TD, Bryant R, Heydarian HC, Jefferies JL, et al. The impact of concomitant left ventricular non-compaction with congenital heart disease on perioperative outcomes. Pediatr Cardiol. 2016;37(7):1307–12.

    Article  PubMed  Google Scholar 

  61. Shi WY, Moreno-Betancur M, Nugent AW, Cheung M, Colan S, Turner C, et al. National Australian Childhood Cardiomyopathy Study. Long-term outcomes of childhood left ventricular noncompaction cardiomyopathy. Circulation. 2018;138(4):367–76.

    Article  PubMed  Google Scholar 

  62. Jefferies JL, Wilkinson JD, Sleeper LA, Colan SD, Lu M, Pahl E, et al. Cardiomyopathy phenotypes and outcomes for children with left ventricular myocardial noncompaction: results from the Pediatric Cardiomyopathy Registry. J Card Fail. 2015;21(11):877–84.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Parent JJ, Towbin JA, Jefferies JL. Medical therapy leads to favorable remodeling in left ventricular non-compaction cardiomyopathy: Dilated phenotype. Pediatr Cardiol. 2016;37(4):674–7.

    Article  PubMed  Google Scholar 

  64. Oechslin EN, Attenhofer Jost CH, Rojas JR, Kaufmann PA, Jenni R. Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol. 2000;36(2):493–500.

    Article  CAS  PubMed  Google Scholar 

  65. Gurunathan S, Senior R. Catastrophic stroke in a patient with left ventricular non-compaction. Echo Res Pract. 2018;5(3):K59–62.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Subahi A, Hassan AAI, Abubakar H, Ibrahim W. Isolated left ventricular non-compaction (LVNC) and recurrent strokes: to anticoagulate or not to anticoagulate, that is the question. BMJ Case Rep. 2017;13:2017.

    Google Scholar 

  67. Czosek RJ, Spar DS, Khoury PR, Anderson JB, Wilmot I, Knilans TK, et al. Outcomes, arrhythmic burden and ambulatory monitoring of pediatric patients with left ventricular non-compaction and preserved left ventricular function. Am J Cardiol. 2015;115(7):962–6.

    Article  PubMed  Google Scholar 

  68. Iyer VR, Chin AJ. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). Am J Med Genet C: Semin Med Genet. 2013;163C(3):185–97.

    Article  Google Scholar 

  69. Corrado D, Basso C, Judge DP. Arrhythmogenic Cardiomyopathy. Circ Res. 2017;121(7):784–802.

    Article  CAS  PubMed  Google Scholar 

  70. Deshpande SR, Herman HK, Quigley PC, Shinnick JK, Cundiff CA, Caltharp S, et al. Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D): review of 16 Pediatric Cases and a Proposal of Modified Pediatric Criteria. Pediatr Cardiol. 2016;37(4):646–55.

    Article  PubMed  Google Scholar 

  71. Marcus FI, Edson S, Towbin JA. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol. 2013;61:1945–8.

    Article  PubMed  Google Scholar 

  72. Van der Zwaag PA, Van Rijsingen IA, Asimaki A, Jongbloed JD, van Veldhuisen DJ, Wiesfeld AC, et al. Phospholamban R14del mutation in patients diagnosed with dilated cardiomyopathy or arrhythmogenic right ventricular cardiomyopathy: evidence supporting the concept of arrhythmogenic cardiomyopathy. Eur J Heart Fail. 2012;14(11):1199–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. McKenna WJ, Thiene G, Nava A, Fontaliran F, Blomstrom-Lundqvist C, Fontaine G, et al. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br Heart J. 1994;71(3):215–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121:1533–41.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bennett RG, Haqqani HM, Berruezo A, Della Bella P, Marchlinski FE, Hsu CJ, et al. Arrhythmogenic cardiomyopathy in 2018–2019: ARVC/ALVC or both? Heart Lung Circ. 2019;28(1):164–77.

    Article  PubMed  Google Scholar 

  76. Gilotra NA, Bhonsale A, James CA, Te Riele ASJ, Murray B, Tichnell C, et al. Heart failure is common and under-recognized in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia. Circ Heart Fail. 2017;10(9). https://doi.org/10.1161/CIRCHEARTFAILURE.116.003819.

  77. Chungsomprasong P, Hamilton R, Luining W, Fatah M, Yoo SJ, Grosse-Wortmann L. Left ventricular function in children and adolescents with arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol. 2017;119(5):778–84.

    Article  PubMed  Google Scholar 

  78. Marcus GM, Glidden DV, Polonsky B, Zareba W, Smith LM, Cannom DS, et al. Efficacy of antiarrhythmic drugs in arrhythmogenic right ventricular cardiomyopathy: a report from the north American ARVC Registry. J Am Coll Cardiol. 2009;54(7):609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. DePasquale EC, Cheng RK, Deng MC, Nsair A, McKenna WJ, Fonarow GC, et al. Survival after heart transplantation in patients with arrhythmogenic right ventricular cardiomyopathy. J Card Fail. 2017;23(2):107–12.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Choudhry MD.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric and Congenital Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhry, S., Puri, K. & Denfield, S.W. An Update on Pediatric Cardiomyopathy. Curr Treat Options Cardio Med 21, 36 (2019). https://doi.org/10.1007/s11936-019-0739-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-019-0739-y

Keywords

Navigation