Skip to main content

Advertisement

Log in

Pneumocystis jirovecii Pneumonia in Patients Receiving Tumor-Necrosis-Factor-Inhibitor Therapy: Implications for Chemoprophylaxis

  • Infections and Arthritis (K Winthrop, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Pneumocystis jirovecii pneumonia (PJP) is an important opportunistic infection that has been increasingly reported in patients with rheumatic disease. Reported incidence among patients taking TNF inhibitors (TNFi) has varied, but has usually been low. Still, disease causes significant mortality among those affected and must be considered in patients with rheumatological disease presenting with dyspnea and cough. Diagnosis can be difficult in the non-HIV population, and our understanding of the epidemiology and natural history after exposure is changing. Trimethoprim–sulfamethoxazole is believed to be the most effective agent for treatment and prophylaxis, but is associated with significant adverse effects. Given the low incidence reported in most studies of patients on TNFi, prophylaxis is probably not beneficial for this patient population as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vanek J, Jirovec O. Parasitic pneumonia. Interstitial plasma cell pneumonia of premature, caused by pneumocystis Carinii. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1952;158:120–7.

    PubMed  CAS  Google Scholar 

  2. Gajdusek DC. Pneumocystis carinii: etiologic agent of interstitial plasma cell pneumonia of premature and young infants. Pediatrics. 1957;19:543–65.

    PubMed  CAS  Google Scholar 

  3. Hughes WT, Feldman S, Aur RJ, Verzosa MS, Hustu HO, Simone JV. Intensity of immunosuppressive therapy and the incidence of Pneumocystis carinii pneumonitis. Cancer. 1975;36:2004–9.

    Article  PubMed  CAS  Google Scholar 

  4. Walzer PD, Schultz M, Western KA, Robbins JF. Pneumocystis carinii pneumonia and primary immune deficiency diseases. Natl Cancer Inst Monogr. 1976;43:65–74.

    PubMed  CAS  Google Scholar 

  5. Masur H et al. An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med. 1981;305(24):1431–8.

    Article  PubMed  CAS  Google Scholar 

  6. Wollner A et al. Pneumocystis carinii pneumonia complicating low dose methotrexate treatment for rheumatoid arthritis. Thorax. 1991;46:205–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Ward MM, Donald F. Pneumocystis carinii pneumonia in patients with connective tissue diseases: the role of hospital experience in diagnosis and mortality. Arthritis Rheum. 1999;42(4):780–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ognibene FP et al. Pneumocystis carinii pneumonia: a major complication of immunosuppressive therapy in patients with Wegener’s granulomatosis. Am J Respir Crit Care Med. 1995;151(3 Pt 1):795–9.

    PubMed  CAS  Google Scholar 

  9. Curtis JR et al. The comparative risk of serious infections among rheumatoid arthritis patients starting or switching biological agents. Ann Rheum Dis. 2011;70:1401–6. A study examining the risk for OI among patients starting on different TNFi revealing that risk for OI seems to be more based on factors apart from the TNFi used.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Bongartz T et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in the randomized controlled trials. JAMA. 2006;295(19):2275–85.

    Article  PubMed  CAS  Google Scholar 

  11. Stringer JR et al. A new name for Pneumocystis from humans and new perspectives on the host-pathogen relationship. Emerg Infect Dis. 2002;8(9):891–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vargas SL et al. Search for primary infection by Pneumocystis carinii in a cohort of normal, healthy infants. Clin Infect Dis. 2001;32(6):855–61.

    Article  PubMed  CAS  Google Scholar 

  13. Respaldiza N et al. High seroprevalence of Pneumocystis infection in Spanish children. Clin Microbiol Infect. 2004;10:1029–31.

    Article  PubMed  CAS  Google Scholar 

  14. Nankivell BJ et al. Molecular epidemiology linking multihospital clusters of opportunistic Pneumocystis jirovecii pneumonia. Clin Infect Dis. 2013;57(7):1058–9.

