Advertisement

Single-Site Laparoscopy and Robotic Surgery in Pediatric Urology

  • Diana K. Bowen
  • Jason P. Van Batavia
  • Arun K. Srinivasan
Endourology (P Mucksavage, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Endourology

Abstract

Purpose of Review

In this review, we summarize research that has evaluated the role of laparoendoscopic single-site (LESS) and robotic surgery in pediatric urology, highlighting new and/or controversial ideas.

Recent Findings

The newest research developments over the last several years are studies that address generalizability of these techniques, ideal patient factors, extrapolation to more complex surgeries, and comparative studies to more traditional techniques to define the associated costs and benefits, as well as patient-centered outcomes. Specifically in the field of LESS, addressing the limitations of suboptimal vision, instrument crowding, and loss of triangulation have been a focus. The literature is now replete with new applications for robotic surgery as well as descriptions of the specific technical challenges inherent to pediatrics.

Summary

Robotic surgery and LESS are areas of growth in pediatric urology that allow continual innovation and expansion of technology within a surgeon's armamentarium.

Keywords

Pediatric urology Laparoendoscopic single-site surgery Robotic surgery LESS 

Notes

Compliance with Ethical Standards

Conflict of Interest

Diana K. Bowen, Jason P. Van Batavia, and Arun K. Srinivasan each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Bayazit Y, Aridogan IA, Abat D, Satar N, Doran S. Pediatric transumbilical laparoendoscopic single-site nephroureterectomy: initial report. Urology. 2009;74(5):1116–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaouk JH, Palmer JS. Single-port laparoscopic surgery: initial experience in children for varicocelectomy. BJU Int. 2008;102(1):97–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Kawauchi A, Naitoh Y, Miki T. Laparoendoscopic single-site surgery for pediatric patients in urology. Curr Opin Urol. 2011;21(4):303–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Abdel-Karim AM, Fahmy A, Moussa A, Rashad H, Elbadry M, Badawy H, et al. Laparoscopic pyeloplasty versus open pyeloplasty for recurrent ureteropelvic junction obstruction in children. Journal of pediatric urology. 2016;12(6):401 e1–6.CrossRefGoogle Scholar
  5. 5.
    Luithle T, Szavay P, Fuchs J. Single-incision laparoscopic nephroureterectomy in children of all age groups. J Pediatr Surg. 2013;48(5):1142–6.CrossRefPubMedGoogle Scholar
  6. 6.
    • Khambati A, Wehbi E, Farhat WA. Laparo-endoscopic single site surgery in pediatrics: Feasibility and surgical outcomes from a preliminary prospective Canadian experience. Can Urol Assoc J = JAssoc Urol Can. 2015;9(1–2):48–52. Primary analysis of pediatric LESS procedures analyzed prospectively. CrossRefGoogle Scholar
  7. 7.
    Boo YJ, Han HJ, Ji WB, Lee JS. Laparoscopic hernia sac transection and intracorporeal ligation show very low recurrence rate in pediatric inguinal hernia. J Laparoendosc Adv Surg Tech A. 2012;22(7):720–3.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen Y, Wang F, Zhong H, Zhao J, Li Y, Shi Z. A systematic review and meta-analysis concerning single-site laparoscopic percutaneous extraperitoneal closure for pediatric inguinal hernia and hydrocele. Surg Endosc. 2017;31(12):4888–901.CrossRefPubMedGoogle Scholar
  9. 9.
    Grimsby GM, Keays MA, Villanueva C, Bush NC, Snodgrass WT, Gargollo PC, et al. Non-absorbable sutures are associated with lower recurrence rates in laparoscopic percutaneous inguinal hernia ligation. J Pediatr Urol. 2015;11(5):275 e1–4.CrossRefGoogle Scholar
  10. 10.
    Ozgediz D, Roayaie K, Lee H, Nobuhara KK, Farmer DL, Bratton B, et al. Subcutaneous endoscopically assisted ligation (SEAL) of the internal ring for repair of inguinal hernias in children: report of a new technique and early results. Surg Endosc. 2007;21(8):1327–31.CrossRefPubMedGoogle Scholar
