Skip to main content
Log in

Prevention of Contrast and Radiation Injury During Coronary Angiography and Percutaneous Coronary Intervention

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

In this review, we provide a summary of the recently published literature on various methods of preventing contrast-induced acute kidney injury (CI-AKI) and radiation-related injuries associated with cardiac catheterization and percutaneous coronary intervention (PCI).

Recent findings

The overall reported incidence of CI-AKI is declining, primarily due to adaptation of a standardized definition for CI-AKI as well as implementation of pre-procedural protocols to prevent or decrease the risk of CI-AKI. The implementation of increasing awareness and establishing radiation protection culture has been shown to be effective measures in reducing radiation exposure.

Summary

Coronary angiography and PCI are valuable diagnostic and therapeutic tools in cardiovascular medicine. Accurate imaging of the coronary arteries in cardiac catheterization is dependent on the use of intravascular injection of iodinated contrast media and fluoroscopic imaging. Patients undergoing diagnostic and interventional cardiac catheterization may be exposed to a substantial amount of contrast media and ionizing radiation. Administration of contrast media is correlated with increased risk of CI-AKI, and exposure to radiation is known to be associated with a spectrum of acute and chronic tissue injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kellum JA, Lameire N, Group KAGW. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mamoulakis C, Tsarouhas K, Fragkiadoulaki I, Heretis I, Wilks MF, Spandidos DA, et al. Contrast-induced nephropathy: basic concepts, pathophysiological implications and prevention strategies. Pharmacol Ther. 2017;180:99–112.

    Article  CAS  PubMed  Google Scholar 

  3. Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Contemporary incidence, predictors, and outcomes of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the NCDR Cath-PCI registry. JACC Cardiovasc Interv. 2014;7(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28(2):653–9.

    Article  PubMed  Google Scholar 

  5. Newhouse JH, Kho D, Rao QA, Starren J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191(2):376–82.

    Article  PubMed  Google Scholar 

  6. McCullough PA, Choi JP, Feghali GA, Schussler JM, Stoler RM, Vallabahn RC, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73.

    Article  PubMed  Google Scholar 

  7. Persson PB, Hansell P, Liss P. Pathophysiology of contrast medium-induced nephropathy. Kidney Int. 2005;68(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  8. Guitterez NV, Diaz A, Timmis GC, O'Neill WW, Stevens MA, Sandberg KR, et al. Determinants of serum creatinine trajectory in acute contrast nephropathy. J Interv Cardiol. 2002;15(5):349–54.

    Article  PubMed  Google Scholar 

  9. Sharma PV, Babu SC, Shah PM, Nassoura ZE. Changing patterns of atheroembolism. Cardiovasc Surg. 1996;4(5):573–9.

    Article  CAS  PubMed  Google Scholar 

  10. Azzalini L, Garcia-Moll X. On contrast-induced acute kidney injury, risk prediction, and the future of predictive model development. Can J Cardiol. 2017;33(6):711–3.

    Article  PubMed  Google Scholar 

  11. Weisbord SD, Chen H, Stone RA, Kip KE, Fine MJ, Saul MI, et al. Associations of increases in serum creatinine with mortality and length of hospital stay after coronary angiography. J Am Soc Nephrol. 2006;17(10):2871–7.

    Article  CAS  PubMed  Google Scholar 

  12. Giacoppo D, Madhavan MV, Baber U, Warren J, Bansilal S, Witzenbichler B, et al. Impact of contrast-induced acute kidney injury after percutaneous coronary intervention on short- and long-term outcomes: pooled analysis from the HORIZONS-AMI and ACUITY trials. Circ Cardiovasc Interv. 2015;8(8):e002475.

    Article  CAS  PubMed  Google Scholar 

  13. Rudnick M, Feldman H. Contrast-induced nephropathy: what are the true clinical consequences? Clin J Am Soc Nephrol. 2008;3(1):263–72.

    Article  CAS  PubMed  Google Scholar 

  14. Abe M, Morimoto T, Nakagawa Y, Furukawa Y, Ono K, Kato T, et al. Impact of transient or persistent contrast-induced nephropathy on long-term mortality after elective percutaneous coronary intervention. Am J Cardiol. 2017;120:2146–53.

