Skip to main content
Log in

Techniques for Minimizing Radiation Exposure During Evaluation, Surgical Treatment, and Follow-up of Urinary Lithiasis

  • Minimally Invasive Surgery (V Bird and M Desai, Section Editors)
  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Patients receive significant radiation exposure during the diagnosis, treatment, and follow-up of urinary stone disease. This radiation exposure may result in patient harm and is believed to contribute to the risk for malignancy. This review will present current information to allow surgeons to optimize their diagnostic, treatment, and follow-up regimens to allow optimal care of stone disease patients at the lowest radiation dose possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance •• Of major importance

  1. Stamatelou KK et al. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817–23.

    Article  PubMed  Google Scholar 

  2. Scales Jr CD et al. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Fwu CW et al. Emergency department visits, use of imaging, and drugs for urolithiasis have increased in the United States. Kidney Int. 2013;83(3):479–86.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Broder J et al. Cumulative CT exposures in emergency department patients evaluated for suspected renal colic. J Emerg Med. 2007;33(2):161–8.

    Article  PubMed  Google Scholar 

  5. de Gonzalez AB et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med. 2009;22:2071–7.

    Article  Google Scholar 

  6. Ferrandino MN et al. Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol. 2009;181(2):668–72. discussion 673.

    Article  PubMed  Google Scholar 

  7. Preston DL et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res. 2007;168(1):1–64.

    Article  CAS  PubMed  Google Scholar 

  8. Trinchieri A et al. A prospective study of recurrence rate and risk factors for recurrence after a first renal stone. J Urol. 1999;162(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  9. US FDA Initiative to reduce unnecessary radiation exposure from medical imaging. 2010.

  10. Shiralkar S et al. Doctors’ knowledge of radiation exposure: questionnaire study. BMJ. 2003;327(7411):371–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Parry RA, Glaze SA, Archer BR, The AAPM/RSNA physics tutorial for residents. Typical patient radiation doses in diagnostic radiology. Radiographics. 1999;19(5):1289–302.

    Article  CAS  PubMed  Google Scholar 

  12. Attix FH. Introduction to radiological physics and radiation dosimetry. New York: Wiley; 1986.

    Book  Google Scholar 

  13. Little MP. Risks associated with ionizing radiation. Br Med Bull. 2003;68:259–75.

    Article  CAS  PubMed  Google Scholar 

  14. Sodickson A et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251(1):175–84.

    Article  PubMed  Google Scholar 

  15. Miller DL et al. Clinical radiation management for fluoroscopically guided interventional procedures. Radiology. 2010;257(2):321–32.

    Article  PubMed  Google Scholar 

  16. Teichman JM. Clinical practice. Acute renal colic from ureteral calculus. N Engl J Med. 2004;350(7):684–93.

    Article  CAS  PubMed  Google Scholar 

  17. Jellison FC et al. Effect of low dose radiation computerized tomography protocols on distal ureteral calculus detection. J Urol. 2009;182(6):2762–7.

    Article  PubMed  Google Scholar 

  18. Hyams ES et al. Trends in imaging use during the emergency department evaluation of flank pain. J Urol. 2011;186(6):2270–4.

    Article  PubMed  Google Scholar 

  19. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP. 2007;37(2-4):1-332.

  20. Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res. 2000;154(2):178–86.

    Article  CAS  PubMed  Google Scholar 

  21. Renard-Penna R, et al. Kidney stones and imaging: what can your radiologist do for you? World J Urol. 2014.

  22. Potretzke AM, Monga M. Imaging modalities for urolithiasis: impact on management. Curr Opin Urol. 2008;18(2):199–204.

    Article  PubMed  Google Scholar 

  23. Ulusan S, Koc Z, Tokmak N. Accuracy of sonography for detecting renal stone: comparison with CT. J Clin Ultrasound. 2007;35(5):256–61.

    Article  PubMed  Google Scholar 

  24. Jindal G, Ramchandani P. Acute flank pain secondary to urolithiasis: radiologic evaluation and alternate diagnoses. Radiol Clin North Am. 2007;45(3):395–410. vii.

