Role of Cardiac PET in Clinical Practice

  • Brian M. Salata
  • Parmanand Singh
Imaging (Q Truong, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Imaging

Opinion statement

Early identification of atherosclerosis and at-risk lesions plays a critical role in reducing the burden of cardiovascular disease. While invasive coronary angiography serves as the gold standard for diagnosing coronary artery disease, non-invasive imaging techniques provide visualization of both anatomical and functional atherosclerotic processes prior to clinical presentation. The development of cardiac positron emission tomography (PET) has greatly enhanced our capability to diagnose and treat patients with early stages of atherosclerosis. Cardiac PET is a powerful, versatile non-invasive diagnostic tool with utility in the identification of high-risk plaques, myocardial perfusion defects, and viable myocardial tissue. Cardiac PET allows for comparisons of myocardial function both at time of rest and stress, providing accurate assessments of both myocardial perfusion and viability. Furthermore, novel PET techniques with unique radiotracers yield clinically relevant data on high-risk plaques in active progressive atherosclerosis. While PET exercise stress tests were previously difficult to perform given short radiotracer half-life, the development of the novel radiotracer Flurpiridaz F-18 provides a promising future for PET exercise stress imaging. In addition, hybrid imaging with computed tomography angiography (CTA) and cardiac magnetic resonance (CMR) provides integration of cardiac function and structure. In this review article, we discuss the principles of cardiac PET, the clinical applications of PET in diagnosing and prognosticating patients at risk for future cardiovascular events, compare PET with other non-invasive cardiac imaging modalities, and discuss future applications of PET in CVD evaluation and management.


PET Imaging Cardiac positron emission tomography Computed tomography angiography Cardiac magnetic resonance 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.CrossRefPubMedGoogle Scholar
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Executive summary: heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127(1):143–52.CrossRefPubMedGoogle Scholar
  3. 3.
    Vedanthan R, Fuster V. Disease Prevention: the moving target of global cardiovascular health. Nat RevCardiol. 2009;6(5):327–8.Google Scholar
  4. 4.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.CrossRefPubMedGoogle Scholar
  5. 5.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–220.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25.CrossRefPubMedGoogle Scholar
  7. 7.
    Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.CrossRefPubMedGoogle Scholar
  8. 8.
    Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol. 1994;23(3):809–13.CrossRefPubMedGoogle Scholar
  9. 9.
    Libby P, Schoenbeck U, Mach F, Selwyn AP, Ganz P. Current concepts in cardiovascular pathology: the role of LDL cholesterol in plaque rupture and stabilization. Am J Med. 1998;104(2A):14S–8S.CrossRefPubMedGoogle Scholar
  10. 10.
    Davies MJ, Woolf N, Rowles P, Richardson PD. Lipid and cellular constituents of unstable human aortic plaques. Basic Res Cardiol. 1994;89(Suppl 1):33–9.PubMedGoogle Scholar
  11. 11.
    Asrar U, Haq M, Layland J, Mutha V, Barlis P. The invasive assessment of coronary atherosclerosis and stents using optical coherence tomography: a clinical update. Heart Asia. 2013;5(1):154–61.CrossRefGoogle Scholar
  12. 12.
    Schindler TH, Zhang X-L, Vincenti G, Mhiri L, Lerch R, Schelbert HR. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol. 2007;14(4):589–603.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol. 1988;12(1):56–62.CrossRefPubMedGoogle Scholar
  15. 15.
    White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, et al. Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med. 1984;310(13):819–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Cho I, Chang H-J, ÓHartaigh B, Shin S, Sung JM, Lin FY, et al. Incremental prognostic utility of coronary CT angiography for asymptomatic patients based upon extent and severity of coronary artery calcium: results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) study. Eur Heart J. 2015;36(8):501–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Achenbach S, Goroll T, Seltmann M, Pflederer T, Anders K, Ropers D, et al. Detection of coronary artery stenoses by low-dose, prospectively ECG-triggered, high-pitch spiral coronary CT angiography. JACC Cardiovasc Imaging. 2011;4(4):328–37.CrossRefPubMedGoogle Scholar
  18. 18.