    Article  PubMed  Google Scholar 

  15. Silver SA, Shah PM, Chertow GM, Harel S, Wald R, Harel Z. Risk prediction models for contrast induced nephropathy: systematic review. BMJ. 2015;351:h4395.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  17. Van Praet JT, De Vriese AS. Prevention of contrast-induced nephropathy: a critical review. Curr Opin Nephrol Hypertens. 2007;16(4):336–47.

    PubMed  Google Scholar 

  18. Oktay V, Calpar Cirali I, Sinan UY, Yildiz A, Ersanli MK. Impact of continuation of metformin prior to elective coronary angiography on acute contrast nephropathy in patients with normal or mildly impaired renal functions. Anatol J Cardiol. 2017.

  19. Davidson C, Stacul F, McCullough PA, Tumlin J, Adam A, Lameire N, et al. Contrast medium use. Am J Cardiol. 2006;98(6A):42K–58K.

    Article  CAS  PubMed  Google Scholar 

  20. Manske CL, Sprafka JM, Strony JT, Wang Y. Contrast nephropathy in azotemic diabetic patients undergoing coronary angiography. Am J Med. 1990;89(5):615–20.

    Article  CAS  PubMed  Google Scholar 

  21. Azzalini L, Candilio L, McCullough PA, Colombo A. Current risk of contrast-induced acute kidney injury after coronary angiography and intervention: a reappraisal of the literature. Can J Cardiol. 2017;33(10):1225–8.

    Article  PubMed  Google Scholar 

  22. Lautin EM, Freeman NJ, Schoenfeld AH, Bakal CW, Haramati N, Friedman AC, et al. Radiocontrast-associated renal dysfunction: a comparison of lower-osmolality and conventional high-osmolality contrast media. AJR Am J Roentgenol. 1991;157(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  23. Eng J, Wilson RF, Subramaniam RM, Zhang A, Suarez-Cuervo C, Turban S, et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):417–24.

    Article  PubMed  Google Scholar 

  24. Vuurmans T, Byrne J, Fretz E, Janssen C, Hilton JD, Klinke WP, et al. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia cardiac and renal registries). Heart. 2010;96(19):1538–42.

    Article  PubMed  Google Scholar 

  25. Valgimigli M, Gagnor A, Calabro P, Frigoli E, Leonardi S, Zaro T, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76.

    Article  PubMed  Google Scholar 

  26. Feldkamp T, Luedemann M, Spehlmann ME, Freitag-Wolf S, Gaensbacher J, Schulte K, et al. Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol. 2017.

  27. Ando G, Cortese B, Russo F, Rothenbuhler M, Frigoli E, Gargiulo G, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017.

  28. Jurado-Roman A, Hernandez-Hernandez F, Garcia-Tejada J, Granda-Nistal C, Molina J, Velazquez M, et al. Role of hydration in contrast-induced nephropathy in patients who underwent primary percutaneous coronary intervention. Am J Cardiol. 2015;115(9):1174–8.

    Article  PubMed  Google Scholar 

  29. Luo Y, Wang X, Ye Z, Lai Y, Yao Y, Li J, et al. Remedial hydration reduces the incidence of contrast-induced nephropathy and short-term adverse events in patients with ST-segment elevation myocardial infarction: a single-center, randomized trial. Intern Med. 2014;53(20):2265–72.

    Article  PubMed  Google Scholar 

  30. Trivedi HS, Moore H, Nasr S, Aggarwal K, Agrawal A, Goel P, et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract. 2003;93(1):C29–34.

    Article  CAS  PubMed  Google Scholar 

  31. Kooiman J, Sijpkens YW, van Buren M, Groeneveld JH, Ramai SR, van der Molen AJ, et al. Randomised trial of no hydration vs. sodium bicarbonate hydration in patients with chronic kidney disease undergoing acute computed tomography-pulmonary angiography. J Thromb Haemost. 2014;12(10):1658–66.

