Autonomic Regulation and Ventricular Arrhythmias

  • Lingjin Meng
  • Kalyanam Shivkumar
  • Olujimi Ajijola
Arrhythmia (G Upadhyay, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Arrhythmia


Autonomic nervous system (ANS) has a crucial role of regulating cardiac function in the physiological state and contributes to the pathogenesis of arrhythmias in the diseased state. The cardiac neuraxis consists of multiple feedback loops consisting of efferent and afferent limbs, mediating neurotransmission to and from the heart. Efferent parasympathetic neurotransmission is mediated by the vagus nerve, while paravertebral sympathetic ganglia relay efferent sympathetic neurotransmission to the heart. The association between autonomic activity and ventricular arrhythmias (VAs) has been studied extensively in both experimental models and humans. Efferent parasympathetic activity is felt to be antiarrhythmic, while the activation of efferent sympathetic signals is proarrhythmic. The cardiac neuraxis undergoes remodeling and becomes dysfunctional in the setting of myocardial infarction (MI), chronic cardiomyopathy (CMY), and structural heat disease. Altered ANS function has been shown to initiate and/or maintain VAs via various mechanisms. Interventions targeting the ANS have been used clinically to treat VAs, particularly in patients with hereditary heart rhythm disorders and structurally abnormal hearts. Clinical applications of cardiac neuraxial modulation at the level of spinal cord, stellate ganglion, and peripheral sympathetic and vagus nerve are being developed. In this review, the anatomy of cardiac autonomic innervation, the association between autonomic activity and ventricular arrhythmogenesis, and clinical applications of neuraxial modulation in the treatment of VAs are discussed.


Autonomic nervous system Arrhythmias Myocardial infarction Chronic cardiomyopathy Ventricular arrhythmias Cardiac neuraxis 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Kimura K, Ieda, M. Fukuda K Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res. 2012;110:325–36.Google Scholar
  2. 2.
    Pauza DH, Skripka V, Pauziene N, Stropus R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec. 2000;259:353–82.CrossRefPubMedGoogle Scholar
  3. 3.
    Nakamura K, et al. Pathological effects of chronic myocardial infarction on peripheral neurons mediating cardiac neurotransmission. Auton Neurosci. 2016;197:34–40.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Vincentz JW, Rubart M, Firulli AB. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatr Cardiol. 2012;33:923–8.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Karemaker JM. An introduction into autonomic nervous function. Physiol Meas. 2017;38:R89–R118.CrossRefPubMedGoogle Scholar
  6. 6.
    • Vaseghi M, et al. Cardiac sympathetic denervation for refractory ventricular arrhythmias. J Am Coll Cardiol. 2017;69:3070–80. The most recent study showed that CSD decreased VA in patients with structural heart disease.CrossRefPubMedGoogle Scholar
  7. 7.
    Ajijola OA, Vaseghi M, Mahajan A, Shivkumar K. Bilateral cardiac sympathetic denervation: why, who and when? Expert Rev Cardiovasc Ther. 2012;10:947–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fontes MAP, et al. Asymmetric sympathetic output: the dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias. Auton Neurosci. 2017;
  9. 9.
    Armor JA. Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol. 2008;93:165–76.CrossRefGoogle Scholar
  10. 10.
    Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl). 2005;209:425–38.CrossRefGoogle Scholar
  11. 11.
    Janes RD, et al. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57:299–309.CrossRefPubMedGoogle Scholar
  12. 12.
    Armor A, Randall WC. Functional anatomy of canine cardiac nerves. Cells Tissues Organs. 1975;91:510–28.CrossRefGoogle Scholar
  13. 13.
    Kapa S, Venkatachalam KL, Asirvatham SJ. The autonomic nervous system in cardiac electrophysiology. Cardiol Rev. 2010;18:275–84.CrossRefPubMedGoogle Scholar
  14. 14.
    Hopkins DA, Andrew Armor J. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves. J Auton Nerv Syst. 1989;26:213–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Ajijola OA, et al. Focal myocardial infarction induces global remodeling of cardiac sympathetic innervation: neural remodeling in a spatial context. Am J Physiol Heart Circ Physiol. 2013;305:H1031–40.Google Scholar
  16. 16.