  11. 11.
    Dariusz PCJ, Chrzan R, et al. Percutaneous internal ring suturing: A simple minimally invasive technique for inguinal hernia repair in children. J Laparoendosc Adv Surg Tech A. 2006;16(5):513–7.CrossRefGoogle Scholar
  12. 12.
    Wang F, Shou T, Zhong H. Is two-port laparoendoscopic single-site surgery (T-LESS) feasible for pediatric hydroceles? Single-center experience with the initial 59 cases. J Pediatr Urol. 2017.Google Scholar
  13. 13.
    Giseke SGM, Tapadar P, et al. A true laparoscopic herniotomy in children: evaluation of long-term outcome. J Laparoendosc Adv Surg Tech A. 2010;20(2):191–4.CrossRefPubMedGoogle Scholar
  14. 14.
    Wheeler AA, Matz ST, Schmidt S, Pimpalwar A. Laparoscopic inguinal hernia repair in children with transperitoneal division of the hernia sac and proximal purse string closure of peritoneum: our modified new approach. Eur J Pediatr Surg. 2011;21(6):381–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Abd-Alrazek M, Alsherbiny H, Mahfouz M, Alsamahy O, Shalaby R, Shams A, et al. Laparoscopic pediatric inguinal hernia repair: a controlled randomized study. J Pediatr Surg. 2017;52(10):1539–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Batavia JP TC, Chu DI, and Srinivasan AK. Laparoscopic inguinal hernia repair by primary peritoneal flap repair: description of technique and initial results in children. Pediatric Urology Fall Congress, Dallas TX. 2016.Google Scholar
  17. 17.
    Symeonidis EN, Nasioudis D, Economopoulos KP. Laparoendoscopic single-site surgery (LESS) for major urological procedures in the pediatric population: a systematic review. Int J Surg. 2016;29:53–61.CrossRefPubMedGoogle Scholar
  18. 18.
    Esposito C, Escolino M, Castagnetti M, Cerulo M, Settimi A, Cortese G, et al. Two decades of experience with laparoscopic varicocele repair in children: standardizing the technique. J Pediatr Urol. 2017.Google Scholar
  19. 19.
    Gor RA, Long CJ, Shukla AR, Kirsch AJ, Perez-Brayfield M, Srinivasan AK. Multi-institutional experience in laparoendoscopic single-site surgery (LESS): for major extirpative and reconstructive procedures in pediatric urology. Urology. 2016;88:173–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Mizuno K, Kojima Y, Nishio H, Tozawa K, Mizuno H, Kohri K, et al. Transumbilical laparoendoscopic single-site gonadectomy for Turner’s syndrome with Y-chromosome mosaicism. J Pediatr Urol. 2012;8(4):e39–42.CrossRefPubMedGoogle Scholar
  21. 21.
    Blanc T, Muller C, Abdoul H, Peev S, Paye-Jaouen A, Peycelon M, et al. Retroperitoneal laparoscopic pyeloplasty in children: long-term outcome and critical analysis of 10-year experience in a teaching center. Eur Urol. 2013;63(3):565–72.CrossRefPubMedGoogle Scholar
  22. 22.
    Badawy H, Saad A, Fahmy A, Dawood W, Aboulfotouh A, Kamal A, et al. Prospective evaluation of retroperitoneal laparoscopic pyeloplasty in children in the first 2 years of life: Is age a risk factor for conversion? J Pediatr Urol. 2017;13(5):511 e1–4.CrossRefGoogle Scholar
  23. 23.
    Gimbernat HRC, Garcia-Tello A, et al. Transumbilical laparoendoscopic single-site ureteral reimplantation. Actas Urol Esp. 2015;39(3):195–200.CrossRefPubMedGoogle Scholar
  24. 24.
    Tang ZY, Chen Z, He Y, Chen X, Fang XL, Li DJ, et al. Laparoendoscopic single-site ureteroureterostomy with intraoperative retrograde ureteroscopy-assisted technique for benign proximal and middle ureteral strictures: a single-center experience. J Laparoendosc Adv Surg Tech A. 2014;24(7):493–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Bansal D, Cost NG, Bean CM, Noh PH. Pediatric laparo-endoscopic single site partial nephrectomy: feasibility in infants and small children for upper urinary tract duplication anomalies. J Pediatr Urol. 2014;10(5):859–63.CrossRefPubMedGoogle Scholar
  26. 26.