    Min JK, Dunning A, Lin FY, Achenbach S, Mallah MHA, Berman DS, et al. Rationale and design of the CONFIRM (COronary CT Angiography EvaluatioN For Clinical Outcomes: An InteRnational Multicenter) registry. J Cardiovasc Comput Tomogr. 2011;5(2):84–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Seifarth H, Schlett CL, Nakano M, Otsuka F, Károlyi M, Liew G, et al. Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis. 2012;224(1):90–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Motoyama S, Sarai M, Narula J, Ozaki Y, Coronary CT. angiography and high-risk plaque morphology. Cardiovasc Interv Ther. 2013;28(1):1–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Ghoshhajra BB, Engel L-C, Károlyi M, Sidhu MS, Wai B, Barreto M, et al. Cardiac computed tomography angiography with automatic tube potential selection: effects on radiation dose and image quality. J Thorac Imaging. 2013;28(1):40–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Ghoshhajra BB, Engel L-C, Major GP, Goehler A, Techasith T, Verdini D, et al. Evolution of coronary computed tomography radiation dose reduction at a tertiary referral center. Am J Med. 2012;125(8):764–72.CrossRefPubMedGoogle Scholar
  23. 23.
    Hyafil F, Cornily J-C, Rudd JHF, Machac J, Feldman LJ, Fayad ZA. Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med. 2009;50(6):959–65.CrossRefPubMedGoogle Scholar
  24. 24.
    McCarthy MJ, Loftus IM, Thompson MM, Jones L, London NJ, Bell PR, et al. Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology. J Vasc Surg. 1999;30(2):261–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Redgrave JN, Gallagher P, Lovett JK, Rothwell PM. Critical cap thickness and rupture in symptomatic carotid plaques: the oxford plaque study. Stroke. 2008;39(6):1722–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Li F, Yarnykh VL, Hatsukami TS, Chu B, Balu N, Wang J, et al. Scan-rescan reproducibility of carotid atherosclerotic plaque morphology and tissue composition measurements using multicontrast MRI at 3T. J Magn Reson Imaging. 2010;31(1):168–76.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharir T, Ben-Haim S, Merzon K, Prochorov V, Dickman D, Ben-Haim S, et al. High-speed myocardial perfusion imaging initial clinical comparison with conventional dual detector anger camera imaging. JACC Cardiovasc Imaging. 2008;1(2):156–63.CrossRefPubMedGoogle Scholar
  28. 28.
    Flotats A, Knuuti J, Gutberlet M, Marcassa C, Bengel FM, Kaufmann PA, et al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2011;38(1):201–12.CrossRefPubMedGoogle Scholar
  29. 29.
    Yamagishi H, Shirai N, Takagi M, Yoshiyama M, Akioka K, Takeuchi K, et al. Identification of cardiac sarcoidosis with (13)N-NH(3)/(18)F-FDG PET. J Nucl Med. 2003;44(7):1030–6.PubMedGoogle Scholar
  30. 30.
    Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35(5):933–41.CrossRefPubMedGoogle Scholar
  31. 31.
    Parker MW, Iskandar A, Limone B, Perugini A, Kim H, Jones C, et al. Diagnostic accuracy of cardiac positron emission tomography versus single photon emission computed tomography for coronary artery disease: a bivariate meta-analysis. Circ Cardiovasc Imaging. 2012;5(6):700–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Heller GV, Calnon D, Dorbala S. Recent advances in cardiac PET and PET/CT myocardial perfusion imaging. J Nucl Cardiol. 2009;16(6):962–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Segall G. Assessment of myocardial viability by positron emission tomography. Nucl Med Commun. 2002;23(4):323–30.CrossRefPubMedGoogle Scholar
  34. 34.
    Di Carli MF, Hachamovitch R. Should PET replace SPECT for evaluating CAD? The end of the beginning. J Nucl Cardiol. 2006;13(1):2–7.CrossRefPubMedGoogle Scholar
  35. 35.
    Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR, et al. Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol. 2006;13(1):24–33.CrossRefPubMedGoogle Scholar
  36. 36.
    Mc Ardle BA, Dowsley TF, deKemp RA, Wells GA, Beanlands RS. Does rubidium-82 PET have superior accuracy to SPECT perfusion imaging for the diagnosis of obstructive coronary disease?: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60(18):1828–37.CrossRefPubMedGoogle Scholar
  37. 37.