    Yamakawa K, et al. Vagal nerve stimulation activates vagal afferent fibers that reduce cardiac efferent parasympathetic effects. Am J Physiol Heart Circ Physiol. 2015;309:H1579–90.Google Scholar
  17. 17.
    Antzelevitch C. Role of spatial dispersion of repolarization in inherited and acquired sudden cardiac death syndromes. Am J Physiol Heart Circ Physiol. 2007;293:H2024–38.Google Scholar
  18. 18.
    Gilmour R, et al. Life out of balance: the sympathetic nervous system and cardiac arrhythmias. Cardiovasc Res. 2001;51:625–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Shen MJ, Zipes DP. Role of the autonomic nervous system in modulating cardiac arrhythmias. Circ Res. 2014;114:1004–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Charpentier F, Drouin E, Gauthier C, Le Marec H. Early after/depolarizations and triggered activity: mechanisms and autonomic regulation. Fundam Clin Pharmacol. 1993;7:39–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Priori SG, Mantica M, Schwartz PJ. Delayed afterdepolarizations elicited in vivo by left stellate ganglion stimulation. Circulation. 1988;78:178–85.CrossRefPubMedGoogle Scholar
  22. 22.
    El-Sherif N. Reentrant ventricular arrhythmias in the late myocardial infarction period 6. Effect of the autonomic system. Circulation. 1978;58:103–10.CrossRefPubMedGoogle Scholar
  23. 23.
    Vaseghi M, et al. Sympathetic innervation of the anterior left ventricular wall by the right and left stellate ganglia. Heart Rhythm. 2012;9:1303–9.CrossRefPubMedGoogle Scholar
  24. 24.
    Cha Y-M, et al. Effects of omapatrilat on cardiac nerve sprouting and structural remodeling in experimental congestive heart failure. Heart Rhythm. 2005;2:984–90.CrossRefPubMedGoogle Scholar
  25. 25.
    Vaseghi M, Lux RL, Mahajan A, Shivkumar K. Sympathetic stimulation increases dispersion of repolarization in humans with myocardial infarction. Am J Physiol Heart Circ Physiol. 2012;302:H1838–46.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Inoue H, Zipes DP. Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circ Res. 1988;62:1111–20.CrossRefPubMedGoogle Scholar
  27. 27.
    Inoue H, Zipes DP. Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation. 1987;75:877–87.CrossRefPubMedGoogle Scholar
  28. 28.
    Verma A, et al. Relationship between successful ablation sites and the scar border zone defined by substrate mapping for ventricular tachycardia post-myocardial infarction. J Cardiovasc Electrophysiol. 2005;16:465–71.CrossRefPubMedGoogle Scholar
  29. 29.
    • Fallavollita JA, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63:141–9. The study provided direct evidence that sympathetic denervation predicts VAs risk in patients with ischemic CMY independely of LVEF.CrossRefPubMedGoogle Scholar
  30. 30.
    Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. Mol Neurobiol. 1997;14:67–116.CrossRefPubMedGoogle Scholar
  31. 31.
    Chen T, et al. Aerobic exercise inhibits sympathetic nerve sprouting and restores β-adrenergic receptor balance in rats with myocardial infarction. PLoS One. 2014;9:e97810.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rabinovitch MA, et al. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure. Circ Res. 1987;61:797–804.CrossRefPubMedGoogle Scholar
  33. 33.
    Parthenakis FI, et al. Segmental pattern of myocardial sympathetic denervation in idiopathic dilated cardiomyopathy: relationship to regional wall motion and myocardial perfusion abnormalities. J Nucl Cardiol. 2002;9:15–22.Google Scholar
  34. 34.
    Cao JM, et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation. 2000;101:1960–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Anter E. Neural Remodeling and Ventricular Arrhythmias: understanding the Mechanism. Cardiology. 2012;121:10–1.CrossRefPubMedGoogle Scholar
  36. 36.
    Han S, et al. Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol. 2012;59:954–61.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ajijola OA, et al. Remodeling of stellate ganglion neurons after spatially targeted myocardial infarction: neuropeptide and morphologic changes. Heart Rhythm. 2015;12:1027–35.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ajijola OA, et al. Extracardiac neural remodeling in humans with cardiomyopathy. Circ Arrhythm Electrophysiol. 2012;5:1010–116.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wood A, Docimo S, Elkowitz DE. Cardiovascular disease and its association with histological changes of the left stellate ganglion. Clin Med Insights Pathol. 2010;3:19–24.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kumar R, et al. Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 2009;33:236–42.CrossRefPubMedGoogle Scholar
  41. 41.