    Bowlin PR, Farhat WA. Laparoscopic nephrectomy and partial nephrectomy: intraperitoneal, retroperitoneal, single site. Urol Clin N Am. 2015;42(1):31–42.CrossRefGoogle Scholar
  27. 27.
    Aneiros Castro B, Cabezali Barbancho D, Tordable Ojeda C, Carrillo Arroyo I, Redondo Sedano J, Gomez Fraile A. Laparoendoscopic single-site nephrectomy in children: is it a good alternative to conventional laparoscopic approach? J Pediatr Urol 2017.Google Scholar
  28. 28.
    Ham WS, Im YJ, Jung HJ, Hong CH, Han WK, Han SW. Initial experience with laparoendoscopic single-site nephrectomy and nephroureterectomy in children. Urology. 2011 May;77(5):1204–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Patel N, Santomauro M, Marietti S, Chiang G. Laparoendoscopic single site surgery in pediatric urology: does it require specialized tools? Int Braz J Urol: Off J Braz Soc Urol. 2016;42(2):277–83.CrossRefGoogle Scholar
  30. 30.
    Tam YH, Pang KK, Tsui SY, Wong YS, Wong HY, Mou JW, et al. Laparoendoscopic single-site nephrectomy and heminephroureterectomy in children using standard laparoscopic setup versus conventional laparoscopy. Urology. 2013;82(2):430–5.CrossRefPubMedGoogle Scholar
  31. 31.
    Islam S, Adams SD, Mahomed AA. SILS: is it cost- and time-effective compared to standard pediatric laparoscopic surgery? Minim Invasive Surg. 2012;2012:807609.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hallbeck MS, Lowndes BR, McCrory B, Morrow MM, Kaufman KR, LaGrange CA. Kinematic and ergonomic assessment of laparoendoscopic single-site surgical instruments during simulator training tasks. Appl Ergon. 2017;62:118–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Bi Y, Lu L, Ruan S. Using conventional 3- and 5-mm straight instruments in laparoendoscopic single-site pyeloplasty in children. J Laparoendosc Adv Surg Tech A. 2011;21(10):969–72.CrossRefPubMedGoogle Scholar
  34. 34.
    Merseburger AS, Herrmann TR, Shariat SF, Kyriazis I, Nagele U, Traxer O, et al. EAU guidelines on robotic and single-site surgery in urology. Eur Urol. 2013;64(2):277–91.CrossRefPubMedGoogle Scholar
  35. 35.
    Peters CA. Robotic pyeloplasty—the new standard of care? J Urol. 2008;180(4):1223–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Paradise HJ, Huang GO, Elizondo Saenz RA, Baek M, Koh CJ. Robot-assisted laparoscopic pyeloplasty in infants using 5-mm instruments. J Pediatr Urol. 2017;13(2):221–2.PubMedGoogle Scholar
  37. 37.
    Meenakshi-Sundaram B, Furr JR, Malm-Buatsi E, Boklage B, Nguyen E, Frimberger D, et al. Reduction in surgical fog with a warm humidified gas management protocol significantly shortens procedure time in pediatric robot-assisted laparoscopic procedures. J Pediatr Urol. 2017;13(5):489 e1–5.CrossRefGoogle Scholar
  38. 38.
    Bowen DK, Lindgren BW, Cheng EY, Gong EM. Can proctoring affect the learning curve of robotic-assisted laparoscopic pyeloplasty? Experience at a high-volume pediatric robotic surgery center. J Robot Surg. 2017;11(1):63–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Barbosa JA, Barayan G, Gridley CM, Sanchez DC, Passerotti CC, Houck CS, et al. Parent and patient perceptions of robotic vs open urological surgery scars in children. J Urol. 2013;190(1):244–50.CrossRefPubMedGoogle Scholar
  40. 40.
    Gargollo PC. Hidden incision endoscopic surgery: description of technique, parental satisfaction and applications. J Urol. 2011;185(4):1425–31.CrossRefPubMedGoogle Scholar
  41. 41.
    Hong YH, DeFoor WR, Jr, Reddy PP, Schulte M, Minevich EA, VanderBrink BA, et al. Hidden incision endoscopic surgery (HIdES) trocar placement for pediatric robotic pyeloplasty: comparison to traditional port placement. J Robot Surg. 2017.Google Scholar
  42. 42.
    Bansal D, Cost NG, Bean CM, Vanderbrink BA, Schulte M, Noh PH. Infant robot-assisted laparoscopic upper urinary tract reconstructive surgery. J Pediatr Urol. 2014;10(5):869–74.CrossRefPubMedGoogle Scholar
  43. 43.
