Skip to main content

Advertisement

Log in

Invasive Hemodynamic Assessment of Patients with Heart Failure and Pulmonary Hypertension

  • Coronary Artery Disease (D Feldman and V Voudris, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Right heart catheterization (RHC) with a pulmonary artery (PA) catheter is a minimally invasive method of obtaining hemodynamic data (e.g., right atrial and pulmonary pressures, cardiac output, pulmonary vascular resistance), which are used to diagnose and manage patients with advanced heart failure (HF), HF with preserved ejection fraction, and pulmonary hypertension (PH). Invasive hemodynamic data obtained from RHC can aid in the prognostication of HF and PH patients and are important in guiding decisions of implanting mechanical circulatory support devices and listing patients for heart and/or lung transplantation. The basis of RHC has also paved the way for implantable hemodynamic devices to monitor pulmonary artery pressures in the outpatient setting, which can reduce rates of HF-related hospitalizations. We will discuss the utility of PA catheters in the diagnosis and management of the aforementioned disease states, the role of implantable hemodynamic monitors, and the complications associated with RHC procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nossaman BD, Scruggs BA, Nossaman VE, et al. History of right heart catheterization: 100 years of experimentation and methodology development. Cardiol Rev. 2010;18(2):94–101.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cournand A. Cardiac catheterization; development of the technique, its contributions to experimental medicine, and its initial applications in man. Acta Med Scand Suppl. 1975;579:3–32.

    CAS  PubMed  Google Scholar 

  3. Ems F. Heart catheterization. JAMA. 1956;162(16):1492.

    Article  Google Scholar 

  4. •• Gidwani U, Mohanty B, Chatterjee K. The pulmonary artery catheter: a critical reappraisal. Cardiol Clin. 2013;31(4):545–65. This is a comprehensive review of the history, utility, and complications of pulmonary artery catheters

    Article  PubMed  Google Scholar 

  5. Bernard GR, Sopko G, Cerra F, et al. Pulmonary artery catheterization and clinical outcomes: National Heart, Lung, and Blood Institute and Food and Drug Administration workshop report. Consensus Statement JAMA. 2000;283(19):2568–72.

    Article  CAS  PubMed  Google Scholar 

  6. Wiener RS, Welch G. Trends in the use of the pulmonary artery catheter in the United States, 1993-2004. JAMA. 2007;298(4):423–9.

    Article  CAS  PubMed  Google Scholar 

  7. • De Backer D. Is there a role for invasive hemodynamic monitoring in acute heart failure management? Curr Heart Fail Rep. 2015;12(3):197–204. This article highlights the importance of the use of pulmonary artery catheters in acute circulatory failure

    Article  CAS  PubMed  Google Scholar 

  8. Connors Jr AF, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients: SUPPORT investigators. JAMA. 1996;276(11):889–97.

    Article  PubMed  Google Scholar 

  9. Binanay C, Califf RM, Hasselblad V, et al. Evaluation study of Congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625–33.

    Article  PubMed  Google Scholar 

  10. •• Yancy CW, Jessup M, Bozkurt B, et al. ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2013;62(16):e147–239. This is a comprehensive review of the management of heart failure, and discusses the clinical scenarios in which right heart catheterization is recommended and may be considered

    Article  PubMed  Google Scholar 

  11. Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterization in the hemodynamic assessment of critically ill patients. Crit Care Med. 1984;12(7):549–53.

    Article  CAS  PubMed  Google Scholar 

  12. Steimle AE, Stevenson LW, Chelimsky-Fallick C, et al. Sustained hemodynamic efficacy of therapy tailored to reduce filling pressures in survivors with advanced heart failure. Circulation. 1997;96:1165–72.

    Article  CAS  PubMed  Google Scholar 

  13. •• Ma TS, Paniagua D, Denktas AE, et al. Usefulness of the sum of pulmonary capillary wedge pressure and right atrial pressure as a congestion index that prognosticates heart failure survival (from the evaluation study of Congestive heart failure and pulmonary artery catheterization effectiveness trial). J Am Coll Cardiol. 2016;118(6):854–9. The authors performed a post-hoc reanalysis of the ESCAPE trial data and demonstrated that invasive hemodynamic measurements can aid prognostication of heart failure

    Article  Google Scholar 

  14. Korabathina R, Heffernan KS, Paruchuri V, Patel AR, Mudd JO, Prutkin JM, Orr NM, Weintraub A, Kimmelstiel CD, Kapur NK. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80(4):593–600.

    Article  PubMed  Google Scholar 

  15. Armstrong HF, Schulze PC, Kato TS, et al. Right ventricular stroke work index as a negative predictor of mortality and initial hospital stay after lung transplantation. J Heart Lung Transplant. 2013;32(6):603–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cohen A, Guyon P, Johnson N, et al. Hemodynamic criteria for diagnosis of right ventricular ischemia associated with inferior wall left ventricular acute myocardial infarction. Am J Cardiol. 1995;76(4):220–5.