    Woo MA, et al. Global and regional brain mean diffusivity changes in patients with heart failure. J Neurosci Res. 2015;93:678–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Porter B, et al. Autonomic modulation in patients with heart failure increases beat-to-beat variability of ventricular action potential duration. Front Physiol. 2017;8:328.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Franciosi S, et al. The role of the autonomic nervous system in arrhythmias and sudden cardiac death. Auton Neurosci. 2017;205:1–11.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang P-C, et al. A multiscale computational modelling approach predicts mechanisms of female sex risk in the setting of arousal-induced arrhythmias. J Physiol. 2017;595:4695–723.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Moss AJ, Kass RS. Long QT syndrome: from channels to cardiac arrhythmias. J Clin Invest. 2005;115:2018–24.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rizzo S, et al. T-cell-mediated inflammatory activity in the stellate ganglia of patients with ion-channel disease and severe ventricular arrhythmias. Circ Arrhythmia Electrophysiol. 2014;7:224–9.CrossRefGoogle Scholar
  47. 47.
    Zhou S, et al. Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm. 2008;5:131–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Ogawa M, et al. Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol. 2007;50:335–43.CrossRefPubMedGoogle Scholar
  49. 49.
    Vaseghi M, et al. Modulation of regional dispersion of repolarization and T-peak to T-end interval by the right and left stellate ganglia. Am J Physiol Heart Circ Physiol. 2013;305:H1020–30.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tung R, Shivkumar K. Neuraxial modulation for treatment of VT storm. J Biomed Res. 2015;29:56–60.PubMedGoogle Scholar
  51. 51.
    Chui RW, et al. Bioelectronic block of paravertebral sympathetic nerves mitigates post–myocardial infarction ventricular arrhythmias. Heart Rhythm. 2017;
  52. 52.
    Ng GA. Vagal modulation of cardiac ventricular arrhythmia. Exp Physiol. 2014;99:295–9.CrossRefPubMedGoogle Scholar
  53. 53.
    Brack KE, Winter J, Ng GA. Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation—tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Fail Rev. 2013;18:389–408.CrossRefPubMedGoogle Scholar
  54. 54.
    Naggar I, Uchida S, Kamran H, Lazar J, Stewart M. Autonomic boundary conditions for ventricular fibrillation and their implications for a novel defibrillation technique. J Physiol Sci. 2012;62:479–92.CrossRefPubMedGoogle Scholar
  55. 55.
    Huang J, et al. Vagus nerve stimulation reverses ventricular electrophysiological changes induced by hypersympathetic nerve activity. Exp Physiol. 2015;100:239–48.CrossRefPubMedGoogle Scholar
  56. 56.
    Kalla M, et al. Protection against ventricular fibrillation via cholinergic receptor stimulation and the generation of nitric oxide. J Physiol. 2016;594:3981–92.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Howard-Quijano K, et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am J Physiol Heart Circ Physiol. 2017;313:H421–31.CrossRefPubMedGoogle Scholar
  58. 58.
    Mahajan A, Moore J, Cesario DA, Shivkumar K. Use of thoracic epidural anesthesia for management of electrical storm: a case report. Heart Rhythm. 2005;2:1359–62.CrossRefPubMedGoogle Scholar
  59. 59.
    Bourke T, et al. Neuraxial modulation for refractory ventricular arrhythmias: value of thoracic epidural anesthesia and surgical left cardiac sympathetic denervation. Circulation. 2010;121:2255–62.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wang S, et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model. Heart Rhythm. 2015;12:1628–35.CrossRefPubMedGoogle Scholar
  61. 61.
    Odenstedt J, et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia–reperfusion model. Heart Rhythm. 2011;8:892–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Buckley U, Shivkumar K, Ardell JL. Autonomic regulation therapy in heart failure. Curr Heart Fail Rep. 2015;12:284–93.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Tse H-F, et al. Thoracic Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS HEART study): first-in-man experience. Heart Rhythm. 2015;12:588–95.CrossRefPubMedGoogle Scholar
  64. 64.