    Article  PubMed  Google Scholar 

  25. Viprakasit DP et al. Limitations of ultrasonography in the evaluation of urolithiasis: a correlation with computed tomography. J Endourol. 2012;26(3):209–13.

    Article  PubMed  Google Scholar 

  26. Pichler R et al. In young adults with a low body mass index ultrasonography is sufficient as a diagnostic tool for ureteric stones. BJU Int. 2012;109(5):770–4.

    Article  PubMed  Google Scholar 

  27. Smith-Bindman R et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100–10. Initial imaging with ultrasound, compared to CT, resulted in lower radiation exposure without a difference in high-risk diagnoses with complications, serious adverse events, return to emergency department visits, etc.

    Article  CAS  PubMed  Google Scholar 

  28. Jepperson MA et al. Dual-energy CT for the evaluation of urinary calculi: image interpretation, pitfalls and stone mimics. Clin Radiol. 2013;68(12):e707–14.

    Article  CAS  PubMed  Google Scholar 

  29. Kaza RK et al. Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics. 2012;32(2):353–69.

    Article  PubMed  Google Scholar 

  30. McLaughlin PD et al. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance. Insights Imaging. 2014;5(2):217–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hamm M et al. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol. 2002;167(4):1687–91.

    Article  PubMed  Google Scholar 

  32. Heldt JP et al. Ureteral calculi detection using low dose computerized tomography protocols is compromised in overweight and underweight patients. J Urol. 2012;188(1):124–9.

    Article  PubMed  Google Scholar 

  33. Kluner C et al. Does ultra-low-dose CT with a radiation dose equivalent to that of KUB suffice to detect renal and ureteral calculi? J Comput Assist Tomogr. 2006;30(1):44–50.

    Article  PubMed  Google Scholar 

  34. Sohn W et al. Low-dose and standard computed tomography scans yield equivalent stone measurements. Urology. 2013;81(2):231–4.

    Article  PubMed  Google Scholar 

  35. Zilberman DE et al. Low dose computerized tomography for detection of urolithiasis—its effectiveness in the setting of the urology clinic. J Urol. 2011;185(3):910–4.

    Article  PubMed  Google Scholar 

  36. Jin DH et al. Effect of reduced radiation CT protocols on the detection of renal calculi. Radiology. 2010;255(1):100–7.

    Article  PubMed  Google Scholar 

  37. Poletti PA et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188(4):927–33.

    Article  PubMed  Google Scholar 

  38. Huang GO et al. Detection of uric acid stones in the ureter using low- and conventional-dose computed tomography. Urology. 2014;84(3):571–4.

    Article  PubMed  Google Scholar 

  39. Nakada SY et al. Determination of stone composition by non-contrast spiral computed tomography in the clinical setting. Urology. 2000;55(6):816–9.

    Article  CAS  PubMed  Google Scholar 

  40. Patel SR et al. Hounsfield units on computed tomography predict calcium stone subtype composition. Urol Int. 2009;83(2):175–80.

    Article  PubMed  Google Scholar 

  41. Spettel S et al. Using Hounsfield unit measurement and urine parameters to predict uric acid stones. Urology. 2013;82(1):22–6.

    Article  PubMed  Google Scholar 

  42. Weld KJ et al. Shock wave lithotripsy success for renal stones based on patient and stone computed tomography characteristics. Urology. 2007;70(6):1043–6. discussion 1046-7.

    Article  PubMed  Google Scholar 

  43. Hoppe H et al. Alternate or additional findings to stone disease on unenhanced computerized tomography for acute flank pain can impact management. J Urol. 2006;175(5):1725–30. discussion 1730.

    Article  PubMed  Google Scholar 

  44. Kim K et al. Low-dose abdominal CT for evaluating suspected appendicitis. N Engl J Med. 2012;366(17):1596–605.

    Article  CAS  PubMed  Google Scholar 

  45. Tack D et al. Suspected acute colon diverticulitis: imaging with low-dose unenhanced multi-detector row CT. Radiology. 2005;237(1):189–96.

    Article  PubMed  Google Scholar 

  46. Lipkin ME et al. Determination of patient radiation dose during ureteroscopic treatment of urolithiasis using a validated model. J Urol. 2012;187(3):920–4.

    Article  PubMed  Google Scholar 

  47. Jamal JE et al. Perioperative patient radiation exposure in the endoscopic removal of upper urinary tract calculi. J Endourol. 2011;25(11):1747–51.

    Article  PubMed  Google Scholar 

  48. Arnold DCI, Baldwin DD. Ureteroscopy: Indications, Instrumentation & Technique. Current Clinical Urology. Vol. XXII. New York City: Humana Press; 2013. 470.

    Google Scholar 

  49. Weld LR et al. Safety, minimization, and awareness radiation training reduces fluoroscopy time during unilateral ureteroscopy. Urology. 2014;84(3):520–5.

    Article  PubMed  Google Scholar 

  50. Ngo TC et al. Tracking intraoperative fluoroscopy utilization reduces radiation exposure during ureteroscopy. J Endourol. 2011;25(5):763–7.

    Article  PubMed  Google Scholar 

  51. Bagley DH, Cubler-Goodman A. Radiation exposure during ureteroscopy. J Urol. 1990;144(6):1356–8.

    CAS  PubMed  Google Scholar 

  52. Landauer RS. Application of the inverse-square law to oil-immersed tubes. Radiology. 1947;48(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  53. Norris TG. Radiation safety in fluoroscopy. Radiol Technol. 2002;73(6):511–33. quiz 534-6, 566.

    PubMed  Google Scholar 

  54. Elkoushy MA, Andonian S. Prevalence of orthopedic complaints among endourologists and their compliance with radiation safety measures. J Endourol. 2011;25(10):1609–13.

    Article  PubMed  Google Scholar 

  55. Giblin JG et al. Radiation risk to the urologist during endourologic procedures, and a new shield that reduces exposure. Urology. 1996;48(4):624–7.

    Article  CAS  PubMed  Google Scholar 

  56. Nguyen KK et al. In automated fluoroscopy settings, does shielding affect radiation exposure to surrounding unshielded tissues? J Endourol. 2012;26(11):1489–93.

    Article  PubMed  Google Scholar 

  57. Holmes Jr DR et al. Effect of pulsed progressive fluoroscopy on reduction of radiation dose in the cardiac catheterization laboratory. J Am Coll Cardiol. 1990;15(1):159–62.

    Article  PubMed  Google Scholar 

  58. Elkoushy MA et al. Pulsed fluoroscopy in ureteroscopy and percutaneous nephrolithotomy. Urology. 2012;79(6):1230–5. Pulsed fluoroscopy resulted in significantly lower fluoroscopy time without affecting surgery time or stone-free rates.

    Article  PubMed  Google Scholar 

  59. Bushberg J, SJ, et. al. The essential physics of medical imaging. 2nd ed. Philadelphia: Lippencott Williams & Wilkins; 2002.

  60. Smith DL et al. Radiation exposure during continuous and pulsed fluoroscopy. J Endourol. 2013;27(3):384–8.

    Article  PubMed  Google Scholar 

  61. Brisbane W et al. Fluoroless ureteral stent placement following uncomplicated ureteroscopic stone removal: a feasibility study. Urology. 2012;80(4):766–70.

    Article  PubMed  Google Scholar 

  62. Greene DJ et al. Comparison of a reduced radiation fluoroscopy protocol to conventional fluoroscopy during uncomplicated ureteroscopy. Urology. 2011;78(2):286–90.

    Article  PubMed  Google Scholar 

  63. Krupp N et al. Fluoroscopic organ and tissue-specific radiation exposure by sex and body mass index during ureteroscopy. J Endourol. 2010;24(7):1067–72.

    Article  PubMed  Google Scholar 

  64. Deters LA et al. Ultrasound guided ureteroscopy for the definitive management of ureteral stones: a randomized, controlled trial. J Urol. 2014;192(6):1710–3. Randomized clinical trial reporting the feasibility of using ultrasound as the imaging modality during ureteroscopy. This technique had no significant difference in surgery time, stone-free rates, or complication rates compared to traditional ureteroscopy.

    Article  PubMed  Google Scholar 

  65. Elgamasy A, Elsherif A. Use of Doppler ultrasonography and rigid ureteroscopy for managing symptomatic ureteric stones during pregnancy. BJU Int. 2010;106(2):262–6.

    Article  PubMed  Google Scholar 

  66. Deters LA et al. Ultrasound guided ureteroscopy in pregnancy. Clin Nephrol. 2013;79(2):118–23.

    Article  PubMed  Google Scholar 

  67. Olgin, G., et al., Ureteroscopy without fluoroscopy: a feasibility study and comparison to conventional ureteroscopy. J Endourol. 2014. A completely fluoroless ureteroscopy technique is described showing similar operative time, stone free rates, and complications as traditional ureteroscopy.

  68. Mandhani A et al. Is fluoroscopy essential for retrieval of lower ureteric stones? Urol Int. 2007;78(1):70–2.

    Article  CAS  PubMed  Google Scholar 

  69. Tepeler A et al. Is fluoroscopic imaging mandatory for endoscopic treatment of ureteral stones? Urology. 2012;80(5):1002–6.

    Article  PubMed  Google Scholar 

  70. Hsi RS, Harper JD. Fluoroless ureteroscopy: zero-dose fluoroscopy during ureteroscopic treatment of urinary-tract calculi. J Endourol. 2013;27(4):432–7. A near fluoroless ureteroscopy technique is described, with fluoroscopy only used to confirm stent placement.

    Article  PubMed  Google Scholar 

  71. Fernstrom I, Johansson B. Percutaneous pyelolithotomy. A new extraction technique. Scand J Urol Nephrol. 1976;10(3):257–9.

    CAS  PubMed  Google Scholar 

  72. Preminger GM et al. Chapter 1: AUA guideline on management of staghorn calculi: diagnosis and treatment recommendations. J Urol. 2005;173(6):1991–2000.

    Article  PubMed  Google Scholar 

  73. Miller NL et al. Techniques for fluoroscopic percutaneous renal access. J Urol. 2007;178(1):15–23.

    Article  PubMed  Google Scholar 

  74. Lipkin ME, Preminger GM. Risk reduction strategy for radiation exposure during percutaneous nephrolithotomy. Curr Opin Urol. 2012;22(2):139–43. This article discussed the risk factors for increased radiation exposure during percutaneous nephrolithotomy (PNL). The authors stress importance of radiation awareness, and provide an outline of suggestions to reduce radiation exposure during PNL.

    Article  PubMed  Google Scholar 

  75. Mancini JG et al. Factors affecting patient radiation exposure during percutaneous nephrolithotomy. J Urol. 2010;184(6):2373–7.

    Article  PubMed  Google Scholar 

  76. Blair B et al. Reduced fluoroscopy protocol for percutaneous nephrostolithotomy: feasibility, outcomes and effects on fluoroscopy time. J Urol. 2013;190(6):2112–6. The authors have decreased fluoroscopy during percutaneous nephrostolithotomy by 80.9% by implementing their described radiation reduction protocol.

    Article  PubMed  Google Scholar 

  77. Lipkin ME et al. Reduced radiation exposure with the use of an air retrograde pyelogram during fluoroscopic access for percutaneous nephrolithotomy. J Endourol. 2011;25(4):563–7.

    Article  PubMed  Google Scholar 

  78. Basiri A et al. Totally ultrasonography-guided percutaneous nephrolithotomy in the flank position. J Endourol. 2008;22(7):1453–7.

    Article  PubMed  Google Scholar 

  79. Hosseini MM et al. Ultrasonography-guided percutaneous nephrolithotomy. J Endourol. 2009;23(4):603–7.

    Article  PubMed  Google Scholar 

  80. Zegel HG et al. Percutaneous nephrostomy: comparison of sonographic and fluoroscopic guidance. AJR Am J Roentgenol. 1981;137(5):925–7.

    Article  CAS  PubMed  Google Scholar 

  81. Fei X et al. Single-stage multiple-tract percutaneous nephrolithotomy in the treatment of staghorn stones under total ultrasonography guidance. Urol Int. 2014.

  82. Agarwal M et al. Safety and efficacy of ultrasonography as an adjunct to fluoroscopy for renal access in percutaneous nephrolithotomy (PCNL). BJU Int. 2011;108(8):1346–9.

    Article  PubMed  Google Scholar 

  83. Khan F et al. Endoscopically guided percutaneous renal access: “seeing is believing”. J Endourol. 2006;20(7):451–5. discussion 455.

    Article  PubMed  Google Scholar 

  84. Alsyouf MO et al. Direct endoscopic visualization with combined ultrasound guided access during percutaneous nephrolithotomy—a feasibility study and comparison to conventional cohort. In American Urological Association (AUA) 2014 Annual Meeting. Orlando: 2014.

  85. Logarakis NF et al. Variation in clinical outcome following shock wave lithotripsy. J Urol. 2000;163(3):721–5.

    Article  CAS  PubMed  Google Scholar 

  86. Daniels C et al. Variations in fluoroscopic and spot film techniques during extracorporeal shock wave lithotripsy. J Urol. 1989;141(3):489–91.

    CAS  PubMed  Google Scholar 

  87. Carter HB, EB, et al. Variables influencing radiation exposure during extracorporeal shock wave lithotripsy. Review of 298 treatments. Urology. 1987. 30(6): 546-50.

  88. Huda W, Bews J, Saydak AP. Radiation doses in extracorporeal shock wave lithotripsy. Br J Radiol. 1989;62(742):921–6.

    Article  CAS  PubMed  Google Scholar 

  89. Bush WH, Jones D, Gibbons RP. Radiation dose to patient and personnel during extracorporeal shock wave lithotripsy. J Urol. 1987;138(4):716–9.

    CAS  PubMed  Google Scholar 

  90. Rebuck DA et al. Extracorporeal shockwave lithotripsy versus ureteroscopy: a comparison of intraoperative radiation exposure during the management of nephrolithiasis. J Endourol. 2012;26(6):597–601.

    Article  PubMed  Google Scholar 

  91. Abid N et al. New ultrasound navigational system in extracorporeal lithotripsy: decreased fluoroscopy and radiation. Prog Urol. 2013;23(10):856–60.

    Article  CAS  PubMed  Google Scholar 

  92. Kumar A, et al. A prospective randomized comparison between shock wave lithotripsy and flexible ureterorenoscopy for lower caliceal stones </=2 cm: a single-center experience. J Endourol. 2014.

  93. Resorlu B et al. Comparison of retrograde intrarenal surgery, shockwave lithotripsy, and percutaneous nephrolithotomy for treatment of medium-sized radiolucent renal stones. World J Urol. 2013;31(6):1581–6.

    Article  PubMed  Google Scholar 

  94. Kanno T et al. The efficacy of ultrasonography for the detection of renal stone. Urology. 2014;84(2):285–8.

    Article  PubMed  Google Scholar 

  95. Ekici S, Sinanoglu O. Comparison of conventional radiography combined with ultrasonography versus non-enhanced helical computed tomography in evaluation of patients with renal colic. Urol Res. 2012;40(5):543–7.

    Article  PubMed  Google Scholar 

  96. Neisius A et al. Radiation exposure in urology: a genitourinary catalogue for diagnostic imaging. J Urol. 2013;190(6):2117–23.

    Article  PubMed  Google Scholar 

  97. Astroza GM et al. Radiation exposure in the follow-up of patients with urolithiasis comparing digital tomosynthesis, non-contrast CT, standard KUB, and IVU. J Endourol. 2013;27(10):1187–91.

    Article  PubMed  Google Scholar 

  98. Smith-Bindman R et al. Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2078–86.

    Article  PubMed  Google Scholar 

  99. (RPOP), R.P.o.P. [cited 2014; Available from: https://rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/6_OtherClinicalSpecialities/Urology/.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Javier L. Arenas and D. Duane Baldwin each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Duane Baldwin.

Additional information

This article is part of the Topical Collection on Minimally Invasive Surgery

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MP4 167779 kb)

(MP4 162977 kb)

(MP4 146571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas, J.L., Baldwin, D.D. Techniques for Minimizing Radiation Exposure During Evaluation, Surgical Treatment, and Follow-up of Urinary Lithiasis. Curr Urol Rep 16, 45 (2015). https://doi.org/10.1007/s11934-015-0517-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11934-015-0517-7

Keywords

Navigation