    Article  CAS  PubMed  Google Scholar 

  17. Dell’Italia LJ, Starling MR, Crawford MH, Boros BL, Chauduri TK, O’Rourke RA. Right ventricular infarction: identification by hemodynamic measurements before and after volume loading and correlation with noninvasive techniques. J Am Coll Cardiol. 1984;4:931–9.

    Article  PubMed  Google Scholar 

  18. • Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery Pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6. This article demonstrates the ability of invasive hemodynamics in predicting right ventricular failure after implantation of left ventricular assist devices, and how to identify those patients who may need right ventricular support devices

    Article  PubMed  Google Scholar 

  19. Koprivanac M, Kelava M, Sirić F, et al. Predictors of right ventricular failure after left ventricular assist device implantation. Croat Med J. 2014;55:587–95.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fitzpatrick III JR, Frederick JR, Hsu VM, et al. A risk score derived from preoperative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  21. •• Goyal P, Almarzooq ZI, Horn EM, et al. Characteristics of hospitalizations for heart failure with preserved ejection fraction. Am J Med. 2016;129(6):635.e15–26. This article highlights the importance of invasive hemodynamic assessment in patients with heart failure with preserved ejection fraction, and identifies the association of worse outcomes in patients with pulmonary hypertension and HFpEF

    Article  Google Scholar 

  22. Anjan VY, Loftus TM, Burke MA, et al. Prevalence, clinical phenotype, and outcomes associated with normal B-type natriuretic peptide levels in heart failure with preserved ejection fraction. Am J Cardiol. 2012;110:870–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. •• Oktay AA, Shah SJ. Diagnosis and management of heart failure with preserved ejection fraction: 10 key lessons. Curr Cardiol Rev. 2015:11(1):42–52. This is a great comprehensive review of heart failure with preserved ejection fraction.

  24. Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.

    Article  CAS  PubMed  Google Scholar 

  25. Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide levels in obese patients with advanced heart failure. J Am Coll Cardiol. 2006;47:85–90.

    Article  CAS  PubMed  Google Scholar 

  26. Mehra MR, Uber PA, Park MH, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol. 2004;43:1590–5.

    Article  CAS  PubMed  Google Scholar 

  27. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iwanaga Y, Nishi I, Furuichi S, et al. B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol. 2006;47:742–8.

    Article  CAS  PubMed  Google Scholar 

  29. Huis in’t Veld AE, de Man FS, van Rossum AC, Handoko ML. How to diagnose heart failure with preserved ejection fraction: the value of invasive stress testing. Neth Heart J. 2016;24:244–51.

    Article  Google Scholar 

  30. Badesch DB, Champion HC, Sanchez MA, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(1 suppl):S55–66.

    Article  PubMed  Google Scholar 

  31. McLaughlin VV, Archer SL, Badesch DB, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on expert consensus documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119(16):2250–94.

    Article  PubMed  Google Scholar 

  32. Farber HW, Foreman AJ, Miller DP, McGoon MD. REVEAL registry: correlation of right heart catheterization and echocardiography in patients with pulmonary arterial hypertension. Congestive Heart Failure. 2011;17:56–63.

    Article  PubMed  Google Scholar 

  33. •• Hoeper MM, Boggard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25_S):D42–50. This is a concise review of the diagnosis of pulmonary hypertension

    Article  PubMed  Google Scholar 

  34. McLaughlin VV, Humbert M. Pulmonary hypertension. In: Mann DL, Zipes DP, Libby P, Bonow RO, Braunwald E, editors. Braunwald’s heart disease: a textbook of cardiovascular medicine. Tenth ed. Philadelphia: Elsevier Saunders; 2015.

    Google Scholar 

  35. Badesch DB, Abman SH, Ahearn GS, et al. Medical therapy for pulmonary arterial hypertension. ACCP Evidence-based Clinical Practice Guidelines Chest. 2004;126:35S–62S.

    PubMed  Google Scholar 

  36. Sitbon O, Humbert M, Jais X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11.

    Article  CAS  PubMed  Google Scholar 

  37. Sitbon O, Humbert M, Jagot JL, Taravella O, Fartoukh M, Parent F, Hervé P, Simonneau G. Inhaled nitric oxide as a screening agent for safely identifying responders to oral calcium-channel blockers in primary pulmonary hypertension. Eur Respir J. 1998;12:265–70.

    Article  CAS  PubMed  Google Scholar 

  38. Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327:76–81.

    Article  CAS  PubMed  Google Scholar 

  39. Tonelli AR, Alnuaimat H, Mubarak K. Pulmonary vasodilator testing and use of calcium channel blockers in pulmonary arterial hypertension. Respir Med. 2010;104(4):481–96.