    Ding X, Hua F, Sutherly K, Ardell JL, Williams CA. C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord: potential modulation of myocardial ischemia-sensitive neurons. Am J Phys Regul Integr Comp Phys. 2008;295:R1519–28.Google Scholar
  65. 65.
    Ardell JL, Cardinal R, Vermeulen M, Armour JA. Dorsal spinal cord stimulation obtunds the capacity of intrathoracic extracardiac neurons to transduce myocardial ischemia. Am J Phys Regul Integr Comp Phys. 2009;297:R470–7.Google Scholar
  66. 66.
    Zipes DP, et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure: the DEFEAT-HF study. JACC Heart Fail. 2016;4:129–36.CrossRefPubMedGoogle Scholar
  67. 67.
    Grimaldi R, de Luca A, Kornet L, Castagno D, Gaita F. Can spinal cord stimulation reduce ventricular arrhythmias? Heart Rhythm. 2012;9:1884–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Schwartz PJ, De Ferrari GM, Pugliese L. Cardiac sympathetic denervation 100 years later: Jonnesco would have never believed it. Int J Cardiol. 2017;237:25–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Schwartz PJ, Foreman RD. Cardiac pain, sympathetic afferents, and life-threatening arrhythmias. J Cardiovasc Electrophysiol. 1991;2:s100–13.CrossRefGoogle Scholar
  70. 70.
    Schwartz PJ, et al. Left Cardiac sympathetic denervation in the management of high-risk patients affected by the long-qt syndrome. Circulation. 2004;109:1826–33.CrossRefPubMedGoogle Scholar
  71. 71.
    Hwang SW, et al. Left thorascopic sympathectomy for refractory long QT syndrome in children. J Neurosurg Pediatr. 2011;8:455–9.CrossRefPubMedGoogle Scholar
  72. 72.
    Wang Y, et al. Metoprolol-mediated amelioration of sympathetic nerve sprouting after myocardial infarction. Cardiology. 2013;126:50–8.CrossRefPubMedGoogle Scholar
  73. 73.
    Collura CA, Johnson JN, Moir C, Ackerman MJ. Left cardiac sympathetic denervation for the treatment of long QT syndrome and catecholaminergic polymorphic ventricular tachycardia using video-assisted thoracic surgery. Heart Rhythm. 2009;6:752–9.CrossRefPubMedGoogle Scholar
  74. 74.
    • Vaseghi M, et al. Cardiac sympathetic denervation in patients with refractory ventricular arrhythmias or electrical storm: Intermediate and long-term follow-up. Heart Rhythm. 2014;11:360–6. The most recent study showed that in patients with VT storm, bilateral CSD was more beneficial than left CSD.CrossRefPubMedGoogle Scholar
  75. 75.
    Tan AY, Abdi S, Buxton AE, Anter E. Percutaneous stellate ganglia block for acute control of refractory ventricular tachycardia. Heart Rhythm. 2012;9:2063–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Biagini A, et al. Treatment of perinfarction recurrent ventricular fibrillation by percutaneous pharmacological block of left stellate ganglion. Clin Cardiol. 1985;8:111–3.CrossRefPubMedGoogle Scholar
  77. 77.
    Prabhu MA, et al. Left sympathetic cardiac denervation in managing electrical storm: acute outcome and long term follow up. J Interv Card Electrophysiol. 2016;47:285–92.CrossRefPubMedGoogle Scholar
  78. 78.
    Hayase J, Patel J, Narayan SM, Krummen DE. Percutaneous stellate ganglion block suppressing VT and VF in a patient refractory to VT ablation. J Cardiovasc Electrophysiol. 2013;24:926–8.CrossRefPubMedGoogle Scholar
  79. 79.
    Loyalka P, et al. Left stellate ganglion block for continuous ventricular arrhythmias during percutaneous left ventricular assist device support. Tex Heart Inst J. 2011;38:409–11.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Bobák J, Pavelková J. The effect of left stellate ganglion anesthetic blockade on ventricular arrhythmia in patients with acute myocardial infarct. Vnitr Lek. 1979;25:833–8.PubMedGoogle Scholar
  81. 81.