    Article  PubMed  CAS  Google Scholar 

  15. Damiani C et al. Possible nosocomial transmission of Pneumocystis jirovecii. Emerg Infect Dis. 2012;18(5):877–8.

    PubMed  PubMed Central  Google Scholar 

  16. Beard CB et al. Genetic variation in Pneumocystis carinii isolates from different geographic regions: implications for transmission. Emerg Infect Dis. 2000;6(3):265–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Dumoulin A et al. Transmission of Pneumocystis carinii disease from immunocompetent contacts of infected hosts to susceptible hosts. Eur J Clin Microbiol Infect Dis. 2000;19:671–8.

    Article  PubMed  CAS  Google Scholar 

  18. Miller RF, Ambrose HE, Wakefield AE. Pneumocystis carinii f. sp. hominis DNA in immunocompetent healthcare workers in contact with patients with P. carinii pneumonia. J Clin Microbiol. 2001;39(11):3877–82.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Fong S, et al. Antibody responses against Pneumocystis jirovecii in health care workers over time. Emerg Infect Dis. Oct 2013;19(10). [Internet].

  20. Gianella S et al. Molecular evidence of interhuman transmission in an outbreak of Pneumocystis jirovecii pneumonia among renal transplant recipients. Transpl Infect Dis. 2010;12(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  21. Wissman G et al. Pneumocystis jirovecii colonization in patients treated with infliximab. Eur J Clin Investig. 2011;41(3):343–8. A study describing the incidence of respiratory specimen PCR positivity for P. jirovecii DNA in patients on infliximab.

    Article  Google Scholar 

  22. Fritzsche C et al. High prevalence of Pneumocystis jirovecii colonization among patients with autoimmune inflammatory diseases and corticosteroid therapy. Scand J Rheumatol. 2012;41:208–13.

    Article  PubMed  CAS  Google Scholar 

  23. Mori S, Cho I, Sugimoto M. A follow up study of asymptomatic carriers of Pneumocystis jirovecii during immunosuppressive therapy for rheumatoid arthritis. J Rheumatol. 2009;36:1600–5.

    Article  PubMed  CAS  Google Scholar 

  24. Kovacs JA et al. Pneumocystis carinii pneumonia: a comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Ann Intern Med. 1984;100:663–71.

    Article  PubMed  CAS  Google Scholar 

  25. Tokuda H et al. Clinical and radiological features of Pneumocystis pneumonia in patients with rheumatoid arthritis in comparison with methotrexate pneumonitis and Pneumocystis pneumonia in Acquired Immunodeficiency Syndrome: a multicenter study. Intern Med. 2008;47:915–23.

    Article  PubMed  Google Scholar 

  26. DeLorenzo LJ, Huang CT, Maguire GP, Stone DJ. Roentgenographic patterns of Pneumocystis carinii pneumonia in 104 patients with AIDS. Chest. 1987;91(3):323–7.

    Article  PubMed  CAS  Google Scholar 

  27. Kennedy CA, Goetz MB. Atypical roentgenographic manifestations of Pneumocystis carinii pneumonia. Arch Intern Med. 1992;152(7):1390–8.

    Article  PubMed  CAS  Google Scholar 

  28. Kanne JP, Yandow DR, Meyer CA. Pneumocystis jiroveci pneumonia: high-resolution CT findings in patients with and without HIV infection. AJR Am J Roentgenol. 2012;198(6):W555–61.

    Article  PubMed  Google Scholar 

  29. Pitchenik AE et al. Sputum examination for the diagnosis of Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. Am Rev Respir Dis. 1986;133(2):226–9.

    PubMed  CAS  Google Scholar 

  30. Bigby TD et al. The usefulness of induced sputum in the diagnosis of Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. Am Rev Respir Dis. 1986;133(4):515.

    PubMed  CAS  Google Scholar 

  31. Cruciani M et al. Meta-analysis of diagnostic procedures for Pneumocystis carinii pneumonia in HIV-1-infected patients. Eur Respir J. 2002;20(4):982–9.

    Article  PubMed  CAS  Google Scholar 

  32. Turner D, Schwarz Y, Yust I. Induced sputum for diagnosing Pneumocystis carinii pneumonia in HIV patients: new data, new issues. Eur Respir J. 2003;21(2):204–8.

