Skip to main content

Advertisement

Log in

Imaging High-Risk Atherosclerotic Plaques with PET

  • Imaging (Q Truong, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Atherosclerotic disease, a primary cause of stroke and myocardial infarction, is the most common underlying cause of death worldwide. While atherosclerosis was formerly considered to be a relatively inert structural abnormality, decades of research have since shown that it is a biologically active process, driven by active inflammation. In concert with this conceptual shift, newer strategies to image vascular lesions have evolved. 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging has been validated as a non-invasive tool to characterize atherosclerotic inflammation. It is hypothesized that a combination of structural and biological (e.g., inflammatory) imaging may provide better means to assess clinical risk, to assess efficacy of therapy, and to identify new, effective treatments. Limitations remain, however, and further advances in technology and tracer development are required before FDG PET imaging will contribute a significant clinical impact at the level of the individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Osborn EA, Jaffer FA. The advancing clinical impact of molecular imaging in CVD. JACC Cardiovasc Imag. 2013;6:1327–41.

    Article  Google Scholar 

  2. •• Dweck MR, Chow MWL, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48. The first study to measure 18F-NaF uptake in the coronary arteries with PET/CT. 

    Article  CAS  PubMed  Google Scholar 

  3. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

  4. Tarkin JM, Joshi FR, Rudd JHF. PET imaging of inflammation in atherosclerosis. Nat Rev Cardiol. 2014;11:443–57.

    Article  CAS  PubMed  Google Scholar 

  5. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.

    Article  CAS  PubMed  Google Scholar 

  6. •• Rudd JHF, Warburton EA, Fryer TD, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11. The first study to demonstrate that FDG PET imaging may be use to identify and quantify plaque inflammation. 

    Article  CAS  PubMed  Google Scholar 

  7. James OG, Christensen JD, Wong TZ, Borges-Neto S, Koweek LM. Utility of FDG PET/CT in inflammatory cardiovascular disease. Radiographics. 2011;31:1271–86.

    Article  PubMed  Google Scholar 

  8. Rudd JHF, Narula J, Strauss HW, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography. Ready for prime time? J Am Coll Cardiol. 2010;55:2527–35.

    Article  PubMed  Google Scholar 

  9. Rodríguez-Prados J-C, Través PG, Cuenca J, Rico D, Aragonés J, Martín-Sanz P, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol. 2010;185:605–14.

    Article  PubMed  Google Scholar 

  10. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12:294–301.

    Article  PubMed  Google Scholar 

  11. Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J. 2016. doi:10.1093/eurheartj/ehw147.

    PubMed  Google Scholar 

  12. Tawakol A, Singh P, Mojena M, et al. HIF-1α and PFKFB3 mediate a tight relationship between proinflammatory activation and anerobic metabolism in atherosclerotic macrophages. Arterioscler Thromb Vasc Biol. 2015;35:1463–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rudd JHF, Hyafil F, Fayad ZA. Inflammation imaging in atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1009–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of fdg imaging of the coronary arteries: comparison between acute coronary syndrome and stable angina. JACC Cardiovasc Imag. 2010;3:388–97.

    Article  Google Scholar 

  15. Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Noninvasive detection and localization of vulnerable plaque and arterial thrombosis with computed tomography angiography/positron emission tomography. Circulation. 2008;117:2061–70.

    Article  PubMed  Google Scholar 

  16. Abdelbaky A, Corsini E, Figueroa AL, Fontanez S, Subramanian S, Ferencik M, et al. Focal arterial inflammation precedes subsequent calcification in the same location: a longitudinal FDG-PET/CT study. Circ Cardiovasc Imag. 2013;6:747–54.

    Article  Google Scholar 

  17. Joseph P, Ishai A, Mani V, Kallend D, Rudd J, Fayah ZTA. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression. Eur J Nucl Med. 2016.

  18. Paulmier B, Duet M, Khayat R, Pierquet-Ghazzar N, Laissy JP, Maunoury C, et al. Arterial wall uptake of fluorodeoxyglucose on PET imaging in stable cancer disease patients indicates higher risk for cardiovascular events. J Nucl Cardiol. 2008;15:209–17.

    Article  PubMed  Google Scholar 

  19. •• Figueroa AL, Abdelbaky A, Truong QA, et al. Measurement of arterial activity on routine FDG PET/CT images improves prediction of risk of future CV events. JACC Cardiovasc Imag. 2013;6:1250–9. Arterial inflammation as measured by PET/CT predicts and improves CVD risk discrimination beyond traditional risk factors.

    Article  Google Scholar 

  20. Marnane M, Merwick A, Sheehan OC, et al. Carotid plaque inflammation on 18F-fluorodeoxyglucose positron emission tomography predicts early stroke recurrence. Ann Neurol. 2012;71:709–18.

    Article  PubMed  Google Scholar 

  21. Rudd JHF, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible. Implications for Atherosclerosis Therapy Trials. J Am Coll Cardiol. 2007;50:892–6.

    Article  PubMed  Google Scholar 

  22. Ogawa M, Magata Y, Kato T, Hatano K, Ishino S, Mukai T, et al. Application of 18F-FDG PET for monitoring the therapeutic effect of antiinflammatory drugs on stabilization of vulnerable atherosclerotic plaques. J Nucl Med. 2006;47:1845–50.

    CAS  PubMed  Google Scholar 

  23. Worthley SG, Worthley SG, Zhang ZY, et al. In vivo non-invasive serial monitoring of fdg-pet progression and regression in a rabbit model of atherosclerosis. Int J Cardiovasc Imaging. 2014;25:251–7.

    Article  Google Scholar 

  24. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation. Evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 2006;48:1825–31.

    Article  CAS  PubMed  Google Scholar 

  25. • Tawakol A, Fayad Z, Mogg R. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multi-center FDG-PET/CT feasibility study. J Am. 2013; 62. Use of statin medication reduces FDG uptake in a dose-dependent manner, suggesting a reduction in atherosclerotic plaque inflammation in patients on appropriate medical therapy. 

  26. Van Wijk DF, Sjouke B, Figueroa A, et al. Nonpharmacological lipoprotein apheresis reduces arterial inflammation in familial hypercholesterolemia. J Am Coll Cardiol. 2014;64:1418–26.

    Article  PubMed  Google Scholar 

  27. La Rosa JC, Conti CR. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med. 2005;352:1425–35.

    Article  Google Scholar 

  28. Mizoguchi M, Tahara N, Tahara A, et al. Pioglitazone attenuates atherosclerotic plaque inflammation in patients with impaired glucose tolerance or diabetes: a prospective, randomized, comparator-controlled study using serial FDG PET/CT imaging study of carotid artery and ascending aorta. JACC Cardiovasc Imag. 2011;4:1110–8.

    Article  Google Scholar 

  29. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  CAS  PubMed  Google Scholar 

  30. Fayad ZA, Mani V, Woodward M, et al. Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet. 2011;378:1547–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tawakol A, Singh P, Rudd JHF, et al. Effect of treatment for 12 weeks with rilapladib, a lipoprotein-associated phospholipase A2 inhibitor, on arterial inflammation as assessed with 18F-fluorodeoxyglucose-positron emission tomography imaging. J Am Coll Cardiol. 2014;63:86–8.

    Article  CAS  PubMed  Google Scholar 

  32. White HD. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014; 140330050005008.

  33. O’Donoghue ML, Braunwald E, White HD, et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. Jama. 2014;312:1006–15.

    Article  PubMed  Google Scholar 

  34. Hsue PY, Waters DD. What a cardiologist needs to know about patients with human immunodeficiency virus infection. Circulation. 2005;112:3947–57.

    Article  PubMed  Google Scholar 

  35. Triant VA, Lee H, Hadigan C, Grinspoon SK. Increased acute myocardial infarction rates and cardiovascular risk factors among patients with human immunodeficiency virus disease. J Clin Endocrinol Metab. 2007;92:2506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. • Subramanian S, Tawakol A, Burdo TH, et al. Arterial inflammation in patients with HIV. JAMA. 2012;308:379–86. HIV infection is associated with significant arterial inflammation, even in patients with undetectable viremia and few traditional risk factors for cardiac disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zanni MV, Toribio M, Robbins GK, et al. Effects of antiretroviral therapy on immune function and arterial inflammation in treatment-naive patients with human immunodeficiency virus infection. JAMA Cardiol. 2016. doi:10.1001/jamacardio.2016.0846.

    PubMed  Google Scholar 

  38. Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713.

    Article  PubMed  Google Scholar 

  39. Nahrendorf M, Frantz S, Swirski FK, et al. Imaging systemic inflammatory networks in ischemic heart disease. J Am Coll Cardiol. 2015;65:1583–91.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tarkin JM, Rudd JHF. Techniques for noninvasive molecular imaging of atherosclerotic plaque. Nat Rev Cardiol. 2015;12:79.

    Article  PubMed  Google Scholar 

  41. •• Joshi NV, Vesey AT, Williams MC, et al. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13. 18F-NaF PET allows identification of culprit coronary lesions.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Tawakol MD.

Ethics declarations

Conflict of Interest

Shawnbir Gogia and Yannick Kaiser each declare no potential conflicts of interest.

Ahmed Tawakol reports grants from Actelion, Genetech, and Takeda and personal fees from Actelion, Amgen, Astra Zeneca, and Takeda.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogia, S., Kaiser, Y. & Tawakol, A. Imaging High-Risk Atherosclerotic Plaques with PET. Curr Treat Options Cardio Med 18, 76 (2016). https://doi.org/10.1007/s11936-016-0495-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-016-0495-1

Keywords

Navigation