    Nielsen H, Badskjaer J. Blockade of the left stellate ganglion. Treatment of ventricular arrhythmias in secondary QT prolongation. Ugeskr Laeger. 1986;148:3221–3.PubMedGoogle Scholar
  82. 82.
    Eggeling T, Höpp HW, Koulousakis A, Eckert HG, Hombach V. Blockade of the left stellate ganglion using a drug reservoir pump. A new treatment method in the QT syndrome. Z Kardiol. 1988;77:185–9.PubMedGoogle Scholar
  83. 83.
    Patel RA, Priore DL, Szeto WY, Slevin KA. Left stellate ganglion blockade for the management of drug-resistant electrical storm. Pain Med. 2011;12:1196–8.CrossRefPubMedGoogle Scholar
  84. 84.
    Nademanee K, Taylor R, Bailey WE, Rieders DE, Kosar EM. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000;102:742–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Buckley U, et al. Bioelectronic neuromodulation of the paravertebral cardiac efferent sympathetic outflow and its effect on ventricular electrical indices. Heart Rhythm. 2017;14:1063–70.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Hayase J, Vampola S, Ahadian F, Narayan SM, Krummen DE. Comparative efficacy of stellate ganglion block with bupivacaine vs pulsed radiofrequency in a patient with refractory ventricular arrhythmias. J Clin Anesth. 2016;31:162–5.CrossRefPubMedGoogle Scholar
  87. 87.
    Imnadze G, et al. Anatomic patterns of renal arterial sympathetic innervation: new aspects for renal denervation. J Interv Cardiol. 2016;29:594–600.CrossRefPubMedGoogle Scholar
  88. 88.
    Jackson N, et al. Effects of renal artery denervation on ventricular arrhythmias in a postinfarct model. Circ Cardiovasc Interv. 2017;10:e004172.CrossRefPubMedGoogle Scholar
  89. 89.
    Armaganijan LV, et al. 6-month outcomes in patients with implantable cardioverter-defibrillators undergoing renal sympathetic denervation for the treatment of refractory ventricular arrhythmias. JACC Cardiovasc Interv. 2015;8:984–90.CrossRefPubMedGoogle Scholar
  90. 90.
    Evranos B, et al. Role of adjuvant renal sympathetic denervation in the treatment of ventricular arrhythmias. Am J Cardiol. 2016;118:1207–10.CrossRefPubMedGoogle Scholar
  91. 91.
    He B, Lu Z, He W, Huang B, Jiang H. Autonomic modulation by electrical stimulation of the parasympathetic nervous system: an emerging intervention for cardiovascular diseases. Cardiovasc Ther. 2016;34:167–71.CrossRefPubMedGoogle Scholar
  92. 92.
    Vaseghi M, et al. Parasympathetic dysfunction and antiarrhythmic effect of vagal nerve stimulation following myocardial infarction. JCI Insight. 2017;2:e86715.Google Scholar
  93. 93.
    Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ. Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res. 1987;61:429–35.CrossRefPubMedGoogle Scholar
  94. 94.
    Nazeri A, et al. Heterogeneity of left ventricular signal characteristics in response to acute vagal stimulation during ventricular fibrillation in dogs. Tex Heart Inst J. 2011;38:621–6.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Ando M, et al. Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation. 2005;112:164–70.CrossRefPubMedGoogle Scholar
  96. 96.
    Nonis R, D’Ostilio K, Schoenen J, Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. 2017;Cephalalgia, 37:1285–93.
  97. 97.
    Yu L, et al. Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. Heart Rhythm. 2013;10:428–35.CrossRefPubMedGoogle Scholar
  98. 98.
    Yu L, et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin Electrophysiol. 2016;2:330–9.Google Scholar
  99. 99.
    Stavrakis S, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J Am Coll Cardiol. 2015;65:867–75.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lingjin Meng
    • 1
  • Kalyanam Shivkumar
    • 1
  • Olujimi Ajijola
    • 1
    • 2
  1. 1.UCLA Cardiac Arrhythmia Center and Neurocardiology Research Center of ExcellenceLos AngelesUSA
  2. 2.UCLA Cardiac Arrhythmic Center, UCLA Health System, David Geffen School of Medicine at UCLALos AngelesUSA

Personalised recommendations