    Article  CAS  PubMed  Google Scholar 

  32. • Brar SS, Aharonian V, Mansukhani P, Moore N, Shen AY, Jorgensen M, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23. The POSEIDON randomized clinical trial is an important study that shows that hemodynamically guided strategy of high volume saline infusion for low intravascular volume status is protective against CI-AKI.

    Article  PubMed  Google Scholar 

  33. Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.

    Article  PubMed  Google Scholar 

  34. Joannidis M, Schmid M, Wiedermann CJ. Prevention of contrast media-induced nephropathy by isotonic sodium bicarbonate: a meta-analysis. Wien Klin Wochenschr. 2008;120(23–24):742–8.

    Article  CAS  PubMed  Google Scholar 

  35. Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB. Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4(10):1584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med. 2009;151(9):631–8.

    Article  PubMed  Google Scholar 

  37. Zapata-Chica CA, Bello Marquez D, Serna-Higuita LM, Nieto-Rios JF, Casas-Arroyave FD, Donado-Gomez JH. Sodium bicarbonate versus isotonic saline solution to prevent contrast-induced nephropathy: a systematic review and meta-analysis. Colomb Med (Cali). 2015;46(3):90–103.

    Google Scholar 

  38. Solomon R, Gordon P, Manoukian SV, Abbott JD, Kereiakes DJ, Jeremias A, et al. Randomized trial of bicarbonate or saline study for the prevention of contrast-induced nephropathy in patients with CKD. Clin J Am Soc Nephrol. 2015;10(9):1519–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, et al. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):406–16.

    Article  PubMed  Google Scholar 

  40. Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Eng J Med 2017. PRESERVE randomized 2 by 2 factorial trial demonstrated that there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury.

  41. Shalansky SJ, Vu T, Pate GE, Levin A, Humphries KH, Webb JG. N-Acetylcysteine for prevention of radiographic contrast material-induced nephropathy: is the intravenous route best? Pharmacotherapy. 2005;25(8):1095–103.

    Article  PubMed  Google Scholar 

  42. Baker CS, Wragg A, Kumar S, De Palma R, Baker LR, Knight CJ. A rapid protocol for the prevention of contrast-induced renal dysfunction: the RAPPID study. J Am Coll Cardiol. 2003;41(12):2114–8.

    Article  PubMed  Google Scholar 

  43. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343(3):180–4.

    Article  CAS  PubMed  Google Scholar 

  44. Li JX, Jin EZ, Yu LH, Li Y, Liu NN, Dong YM, et al. Oral N-acetylcysteine for prophylaxis of contrast-induced nephropathy in patients following coronary angioplasty: a meta-analysis. Exp Ther Med. 2017;14(2):1568–76.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pannu N, Wiebe N, Tonelli M. Alberta kidney disease N. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295(23):2765–79.

    Article  CAS  PubMed  Google Scholar 

  46. Shyu KG, Cheng JJ, Kuan P. Acetylcysteine protects against acute renal damage in patients with abnormal renal function undergoing a coronary procedure. J Am Coll Cardiol. 2002;40(8):1383–8.

    Article  CAS  PubMed  Google Scholar 

  47. Briguori C, Manganelli F, Scarpato P, Elia PP, Golia B, Riviezzo G, et al. Acetylcysteine and contrast agent-associated nephrotoxicity. J Am Coll Cardiol. 2002;40(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  48. Investigators ACT. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized acetylcysteine for contrast-induced nephropathy trial (ACT). Circulation. 2011;124(11):1250–9.

    Article  Google Scholar 

  49. Gueler F, Rong S, Park JK, Fiebeler A, Menne J, Elger M, et al. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol. 2002;13(9):2288–98.

    Article  CAS  PubMed  Google Scholar 

  50. Liang M, Yang S, Fu N. Efficacy of short-term moderate or high-dose rosuvastatin in preventing contrast-induced nephropathy: a meta-analysis of 15 randomized controlled trials. Medicine (Baltimore). 2017;96(27):e7384.

    Article  CAS  Google Scholar 

  51. Wang N, Qian P, Yan TD, Phan K. Periprocedural effects of statins on the incidence of contrast-induced acute kidney injury: a systematic review and trial sequential analysis. Int J Cardiol. 2016;206:143–52.