    Avery DI, Herbst KW, Lendvay TS, et al. Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants. J Pediatr Urol. 2015;11:139.e1–5.CrossRefGoogle Scholar
  44. 44.
    NG C. Commentary to “Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants”. J Pediatr Urol. 2015;11:140.CrossRefGoogle Scholar
  45. 45.
    Ahn JJ, Shapiro ME, Ellison JS, Lendvay TS. Pediatric robot-assisted redo pyeloplasty with buccal mucosa graft: a novel technique. Urology. 2017;101:56–9.CrossRefPubMedGoogle Scholar
  46. 46.
    Glaser AP, Bowen DK, Lindgren BW, Meeks JJ. Robot-assisted retroperitoneal lymph node dissection (RA-RPLND) in the adolescent population. J Pediatr Urol. 2017;13(2):223–4.PubMedGoogle Scholar
  47. 47.
    Bowen DK, Casey JT, Cheng EY, Gong EM. Robotic-assisted laparoscopic transplant-to-native ureteroureterostomy in a pediatric patient. J Pediatr Urol. 2014;10(6):1284 e1–2.CrossRefGoogle Scholar
  48. 48.
    Chan YY, Durbin-Johnson B, Sturm RM, Kurzrock EA. Outcomes after pediatric open, laparoscopic, and robotic pyeloplasty at academic institutions. J Pediatr Urol. 2017;13(1):49 e1–6.CrossRefGoogle Scholar
  49. 49.
    Silay MS, Spinoit AF, Undre S, Fiala V, Tandogdu Z, Garmanova T, et al. Global minimally invasive pyeloplasty study in children: results from the Pediatric Urology Expert Group of the European Association of Urology Young Academic Urologists working party. J Pediatr Urol. 2016;12(4):229 e1–7.CrossRefGoogle Scholar
  50. 50.
    Romao RL, Koyle MA, Pippi Salle JL, Alotay A, Figueroa VH, Lorenzo AJ, et al. Failed pyeloplasty in children: revisiting the unknown. Urology. 2013;82(5):1145–7.CrossRefPubMedGoogle Scholar
  51. 51.
    Varda BK, Johnson EK, Clark C, Chung BI, Nelson CP, Chang SL. National trends of perioperative outcomes and costs for open, laparoscopic and robotic pediatric pyeloplasty. J Urol. 2014;191(4):1090–5.CrossRefPubMedGoogle Scholar
  52. 52.
    Liu DB, Ellimoottil C, Flum AS, Casey JT, Gong EM. Contemporary national comparison of open, laparoscopic, and robotic-assisted laparoscopic pediatric pyeloplasty. J Pediatr Urol. 2014;10(4):610–5.CrossRefPubMedGoogle Scholar
  53. 53.
    Davis TD, Burns AS, Corbett ST, Peters CA. Reoperative robotic pyeloplasty in children. J Pediatr Urol. 2016;12(6):394 e1–7.CrossRefGoogle Scholar
  54. 54.
    Asensio M, Gander R, Royo GF, Lloret J. Failed pyeloplasty in children: Is robot-assisted laparoscopic reoperative repair feasible? J Pediatr Urol. 2015;11(2):69 e1–6.CrossRefGoogle Scholar
  55. 55.
    Bowen DK, Faasse MA, Liu DB, Gong EM, Lindgren BW, Johnson EK. Use of pediatric open, laparoscopic and robot-assisted laparoscopic ureteral reimplantation in the United States: 2000 to 2012. J Urol. 2016;196(1):207–12.CrossRefPubMedGoogle Scholar
  56. 56.
    Srinivasan AK, Maass D, Shrivastava D, Long CJ, Shukla AR. Is robot-assisted laparoscopic bilateral extravesical ureteral reimplantation associated with greater morbidity than unilateral surgery? A comparative analysis. J Pediatr Urol. 2017;13(5):494 e1–7.CrossRefGoogle Scholar
  57. 57.
    • Grimsby GM, Dwyer ME, Jacobs MA, Ost MC, Schneck FX, Cannon GM, et al. Multi-institutional review of outcomes of robot-assisted laparoscopic extravesical ureteral reimplantation. J Urol. 2015;193(5 Suppl):1791–5. A multi-institutional review calling into question the outcomes of RALUR, leading to further studies and debate in the literature. CrossRefPubMedGoogle Scholar
  58. 58.
    Boysen WR, Ellison JS, Kim C, Koh CJ, Noh P, Whittam B, et al. Multi-institutional review of outcomes and complications of robot-assisted laparoscopic extravesical ureteral reimplantation for treatment of primary vesicoureteral reflux in children. J Urol. 2017;197(6):1555–61.CrossRefPubMedGoogle Scholar
  59. 59.
    Arlen AM, Broderick KM, Travers C, Smith EA, Elmore JM, Kirsch AJ. Outcomes of complex robot-assisted extravesical ureteral reimplantation in the pediatric population. J Pediatr Urol. 2016;12(3):169 e1–6.CrossRefGoogle Scholar