    Article  PubMed  Google Scholar 

  40. Mathier MA. Vasoreactivity Testing in Pulmonary Arterial Hypertension. www.medscape.org/viewarticle/555410.

  41. Preston IR, Sagliani KD, Roberts KE, et al. Comparison of acute hemodynamic effects of inhaled nitric oxide and inhaled epoprostenol in patients with pulmonary hypertension. Pulmonary Circulation. 2013;3(1):68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haraldsson A, Kieler-Jensen N, Nathorst-Westfelt U, Bergh CH, Ricksten SE. Comparison of inhaled nitric oxide and inhaled aerosolized prostacyclin in the evaluation of heart transplant candidates with elevated pulmonary vascular resistance. Chest. 1998;114:780–6.

    Article  CAS  PubMed  Google Scholar 

  43. Montani D, Savale L. Natali D, et al; long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J. 2010;31:1898–907.

    Article  CAS  PubMed  Google Scholar 

  44. Frantz R. Hemodynamic monitoring in pulmonary arterial hypertension. Expert Rev Resp Med. 2011;5(2):173–8.

    Article  Google Scholar 

  45. Wood P. Pulmonary hypertension with special reference to the vasoconstrictive factor. Br Heart J. 1958;20:557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34:888–94.

    Article  CAS  PubMed  Google Scholar 

  47. •• Hervé P, Lau EM, Sitbon O, et al. Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J. 2015;46:728–37. This article demonstrates that using mean pulmonary artery pressure along with total pulmonary resistance is superior to using mean PAP alone to assess a pathologic hemodynamic response to exercise

    Article  PubMed  Google Scholar 

  48. Naeije R, Vanderpool R, Dhakal BP, et al. Exercise-induced pulmonary hypertension: physiological basis and methodological concerns. Am J Respir Criti Care Med. 2013;187:576–83.

    Article  Google Scholar 

  49. •• Opitz CF, Hoeper MM, Gibbs SR, et al. Pre-capillary, combined, and post-capillary pulmonary hypertension: a pathophysiologic continuum. J Am Coll Cardiol. 2016;68(4):368–78. This is a nice review of the hemodynamics and pathophysiology of the various forms of pulmonary hypertension

    Article  PubMed  Google Scholar 

  50. Galiè N, Hoeper M, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension. The Task Force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Respir J. 2009;34:1219–63.

    Article  PubMed  Google Scholar 

  51. Long J, Russo MJ, Muller C, Vigneswaran WT. Surgical treatment of pulmonary hypertension: lung transplantation. Pulmonary Circulatio. 2011;1(3):327–33.

    Article  Google Scholar 

  52. Galiè N, Hoeper MM, Humbert M. Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2009;30:2493–537.

    Article  PubMed  Google Scholar 

  53. McLaughlin VV, Shillington A, Rich S. Survival in primary pulmonary hypertension: the impact of epoprostenol therapy. Circulation. 2002;106:1477–82.

    Article  CAS  PubMed  Google Scholar 

  54. Sitbon O, Humbert M, Nunes H, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol. 2002;40:780–8.

    Article  CAS  PubMed  Google Scholar 

  55. George MP, Champion HC, Pilewski JM. Lung transplantation for pulmonary hypertension. Pulmonary Circulation. 2011;1(2):182–91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery hemodynamic monitoring in chronic heart failure: a randomized controlled trial. Lancet. 2011;377(9766):658–66.

    Article  PubMed  Google Scholar 

  57. Maya H Barghash and Alex Reyentovich. The use of implantable HF monitoring systems and the CHAMPION trial: expert analysis. J Am Coll Cardiol January 12, 2016.

  58. Maurer MS, Adamson PB, Costanzo MR, et al. Rationale and Design of the Left Atrial Pressure Monitoring to optimize heart failure therapy study (LAPTOP-HF). J Card Fail. 2015;21(6):479–88.

    Article  PubMed  Google Scholar 

  59. Quaile D. LAPTOP-HF: Left atrial pressure-guided therapy may benefit patients with HF. http://www.healio.com/cardiology

  60. Abraham WT, et al. Late-Breaking Clinical Trials. Presented at: Heart Failure Society of America Scientific Assembly; Sept. 17–20, 2016; Orlando, Fla.

  61. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol. 2006;48:2546–52.

    Article  PubMed  Google Scholar 

  62. Shah S, Boyd G, Pyne CT, et al. Right heart catheterization using antecubital venous access: feasibility, safety and adoption rate in a tertiary center. Catheter Cardiovasc Interv. 2014;84(1):70–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupa K. Patil MD.

Ethics declarations

Conflict of Interest

Rupa K. Patil, Parag Goyal, Rajesh V. Swaminathan, and Luke K. Kim each declare that they have no conflicts of interest.

Dmitriy N. Feldman is a section editor for Current Treatment Options in Cardiovascular Medicine.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Coronary Artery Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, R.K., Goyal, P., Swaminathan, R.V. et al. Invasive Hemodynamic Assessment of Patients with Heart Failure and Pulmonary Hypertension. Curr Treat Options Cardio Med 19, 40 (2017). https://doi.org/10.1007/s11936-017-0544-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-017-0544-4

Keywords

Navigation