    Article  PubMed  Google Scholar 

  52. Su X, Xie X, Liu L, Lv J, Song F, Perkovic V, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis. 2017;69(1):69–77.

    Article  CAS  PubMed  Google Scholar 

  53. Mattathil S, Ghumman S, Weinerman J, Prasad A. Use of the RenalGuard system to prevent contrast-induced AKI: a meta-analysis. J Interv Cardiol. 2017;30(5):480–7.

    Article  PubMed  Google Scholar 

  54. Onbasili AO, Yeniceriglu Y, Agaoglu P, Karul A, Tekten T, Akar H, et al. Trimetazidine in the prevention of contrast-induced nephropathy after coronary procedures. Heart. 2007;93(6):698–702.

    Article  CAS  PubMed  Google Scholar 

  55. Ibrahim TA, El-Mawardy RH, El-Serafy AS, El-Fekky EM. Trimetazidine in the prevention of contrast-induced nephropathy in chronic kidney disease. Cardiovasc Revasc Med. 2017;18(5):315–9.

    Article  PubMed  Google Scholar 

  56. Kassis HM, Minsinger KD, McCullough PA, Block CA, Sidhu MS, Brown JR. A review of the use of Iloprost, a synthetic prostacyclin, in the prevention of radiocontrast nephropathy in patients undergoing coronary angiography and intervention. Clin Cardiol. 2015;38(8):492–8.

    Article  PubMed  Google Scholar 

  57. Spargias K, Adreanides E, Demerouti E, Gkouziouta A, Manginas A, Pavlides G, et al. Iloprost prevents contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography or intervention. Circulation. 2009;120(18):1793–9.

    Article  CAS  PubMed  Google Scholar 

  58. Albabtain MA, Almasood A, Alshurafah H, Alamri H, Tamim H. Efficacy of ascorbic acid, N-acetylcysteine, or combination of both on top of saline hydration versus saline hydration alone on prevention of contrast-induced nephropathy: a prospective randomized study. J Interv Cardiol. 2013;26(1):90–6.

    Article  PubMed  Google Scholar 

  59. Briguori C, Airoldi F, D'Andrea D, Bonizzoni E, Morici N, Focaccio A, et al. Renal Insufficiency Following Contrast Media Administration Trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation. 2007;115(10):1211–7.

    CAS  PubMed  Google Scholar 

  60. Ciraj-Bjelac O, Rehani MM, Sim KH, Liew HB, Vano E, Kleiman NJ. Risk for radiation-induced cataract for staff in interventional cardiology: is there reason for concern? Catheter Cardiovasc Interv. 2010;76(6):826–34.

    Article  PubMed  Google Scholar 

  61. Andreassi MG, Piccaluga E, Gargani L, Sabatino L, Borghini A, Faita F, et al. Subclinical carotid atherosclerosis and early vascular aging from long-term low-dose ionizing radiation exposure: a genetic, telomere, and vascular ultrasound study in cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2015;8(4):616–27.

    Article  PubMed  Google Scholar 

  62. Andreassi MG, Cioppa A, Botto N, Joksic G, Manfredi S, Federici C, et al. Somatic DNA damage in interventional cardiologists: a case-control study. FASEB J. 2005;19(8):998–9.

    Article  CAS  PubMed  Google Scholar 

  63. Pantos I, Patatoukas G, Katritsis DG, Efstathopoulos E. Patient radiation doses in interventional cardiology procedures. Curr Cardiol Rev. 2009;5(1):1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Christopoulos G, Makke L, Christakopoulos G, Kotsia A, Rangan BV, Roesle M, et al. Optimizing radiation safety in the cardiac catheterization laboratory: a practical approach. Catheter Cardiovasc Interv. 2016;87(2):291–301.

    Article  PubMed  Google Scholar 

  65. King JN, Champlin AM, Kelsey CA, Tripp DA. Using a sterile disposable protective surgical drape for reduction of radiation exposure to interventionalists. AJR Am J Roentgenol. 2002;178(1):153–7.