  60. 60.
    Hemal AK, Nayyar R, Rao R. Robotic repair of primary symptomatic obstructive megaureter with intracorporeal or extracorporeal ureteric tapering and ureteroneocystostomy. J Endourol. 2009;23(12):2041–6.CrossRefPubMedGoogle Scholar
  61. 61.
    Li B, Lindgren BW, Liu DB, Gong EM. Robot-assisted laparoscopic megaureter tapering with ureteral reimplantation: tips and tricks. J Pediatr Urol. 2017;13(6):637–8.CrossRefPubMedGoogle Scholar
  62. 62.
    Biles MJ, Finkelstein JB, Silva MV, Lambert SM, Casale P. Innovation in robotics and pediatric urology: robotic ureteroureterostomy for duplex systems with ureteral ectopia. J Endourol. 2016;30(10):1041–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Lee NG, Corbett ST, Cobb K, Bailey GC, Burns AS, Peters CA. Bi-institutional comparison of robot-assisted laparoscopic versus open ureteroureterostomy in the pediatric population. J Endourol. 2015 Nov;29(11):1237–41.CrossRefPubMedGoogle Scholar
  64. 64.
    Dangle PP, Akhavan A, Odeleye M, Avery D, Lendvay T, Koh CJ, et al. Ninety-day perioperative complications of pediatric robotic urological surgery: a multi-institutional study. J Pediatr Urol. 2016;12(2):102 e1–6.CrossRefGoogle Scholar
  65. 65.
    Malik RD, Pariser JJ, Gundeti MS. Outcomes in pediatric robot-assisted laparoscopic heminephrectomy compared with contemporary open and laparoscopic series. J Endourol. 2015;29(12):1346–52.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Herz D, DaJusta D, Ching C, McLeod D. Segmental arterial mapping during pediatric robot-assisted laparoscopic heminephrectomy: A descriptive series. J Pediatr Urol. 2016;12(4):266 e1–6.CrossRefGoogle Scholar
  67. 67.
    Gundeti MS, Petravick ME, Pariser JJ, Pearce SM, Anderson BB, Grimsby GM, et al. A multi-institutional study of perioperative and functional outcomes for pediatric robotic-assisted laparoscopic Mitrofanoff appendicovesicostomy. J Pediatr Urol. 2016;12(6):386 e1–5.CrossRefGoogle Scholar
  68. 68.
    Grimsby GM, Jacobs MA, Gargollo PC. Comparison of complications of robot-assisted laparoscopic and open appendicovesicostomy in children. J Urol. 2015;194(3):772–6.CrossRefPubMedGoogle Scholar
  69. 69.
    Murthy P, Cohn JA, Selig RB, Gundeti MS. Robot-assisted laparoscopic augmentation ileocystoplasty and Mitrofanoff appendicovesicostomy in children: updated interim results. Eur Urol. 2015;68(6):1069–75.CrossRefPubMedGoogle Scholar
  70. 70.
    Wiestma AC, Estrada CR Jr, Cho PS, Hollis MV, Yu RN. Robotic-assisted laparoscopic bladder augmentation in the pediatric patient. J Pediatr Urol. 2016;12(5):313 e1–2.CrossRefGoogle Scholar
  71. 71.
    Storm DW, Fulmer BR, Sumfest JM. Robotic-assisted laparoscopic approach for posterior bladder neck dissection and placement of pediatric bladder neck sling: initial experience. Urology. 2008;72(5):1149–52.CrossRefPubMedGoogle Scholar
  72. 72.
    Bagrodia A, Gargollo P. Robot-assisted bladder neck reconstruction, bladder neck sling, and appendicovesicostomy in children: description of technique and initial results. J Endourol. 2011;25(8):1299–305.CrossRefPubMedGoogle Scholar
  73. 73.
    Gargollo PC. Robotic-assisted bladder neck repair: feasibility and outcomes. The Urologic clinics of North America. 2015;42(1):111–20.CrossRefPubMedGoogle Scholar
  74. 74.
    Nelson RJ, Chavali JSS, Yerram N, Babbar P, Kaouk JH. Current status of robotic single-port surgery. Urol Ann. 2017;9(3):217–22.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Kaouk JH, Goel RK, Haber GP, Crouzet S, Stein RJ. Robotic single-port transumbilical surgery in humans: initial report. BJU Int. 2009;103(3):366–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Diana K. Bowen
    • 1
  • Jason P. Van Batavia
    • 1
  • Arun K. Srinivasan
    • 1
  1. 1.Division of Pediatric Urology, Department of Pediatric SurgeryThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations