The Role of Lifestyle in Male Infertility: Diet, Physical Activity, and Body Habitus

  • Russell P. Hayden
  • Ryan Flannigan
  • Peter N. Schlegel
Men's Health (A Dabaja, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Men’s Health

Abstract

Purpose of Review

Increasing attention to primary and secondary prevention of male infertility through modifiable lifestyle factors has gained traction amongst both patients and infertility specialists. In this review, the available evidence of modifiable lifestyle choices, specifically diet, physical activity, and body habitus, are evaluated.

Recent Findings

Studies examining diet, exercise/physical activity, and body habitus are characterized by conflicting conclusions, difficult confounders, and imperfect end points to judge male reproductive potential. However, convincing trends have emerged implicating consumption of saturated fats, pesticide exposure, high intensity exercise, and extremes of body mass index as detrimental to male fertility.

Summary

Data assessing modifiable risk factors and subfertility in male partners has emphasized the notion of moderation. Balancing dietary fat, moderation of physical activity, and the management of a healthy body habitus favor both improvement of semen quality and birth outcomes. These observations provide actionable data for the reproductive urologist to better counsel men presenting with infertility.

Keywords

Male infertility Lifestyle Diet Exercise Obesity 

Abbreviations

ART

Assisted reproductive technology

BMI

Body mass index

CI

95% Confidence interval

EARTH

Environment and Reproductive Health Cohort

ICSI

Intracytoplasmic sperm injection

LIFE

Fertility and the Environment Study Cohort

OAT

Oligoasthenoteratospermia

Notes

Compliance with Ethical Standards

Conflict of Interest

Russell P. Hayden, Ryan Flannigan, and Peter N. Schlegel each declare no potential conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77(5):873–82.CrossRefPubMedGoogle Scholar
  2. 2.
    Safarinejad MR, Safarinejad S. The roles of omega-3 and omega-6 fatty acids in idiopathic male infertility. Asian Journal of Andrology. 2012;14(4):514–5.  https://doi.org/10.1038/aja.2012.46.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chavarro JE, Minguez-Alarcon L, Mendiola J, Cutillas-Tolin A, Lopez-Espin JJ, Torres-Cantero AM. Trans fatty acid intake is inversely related to total sperm count in young healthy men. Human Reproduction (Oxford, England). 2014;29(3):429–40.  https://doi.org/10.1093/humrep/det464.
  4. 4.
    Attaman JA, Toth TL, Furtado J, Campos H, Hauser R, Chavarro JE. Dietary fat and semen quality among men attending a fertility clinic. Human Reproduction (Oxford, England). 2012;27(5):1466–74.  https://doi.org/10.1093/humrep/des065. CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jensen TK, Heitmann BL, Blomberg Jensen M, Halldorsson TI, Andersson AM, Skakkebaek NE, et al. High dietary intake of saturated fat is associated with reduced semen quality among 701 young Danish men from the general population. Am J Clin Nutr. 2013;97(2):411–8.  https://doi.org/10.3945/ajcn.112.042432.CrossRefPubMedGoogle Scholar
  6. 6.
    Xia W, Chiu YH, Williams PL, Gaskins AJ, Toth TL, Tanrikut C, et al. Men’s meat intake and treatment outcomes among couples undergoing assisted reproduction. Fertil Steril. 2015;104(4):972–9.  https://doi.org/10.1016/j.fertnstert.2015.06.037.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Afeiche MC, Gaskins AJ, Williams PL, Toth TL, Wright DL, Tanrikut C, et al. Processed meat intake is unfavorably and fish intake favorably associated with semen quality indicators among men attending a fertility clinic. J Nutr. 2014;144(7):1091–8.  https://doi.org/10.3945/jn.113.190173.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zibaeenezhad MJ, Ghavipisheh M, Attar A, Aslani A. Comparison of the effect of omega-3 supplements and fresh fish on lipid profile: a randomized, open-labeled trial. Nutrition Diabetes. 2017;7(12):1.  https://doi.org/10.1038/s41387-017-0007-8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Weaver KL, Ivester P, Seeds M, Case LD, Arm JP, Chilton FH. Effect of dietary fatty acids on inflammatory gene expression in healthy humans. J Biol Chem. 2009;284(23):15400–7.  https://doi.org/10.1074/jbc.M109.004861. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clinical Nutrition (Edinburgh, Scotland). 2010;29(1):100–5.  https://doi.org/10.1016/j.clnu.2009.07.008.
  11. 11.
    Safarinejad MR. Effect of omega-3 polyunsaturated fatty acid supplementation on semen profile and enzymatic anti-oxidant capacity of seminal plasma in infertile men with idiopathic oligoasthenoteratospermia: a double-blind, placebo-controlled, randomised study. Andrologia. 2011;43(1):38–47.  https://doi.org/10.1111/j.1439-0272.2009.01013.x.CrossRefPubMedGoogle Scholar
  12. 12.
    Minguez-Alarcon L, Afeiche MC, Williams PL, Arvizu M, Tanrikut C, Amarasiriwardena CJ, et al. Hair mercury (Hg) levels, fish consumption and semen parameters among men attending a fertility center. Int J Hyg Environ Health. 2018;221(2):174–82.  https://doi.org/10.1016/j.ijheh.2017.10.014.CrossRefPubMedGoogle Scholar
  13. 13.
    Hyseni L, Bromley H, Kypridemos C, O’Flaherty M, Lloyd-Williams F, Guzman-Castillo M, et al. Systematic review of dietary trans-fat reduction interventions. Bull World Health Organ. 2017;95(12):821–30g.  https://doi.org/10.2471/blt.16.189795.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med. 2006;354(15):1601–13.  https://doi.org/10.1056/NEJMra054035.CrossRefPubMedGoogle Scholar
  15. 15.
    Hanis T, Zidek V, Sachova J, Klir P, Deyl Z. Effects of dietary trans-fatty acids on reproductive performance of Wistar rats. Br J Nutr. 1989;61(3):519–29.CrossRefPubMedGoogle Scholar
  16. 16.
    Ganmaa D, Wang PY, Qin LQ, Hoshi K, Sato A. Is milk responsible for male reproductive disorders? Med Hypotheses. 2001;57(4):510–4.  https://doi.org/10.1054/mehy.2001.1380.CrossRefPubMedGoogle Scholar
  17. 17.
    Liu CY, Chou YC, Chao JC, Hsu CY, Cha TL, Tsao CW. The association between dietary patterns and semen quality in a general Asian population of 7282 males. PLoS One. 2015;10(7):e0134224.  https://doi.org/10.1371/journal.pone.0134224.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vilela CLS, Bassin JP, Peixoto RS. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environmental pollution (Barking, Essex : 1987). 2018;235:546–59.  https://doi.org/10.1016/j.envpol.2017.12.098.
  19. 19.
    Goyon A, Cai JZ, Kraehenbuehl K, Hartmann C, Shao B, Mottier P. Determination of steroid hormones in bovine milk by LC-MS/MS and their levels in Swiss Holstein cow milk. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment. 2016;33(5):804–16.  https://doi.org/10.1080/19440049.2016.1175186.CrossRefGoogle Scholar
  20. 20.
    Mendiola J, Torres-Cantero AM, Moreno-Grau JM, Ten J, Roca M, Moreno-Grau S, et al. Food intake and its relationship with semen quality: a case-control study. Fertil Steril. 2009;91(3):812–8.  https://doi.org/10.1016/j.fertnstert.2008.01.020.CrossRefPubMedGoogle Scholar
  21. 21.
    Hartmann S, Lacorn M, Steinhart H. Natural occurrence of steroid hormones in food. Food Chem. 1998;62:7–20.CrossRefGoogle Scholar
  22. 22.
    Vujkovic M, de Vries JH, Dohle GR, Bonsel GJ, Lindemans J, Macklon NS, et al. Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Human Reproduction (Oxford, England). 2009;24(6):1304–12.  https://doi.org/10.1093/humrep/dep024. CrossRefGoogle Scholar
  23. 23.
    Afeiche M, Williams PL, Mendiola J, Gaskins AJ, Jorgensen N, Swan SH, et al. Dairy food intake in relation to semen quality and reproductive hormone levels among physically active young men. Human Reproduction (Oxford, England). 2013;28(8):2265–75.  https://doi.org/10.1093/humrep/det133. CrossRefGoogle Scholar
  24. 24.
    Afeiche MC, Bridges ND, Williams PL, Gaskins AJ, Tanrikut C, Petrozza JC, et al. Dairy intake and semen quality among men attending a fertility clinic. Fertil Steril. 2014;101(5):1280–7.  https://doi.org/10.1016/j.fertnstert.2014.02.003.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2010;299(5):E685–94.  https://doi.org/10.1152/ajpendo.00283.2010.CrossRefPubMedGoogle Scholar
  26. 26.
    Jensen TK, Swan SH, Skakkebaek NE, Rasmussen S, Jorgensen N. Caffeine intake and semen quality in a population of 2,554 young Danish men. Am J Epidemiol. 2010;171(8):883–91.  https://doi.org/10.1093/aje/kwq007.CrossRefPubMedGoogle Scholar
  27. 27.
    Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Mendiola J, Jorgensen N, et al. Sugar-sweetened beverage intake in relation to semen quality and reproductive hormone levels in young men. Human Reproduction (Oxford, England). 2014;29(7):1575–84.  https://doi.org/10.1093/humrep/deu102. CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ricci E, Vigano P, Cipriani S, Somigliana E, Chiaffarino F, Bulfoni A, et al. Coffee and caffeine intake and male infertility: a systematic review. Nutrition Journal. 2017;16(1):37.  https://doi.org/10.1186/s12937-017-0257-2.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dias TR, Alves MG, Bernardino RL, Martins AD, Moreira AC, Silva J, et al. Dose-dependent effects of caffeine in human Sertoli cells metabolism and oxidative profile: relevance for male fertility. Toxicology. 2015;328:12–20.  https://doi.org/10.1016/j.tox.2014.12.003.CrossRefPubMedGoogle Scholar
  30. 30.
    Jensen TK, Henriksen TB, Hjollund NH, Scheike T, Kolstad H, Giwercman A, et al. Caffeine intake and fecundability: a follow-up study among 430 Danish couples planning their first pregnancy. Reproductive Toxicology (Elmsford, NY). 1998;12(3):289–95.CrossRefGoogle Scholar
  31. 31.
    Florack EI, Zielhuis GA, Rolland R. Cigarette smoking, alcohol consumption, and caffeine intake and fecundability. Prev Med. 1994;23(2):175–80.  https://doi.org/10.1006/pmed.1994.1024.CrossRefPubMedGoogle Scholar
  32. 32.
    Jurewicz J, Radwan M, Sobala W, Radwan P, Jakubowski L, Hawula W, et al. Lifestyle factors and sperm aneuploidy. Reprod Biol. 2014;14(3):190–9.  https://doi.org/10.1016/j.repbio.2014.02.002.CrossRefPubMedGoogle Scholar
  33. 33.
    Radwan M, Jurewicz J, Merecz-Kot D, Sobala W, Radwan P, Bochenek M, et al. Sperm DNA damage-the effect of stress and everyday life factors. Int J Impot Res. 2016;28(4):148–54.  https://doi.org/10.1038/ijir.2016.15.CrossRefPubMedGoogle Scholar
  34. 34.
    Wesselink AK, Wise LA, Rothman KJ, Hahn KA, Mikkelsen EM, Mahalingaiah S, et al. Caffeine and caffeinated beverage consumption and fecundability in a preconception cohort. Reproductive Toxicology (Elmsford, NY). 2016;62:39–45.  https://doi.org/10.1016/j.reprotox.2016.04.022.CrossRefGoogle Scholar
  35. 35.
    Karmon AE, Toth TL, Chiu YH, Gaskins AJ, Tanrikut C, Wright DL, et al. Male caffeine and alcohol intake in relation to semen parameters and in vitro fertilization outcomes among fertility patients. Andrology. 2017;5(2):354–61.  https://doi.org/10.1111/andr.12310.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gaskins AJ, Colaci DS, Mendiola J, Swan SH, Chavarro JE. Dietary patterns and semen quality in young men. Human Reproduction (Oxford, England). 2012;27(10):2899–907.  https://doi.org/10.1093/humrep/des298. CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chiu YH, Afeiche MC, Gaskins AJ, Williams PL, Petrozza JC, Tanrikut C, et al. Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic. Human Reproduction (Oxford, England). 2015;30(6):1342–51.  https://doi.org/10.1093/humrep/dev064. CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Martenies SE, Perry MJ. Environmental and occupational pesticide exposure and human sperm parameters: a systematic review. Toxicology. 2013;307:66–73.  https://doi.org/10.1016/j.tox.2013.02.005.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fortes C, Mastroeni S, Pilla MA, Antonelli G, Lunghini L, Aprea C. The relation between dietary habits and urinary levels of 3-phenoxybenzoic acid, a pyrethroid metabolite. Food and Chemical Toxicology: an international journal published for the British Industrial Biological Research Association. 2013;52:91–6.  https://doi.org/10.1016/j.fct.2012.10.035.CrossRefGoogle Scholar
  40. 40.
    Chiu YH, Williams PL, Minguez-Alarcon L, Gillman M, Sun Q, Ospina M, et al. Comparison of questionnaire-based estimation of pesticide residue intake from fruits and vegetables with urinary concentrations of pesticide biomarkers. Journal of Exposure Science & Environmental Epidemiology. 2018;28(1):31–9.  https://doi.org/10.1038/jes.2017.22.CrossRefGoogle Scholar
  41. 41.
    Chiu YH, Gaskins AJ, Williams PL, Mendiola J, Jorgensen N, Levine H, et al. Intake of fruits and vegetables with low-to-moderate pesticide residues is positively associated with semen-quality parameters among young healthy men. J Nutr. 2016;146(5):1084–92.  https://doi.org/10.3945/jn.115.226563.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Vaamonde-Lemos R, Swanson RJ, Oehninger SC. Response of semen parameters to three training modalities. Fertil Steril. 2009;92(6):1941–6.  https://doi.org/10.1016/j.fertnstert.2008.09.010.CrossRefPubMedGoogle Scholar
  43. 43.
    Griffith RO, Dressendorfer RH, Fullbright CD, Wade CE. Testicular function during exhaustive endurance training. Phys Sportsmed. 1990;18(5):54–64.  https://doi.org/10.1080/00913847.1990.11710041.CrossRefPubMedGoogle Scholar
  44. 44.
    Steinacker JM, Lormes W, Kellmann M, Liu Y, Reissnecker S, Opitz-Gress A, et al. Training of junior rowers before world championships. Effects on performance, mood state and selected hormonal and metabolic responses. The Journal of Sports Medicine and Physical Fitness. 2000;40(4):327–35.PubMedGoogle Scholar
  45. 45.
    Grandys M, Majerczak J, Duda K, Zapart-Bukowska J, Kulpa J, Zoladz JA. Endurance training of moderate intensity increases testosterone concentration in young, healthy men. Int J Sports Med. 2009;30(7):489–95.  https://doi.org/10.1055/s-0029-1202340.CrossRefPubMedGoogle Scholar
  46. 46.
    Wise LA, Cramer DW, Hornstein MD, Ashby RK, Missmer SA. Physical activity and semen quality among men attending an infertility clinic. Fertil Steril. 2011;95(3):1025–30.  https://doi.org/10.1016/j.fertnstert.2010.11.006.CrossRefPubMedGoogle Scholar
  47. 47.
    • Safarinejad MR, Azma K, Kolahi AA. The effects of intensive, long-term treadmill running on reproductive hormones, hypothalamus-pituitary-testis axis, and semen quality: a randomized controlled study. J Endocrinol. 2009;200(3):259–71.  https://doi.org/10.1677/joe-08-0477. The highest quality study demonstrating an adverse effect of intense exercise upon semen parameters CrossRefPubMedGoogle Scholar
  48. 48.
    Vaamonde D, Algar-Santacruz C, Abbasi A, Garcia-Manso JM. Sperm DNA fragmentation as a result of ultra-endurance exercise training in male athletes. Andrologia. 2018;50(1)  https://doi.org/10.1111/and.12793.
  49. 49.
    Vaamonde D, Da Silva-Grigoletto ME, Garcia-Manso JM, Barrera N, Vaamonde-Lemos R. Physically active men show better semen parameters and hormone values than sedentary men. Eur J Appl Physiol. 2012;112(9):3267–73.  https://doi.org/10.1007/s00421-011-2304-6.CrossRefPubMedGoogle Scholar
  50. 50.
    Minguez-Alarcon L, Chavarro JE, Mendiola J, Gaskins AJ, Torres-Cantero AM. Physical activity is not related to semen quality in young healthy men. Fertil Steril. 2014;102(4):1103–9.  https://doi.org/10.1016/j.fertnstert.2014.06.032.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gaskins AJ, Afeiche MC, Hauser R, Williams PL, Gillman MW, Tanrikut C, et al. Paternal physical and sedentary activities in relation to semen quality and reproductive outcomes among couples from a fertility center. Human Reproduction (Oxford, England). 2014;29(11):2575–82.  https://doi.org/10.1093/humrep/deu212. CrossRefPubMedCentralGoogle Scholar
  52. 52.
    McPherson NO, Bakos HW, Owens JA, Setchell BP, Lane M. Improving metabolic health in obese male mice via diet and exercise restores embryo development and fetal growth. PLoS One. 2013;8(8):e71459.  https://doi.org/10.1371/journal.pone.0071459.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gaskins AJ, Mendiola J, Afeiche M, Jorgensen N, Swan SH, Chavarro JE. Physical activity and television watching in relation to semen quality in young men. Br J Sports Med. 2015;49(4):265–70.  https://doi.org/10.1136/bjsports-2012-091644.CrossRefPubMedGoogle Scholar
  54. 54.
    Eisenberg ML, Chen Z, Ye A, Buck Louis GM. Relationship between physical occupational exposures and health on semen quality: data from the Longitudinal Investigation of Fertility and the Environment (LIFE) Study. Fertil Steril. 2015;103(5):1271–7.  https://doi.org/10.1016/j.fertnstert.2015.02.010.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sheiner EK, Sheiner E, Carel R, Potashnik G, Shoham-Vardi I. Potential association between male infertility and occupational psychological stress. J Occup Environ Med. 2002;44(12):1093–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Saki G, Rahim F, Vaysi OA. Effect of forced swimming stress on in-vivo fertilization capacity of rat and subsequent offspring quality. Journal of Human Reproductive Sciences. 2010;3(1):32–4.  https://doi.org/10.4103/0974-1208.63120.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Li Y, Lin H, Li Y, Cao J. Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril. 2011;95(1):116–23.  https://doi.org/10.1016/j.fertnstert.2010.06.031.CrossRefPubMedGoogle Scholar
  58. 58.
    Oliveira PF, Sousa M, Silva BM, Monteiro MP, Alves MG. Obesity, energy balance and spermatogenesis. Reproduction (Cambridge, England). 2017;153(6):R173–r85.  https://doi.org/10.1530/rep-17-0018. CrossRefGoogle Scholar
  59. 59.
    El Salam MAA. Obesity, an enemy of male fertility: a mini review. Oman Medical Journal. 2018;33(1):3–6.  https://doi.org/10.5001/omj.2018.02.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Allaway HC, Southmayd EA, De Souza MJ. The physiology of functional hypothalamic amenorrhea associated with energy deficiency in exercising women and in women with anorexia nervosa. Horm Mol Biol Clin Invest. 2016;25(2):91–119.  https://doi.org/10.1515/hmbci-2015-0053. Google Scholar
  61. 61.
    Katz MG, Vollenhoven B. The reproductive endocrine consequences of anorexia nervosa. BJOG: an International Journal of Obstetrics and Gynaecology. 2000;107(6):707–13.CrossRefGoogle Scholar
  62. 62.
    Loucks AB. Energy availability and infertility. Current Opinion in Endocrinology, Diabetes, and Obesity. 2007;14(6):470–4.  https://doi.org/10.1097/MED.0b013e3282f1cb6a.CrossRefPubMedGoogle Scholar
  63. 63.
    The NS, Gordon-Larsen P. Entry into romantic partnership is associated with obesity. Obesity (Silver Spring, Md). 2009;17(7):1441–7.  https://doi.org/10.1038/oby.2009.97.
  64. 64.
    Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075–81.  https://doi.org/10.1016/j.biochi.2012.02.022.CrossRefPubMedGoogle Scholar
  65. 65.
    Raman JD, Schlegel PN. Aromatase inhibitors for male infertility. J Urol. 2002;167(2 Pt 1):624–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Dabaja AA, Schlegel PN. Medical treatment of male infertility. Translational Andrology and Urology. 2014;3(1):9–16.  https://doi.org/10.3978/j.issn.2223-4683.2014.01.06. PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang J, Gong M. Review of the role of leptin in the regulation of male reproductive function. Andrologia. 2018;50  https://doi.org/10.1111/and.12965.
  68. 68.
    Landry D, Cloutier F, Martin LJ. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod Biol. 2013;13(1):1–14.  https://doi.org/10.1016/j.repbio.2012.12.001.CrossRefPubMedGoogle Scholar
  69. 69.
    Martins AD, Moreira AC, Sa R, Monteiro MP, Sousa M, Carvalho RA, et al. Leptin modulates human Sertoli cells acetate production and glycolytic profile: a novel mechanism of obesity-induced male infertility? Biochim Biophys Acta. 2015;1852(9):1824–32.  https://doi.org/10.1016/j.bbadis.2015.06.005.CrossRefPubMedGoogle Scholar
  70. 70.
    Borges BC, Garcia-Galiano D, da Silveira Cruz-Machado S, Han X, Gavrilina GB, Saunders TL, et al. Obesity-induced infertility in male mice is associated with disruption of Crisp4 expression and sperm fertilization capacity. Endocrinology. 2017;158(9):2930–43.  https://doi.org/10.1210/en.2017-00295. CrossRefPubMedGoogle Scholar
  71. 71.
    Thomsen L, Humaidan P, Bungum L, Bungum M. The impact of male overweight on semen quality and outcome of assisted reproduction. Asian Journal of Andrology. 2014;16(5):749–54.  https://doi.org/10.4103/1008-682x.125398.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tsao CW, Liu CY, Chou YC, Cha TL, Chen SC, Hsu CY. Exploration of the association between obesity and semen quality in a 7630 male population. PLoS One. 2015;10(3):e0119458.  https://doi.org/10.1371/journal.pone.0119458.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Shayeb AG, Harrild K, Mathers E, Bhattacharya S. An exploration of the association between male body mass index and semen quality. Reprod BioMed Online. 2011;23(6):717–23.  https://doi.org/10.1016/j.rbmo.2011.07.018.CrossRefPubMedGoogle Scholar
  74. 74.
    Mir J, Franken D, Andrabi SW, Ashraf M, Rao K. Impact of weight loss on sperm DNA integrity in obese men. Andrologia. 2018;50  https://doi.org/10.1111/and.12957.
  75. 75.
    Sermondade N, Faure C, Fezeu L, Levy R, Czernichow S. Obesity and increased risk for oligozoospermia and azoospermia. Arch Intern Med. 2012;172(5):440–2.  https://doi.org/10.1001/archinternmed.2011.1382.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    • Campbell JM, Lane M, Owens JA, Bakos HW. Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod BioMed Online. 2015;31(5):593–604.  https://doi.org/10.1016/j.rbmo.2015.07.012. A comprehensive meta-analysis assessing obesity upon semen parameters and couple-based reproductive outcomes CrossRefPubMedGoogle Scholar
  77. 77.
    Bakos HW, Henshaw RC, Mitchell M, Lane M. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rates following assisted reproductive technology. Fertil Steril. 2011;95(5):1700–4.  https://doi.org/10.1016/j.fertnstert.2010.11.044.CrossRefPubMedGoogle Scholar
  78. 78.
    Keltz J, Zapantis A, Jindal SK, Lieman HJ, Santoro N, Polotsky AJ. Overweight men: clinical pregnancy after ART is decreased in IVF but not in ICSI cycles. J Assist Reprod Genet. 2010;27(9–10):539–44.  https://doi.org/10.1007/s10815-010-9439-y.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sundaram R, Mumford SL, Buck Louis GM. Couples’ body composition and time-to-pregnancy. Human Reproduction (Oxford, England). 2017;32(3):662–8.  https://doi.org/10.1093/humrep/dex001. CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Nguyen RH, Wilcox AJ, Skjaerven R, Baird DD. Men’s body mass index and infertility. Human Reproduction (Oxford, England). 2007;22(9):2488–93.  https://doi.org/10.1093/humrep/dem139. CrossRefGoogle Scholar
  81. 81.
    Wise LA, Rothman KJ, Mikkelsen EM, Sorensen HT, Riis A, Hatch EE. An internet-based prospective study of body size and time-to-pregnancy. Human Reproduction (Oxford, England). 2010;25(1):253–64.  https://doi.org/10.1093/humrep/dep360. CrossRefGoogle Scholar
  82. 82.
    Hall KD, Kahan S. Maintenance of lost weight and long-term management of obesity. The Medical Clinics of North America. 2018;102(1):183–97.  https://doi.org/10.1016/j.mcna.2017.08.012.CrossRefPubMedGoogle Scholar
  83. 83.
    Anderson JW, Konz EC, Frederich RC, Wood CL. Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr. 2001;74(5):579–84.CrossRefPubMedGoogle Scholar
  84. 84.
    Loveman E, Frampton GK, Shepherd J, Picot J, Cooper K, Bryant J, et al. The clinical effectiveness and cost-effectiveness of long-term weight management schemes for adults: a systematic review. Health Technology Assessment (Winchester, England). 2011;15(2):1–182.  https://doi.org/10.3310/hta15020. Google Scholar
  85. 85.
    di Frega AS, Dale B, Di Matteo L, Wilding M. Secondary male factor infertility after Roux-en-Y gastric bypass for morbid obesity: case report. Human Reproduction (Oxford, England). 2005;20(4):997–8.  https://doi.org/10.1093/humrep/deh707. CrossRefGoogle Scholar
  86. 86.
    El Bardisi H, Majzoub A, Arafa M, AlMalki A, Al Said S, Khalafalla K, et al. Effect of bariatric surgery on semen parameters and sex hormone concentrations: a prospective study. Reprod BioMed Online. 2016;33(5):606–11.  https://doi.org/10.1016/j.rbmo.2016.08.008.CrossRefPubMedGoogle Scholar
  87. 87.
    Reis LO, Zani EL, Saad RD, Chaim EA, de Oliveira LC, Fregonesi A. Bariatric surgery does not interfere with sperm quality—a preliminary long-term study. Reproductive Sciences (Thousand Oaks, Calif). 2012;19(10):1057–62.  https://doi.org/10.1177/1933719112440747.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Russell P. Hayden
    • 1
  • Ryan Flannigan
    • 1
  • Peter N. Schlegel
    • 1
  1. 1.Department of UrologyWeill Cornell MedicineNew YorkUSA

Personalised recommendations