    Bax JJ, Poldermans D, Elhendy A, Boersma E, Rahimtoola SH. Sensitivity, specificity, and predictive accuracies of various noninvasive techniques for detecting hibernating myocardium. Curr Probl Cardiol. 2001;26(2):147–81.CrossRefPubMedGoogle Scholar
  38. 38.
    Beanlands RSB, Youssef G. Diagnosis and prognosis of coronary artery disease: PET is superior to SPECT: Pro. J Nucl Cardiol. 2010;17(4):683–95.CrossRefPubMedGoogle Scholar
  39. 39.
    Di Carli MF, Murthy VL, Cardiac PET. CT for the evaluation of known or suspected coronary artery disease. Radiographics. 2011;31(5):1239–54.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med. 2012;53(8):1230–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Shaw LJ, Min JK, Hachamovitch R, Peterson ED, Hendel RC, Woodard PK, et al. Cardiovascular imaging research at the crossroads. JACC Cardiovasc Imaging. 2010;3(3):316–24.CrossRefPubMedGoogle Scholar
  42. 42.
    Di Carli MF, Dorbala S. Cardiac PET-CT. J Thorac Imaging. 2007;22(1):101–6.CrossRefPubMedGoogle Scholar
  43. 43.
    •• Pan JA, Salerno M. Clinical utility and future applications of PET/CT and PET/CMR in cardiology. Diagnostics (Basel). 2016;6(3). Hybrid imaging such as positron emission tomography with computed tomography has significant utility in patients with coronary artery disease by allowing the fusion of anatomy and function in the assessment the coronary vasculature.Google Scholar
  44. 44.
    Danad I, Raijmakers PG, Knaapen P. Diagnosing coronary artery disease with hybrid PET/CT: it takes two to tango. J Nucl Cardiol. 2013;20(5):874–90.CrossRefPubMedGoogle Scholar
  45. 45.
    Nasir K, Clouse M. Role of nonenhanced multidetector CT coronary artery calcium testing in asymptomatic and symptomatic individuals. Radiology. 2012;264(3):637–49.CrossRefPubMedGoogle Scholar
  46. 46.
    Hoffmann U, Bamberg F, Chae CU, Nichols JH, Rogers IS, Seneviratne SK, et al. Coronary computed tomography angiography for early triage of patients with acute chest pain: the ROMICAT (Rule Out Myocardial Infarction using Computer Assisted Tomography) trial. J Am Coll Cardiol. 2009;53(18):1642–50.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol. 2005;46(1):158–65.CrossRefPubMedGoogle Scholar
  48. 48.
    Arad Y, Spadaro LA, Roth M, Newstein D, Guerci AD. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005;46(1):166–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Loghin C, Sdringola S, Gould KL. Common artifacts in PET myocardial perfusion images due to attenuation-emission misregistration: clinical significance, causes, and solutions. J Nucl Med. 2004;45(6):1029–39.PubMedGoogle Scholar
  51. 51.
    Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59(7):23C–30C.CrossRefPubMedGoogle Scholar
  52. 52.
    Nappi C, Fakhri G. El. State of the art in cardiac hybrid technology: PET/MR. Curr Cardiovasc Imaging Rep. 2013;6(4):338–45.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Klocke FJ, Baird MG, Lorell BH, Bateman TM, Messer JV, Berman DS, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003;108(11):1404–18.CrossRefPubMedGoogle Scholar
  54. 54.
    Beanlands RSB, Chow BJW, Dick A, Friedrich MG, Gulenchyn KY, Kiess M, et al. CCS/CAR/CANM/CNCS/CanSCMR joint position statement on advanced noninvasive cardiac imaging using positron emission tomography, magnetic resonance imaging and multidetector computed tomographic angiography in the diagnosis and evaluation of ischemic heart disease—executive summary. Can J Cardiol. 2007;23(2):107–19.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, et al. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: flurpiridaz F 18 positron emission tomography. J Am Coll Cardiol. 2013;61(4):469–77.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bengel FM, Higuchi T, Javadi MS, Lautamäki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54(1):1–15.CrossRefPubMedGoogle Scholar
  57. 57.