    Article  PubMed  Google Scholar 

  66. Murphy JC, Darragh K, Walsh SJ, Hanratty CG. Efficacy of the RADPAD protective drape during real world complex percutaneous coronary intervention procedures. Am J Cardiol. 2011;108(10):1408–10.

    Article  PubMed  Google Scholar 

  67. Maeder M, Brunner-La Rocca HP, Wolber T, Ammann P, Roelli H, Rohner F, et al. Impact of a lead glass screen on scatter radiation to eyes and hands in interventional cardiologists. Catheter Cardiovasc Interv. 2006;67(1):18–23.

    Article  PubMed  Google Scholar 

  68. Karadag B, Ikitimur B, Durmaz E, Avci BK, Cakmak HA, Cosansu K, et al. Effectiveness of a lead cap in radiation protection of the head in the cardiac catheterisation laboratory. EuroIntervention. 2013;9(6):754–6.

    Article  PubMed  Google Scholar 

  69. Fetterly KA, Bell MR. A practical approach to radiation protection for cardiac catheterization laboratory staff. JACC Cardiovasc Interv. 2017.

  70. Musallam A, Volis I, Dadaev S, Abergel E, Soni A, Yalonetsky S, et al. A randomized study comparing the use of a pelvic lead shield during trans-radial interventions: threefold decrease in radiation to the operator but double exposure to the patient. Catheter Cardiovasc Interv. 2015;85(7):1164–70.

    Article  PubMed  Google Scholar 

  71. Duran A, Hian SK, Miller DL, Le Heron J, Padovani R, Vano E. Recommendations for occupational radiation protection in interventional cardiology. Catheter Cardiovasc Interv. 2013;82(1):29–42.

    Article  PubMed  Google Scholar 

  72. Abdelaal E, Plourde G, MacHaalany J, Arsenault J, Rimac G, Dery JP, et al. Effectiveness of low rate fluoroscopy at reducing operator and patient radiation dose during transradial coronary angiography and interventions. JACC Cardiovasc Interv. 2014;7(5):567–74.

    Article  PubMed  Google Scholar 

  73. Mangels DR, Giri J, Hirshfeld J, Wilensky RL. Robotic-assisted percutaneous coronary intervention. Catheter Cardiovasc Interv. 2017.

  74. McDonald RJ, McDonald JS, Carter RE, Hartman RP, Katzberg RW, Kallmes DF, et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology. 2014;273(3):714–25.

    Article  PubMed  Google Scholar 

  75. Szummer K, Lundman P, Jacobson SH, Schon S, Lindback J, Stenestrand U, et al. Influence of renal function on the effects of early revascularization in non-ST-elevation myocardial infarction: data from the Swedish web-system for enhancement and development of evidence-based care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Circulation. 2009;120(10):851–8.

    Article  CAS  PubMed  Google Scholar 

  76. Brown JR, Solomon RJ, Sarnak MJ, McCullough PA, Splaine ME, Davies L, et al. Reducing contrast-induced acute kidney injury using a regional multicenter quality improvement intervention. Circ Cardiovasc Qual Outcomes. 2014;7(5):693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fetterly KA, Mathew V, Lennon R, Bell MR, Holmes DR Jr, Rihal CS. Radiation dose reduction in the invasive cardiovascular laboratory: implementing a culture and philosophy of radiation safety. JACC Cardiovasc Interv. 2012;5(8):866–73.

    Article  PubMed  Google Scholar 

  78. Ploussi A, Efstathopoulos EP. Importance of establishing radiation protection culture in radiology department. World J Radiol. 2016;8(2):142–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja B. Parikh MD, MPH, FACC, FAHA, FSCAI.

Ethics declarations

Conflict of Interest

Arash Ehteshami Afshar and Puja B. Parikh each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar, A.E., Parikh, P.B. Prevention of Contrast and Radiation Injury During Coronary Angiography and Percutaneous Coronary Intervention. Curr Treat Options Cardio Med 20, 32 (2018). https://doi.org/10.1007/s11936-018-0621-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-018-0621-3

Keywords

Navigation