    Yu M, Nekolla SG, Schwaiger M, Robinson SP. The next generation of cardiac positron emission tomography imaging agents: discovery of flurpiridaz F-18 for detection of coronary disease. Semin Nucl Med. 2011;41(4):305–13.CrossRefPubMedGoogle Scholar
  58. 58.
    Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32(7):375–410.CrossRefPubMedGoogle Scholar
  59. 59.
    Slomka P, Berman DS, Alexanderson E, Germano G. The role of PET quantification in cardiovascular imaging. Clin Transl Imaging. 2014;2(4):343–58.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Uebleis C, Hellweger S, Laubender RP, Becker A, Sohn H-Y, Lehner S, et al. The amount of dysfunctional but viable myocardium predicts long-term survival in patients with ischemic cardiomyopathy and left ventricular dysfunction. Int J Cardiovasc Imaging. 2013;29(7):1645–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Schwaiger M, Muzik O. Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol. 1991;67(14):35D–43D.CrossRefPubMedGoogle Scholar
  62. 62.
    Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6.CrossRefPubMedGoogle Scholar
  63. 63.
    Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126(15):1858–68.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40.CrossRefPubMedGoogle Scholar
  65. 65.
    Beller GA, Bergmann SR. Myocardial perfusion imaging agents: SPECT and PET. J Nucl Cardiol. 2004;11(1):71–86.CrossRefPubMedGoogle Scholar
  66. 66.
    Levin CS, Hoffman EJ. Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol. 1999 M;44(3):781–99.Google Scholar
  67. 67.
    Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5(1):35–46.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE. Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol. 1979;43(2):209–18.CrossRefPubMedGoogle Scholar
  69. 69.
    Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation. 1981;63(6):1259–72.CrossRefPubMedGoogle Scholar
  70. 70.
    Dilsizian V. Highlights from the updated joint ASNC/SNMMI PET myocardial perfusion and metabolism clinical imaging guidelines. J Nucl Med. 2016;57(9):1327–8.CrossRefPubMedGoogle Scholar
  71. 71.
    Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis (2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells. Mitochondrial and plasma membrane potential dependence. Circulation. 1990;82(5):1826–38.CrossRefPubMedGoogle Scholar
  72. 72.
    Younès A, Songadele JA, Maublant J, Platts E, Pickett R, Veyre A. Mechanism of uptake of technetium-tetrofosmin. II: uptake into isolated adult rat heart mitochondria. J Nucl Cardiol. 1995;2(4):327–33.CrossRefPubMedGoogle Scholar
  73. 73.
    Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, et al. BMS-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol. 2007;14(6):789–98.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Maddahi J, Packard RRS, Cardiac PET. perfusion tracers: current status and future directions. Semin Nucl Med. 2014;44(5):333–43.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chiu C-Z, Nakatani S, Zhang G, Tachibana T, Ohmori F, Yamagishi M, et al. Prevention of left ventricular remodeling by long-term corticosteroid therapy in patients with cardiac sarcoidosis. Am J Cardiol. 2005;95(1):143–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Ishimaru S, Tsujino I, Takei T, Tsukamoto E, Sakaue S, Kamigaki M, et al. Focal uptake on 18F-fluoro-2-deoxyglucose positron emission tomography images indicates cardiac involvement of sarcoidosis. Eur Heart J. 2005;26(15):1538–43.CrossRefPubMedGoogle Scholar
  77. 77.
    Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63(4):329–36.CrossRefPubMedGoogle Scholar
  78. 78.
    • Skali H, Schulman AR, Dorbala S. 18F-FDG PET/CT for the assessment of myocardial sarcoidosis. Curr Cardiol Rep. 2013;15(4):352. Perfusion and metabolic activity assessed with 18-F FDG of myocardial tissue can be performed sequentially with positron emission tomography. By comparing perfusion defects with locations of increased or reduced 18-F FDG uptake, the progression of myocardial sarcoidosis can be assessedCrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Weill Cornell MedicineNew YorkUSA
  2. 2.Department of CardiologyWeill Cornell MedicineNew YorkUSA

Personalised recommendations