    Article  PubMed  CAS  Google Scholar 

  33. Limper AH, Offord KP, Smith TF, Martin 2nd WJ. Pneumocystis carinii pneumonia. Differences in lung parasite number and inflammation in patients with and without AIDS. Am Rev Respir Dis. 1989;140(5):1204–9.

    Article  PubMed  CAS  Google Scholar 

  34. Flori P et al. Comparison between real-time PCR, conventional PCR and different staining techniques for diagnosing Pneumocystis jiroveci pneumonia from bronchoalveolar lavage specimens. J Med Microbiol. 2004;53(Pt 7):603–7.

    Article  PubMed  CAS  Google Scholar 

  35. Botterel F et al. Clinical significance of quantifying Pneumocystis jirovecii DNA by using real-time PCR in bronchoalveolar lavage fluid from immunocompromised patients. J Clin Microbiol. 2012;50(2):227–31. The only blinded study published thus far on the natural history on symptomatic patients with P. jirovecii DNA positivity from BAL.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Overgaard UM, Helweg-Larsen J. Pneumocystis jirovecii pneumonia (PCP) in HIV-1-negative patients: a retrospective study 2002–2004. Scand J Infect Dis. 2007;39:589–95.

    Article  PubMed  Google Scholar 

  37. Morris A et al. Association of chronic obstructive pulmonary disease severity and Pneumocystis colonization. Am J Respir Crit Care Med. 2004;170(4):408–13.

    Article  PubMed  Google Scholar 

  38. Vidal S et al. Pneumocystis jirovecii colonization in patients with interstitial lung disease. Clin Microbiol Infect. 2006;12(3):231–5.

    Article  PubMed  CAS  Google Scholar 

  39. Damiani C et al. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1–3)-beta-D-glucan for differential diagnosis of Pneumocystis pneumonia and Pneumocystis colonization. J Clin Microbiol. 2013;51(10):3380–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Evaluation and Safety Center for Devices and Radiological Health, FDA. 21. May 2004, posting date. Glucatell (1-2-beta-d-glucan serological assay). [Online.] http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfrl/ldetails.cfm?lid=346. Accessed 19 June 2014.

  41. Watanabe T et al. Serum (1–3) beta-D-glucan as a noninvasive adjunct marker for the diagnosis of Pneumocystis pneumonia in patients with AIDS. Clin Infect Dis. 2009;49(7):1128–31.

    Article  PubMed  CAS  Google Scholar 

  42. Sax PE et al. Blood (1–3) beta-D-glucan as a diagnostic test for HIV-related Pneumocystis jirovecii pneumonia. Clin Infect Dis. 2011;53(2):197–202.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Onishi A et al. Diagnostic accuracy of serum 1,3-beta-D-glucan for Pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol. 2012;50(1):7–15.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Marty FM et al. Reactivity of (1–3)-beta-D-glucan assay with commonly used intravenous antimicrobials. Antimicrob Agents Chemother. 2006;50(10):3450–3.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Mennink-Kersten M et al. Pseudomonas aeruginosa as a cause of 1, 3-beta-D-glucan assay reactivity. Clin Infect Dis. 2008;46(12):1930–1.

    Article  PubMed  Google Scholar 

  46. Kanda H et al. Influence of various hemodialysis membranes on the plasma 1, 3-beta-D-glucan level. Kidney Int. 2001;60:319–23.

    Article  PubMed  CAS  Google Scholar 

  47. Usami M et al. Positive 1, 3-beta-D-glucan in blood components and release of 1, 3-beta-D-glucan from depth-type membrane filters for blood processing. Transfusion. 2002;42(9):1189–95.

    Article  PubMed  CAS  Google Scholar 

  48. Centers for Disease Control and Prevention. Guidelines for Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR 2009;58

  49. Martin SI, Fishman JA, and the AST Infectious Diseases Community of Practice. Pneumocystis Pneumonia in Solid Organ Transplantation. Am J Transplant. 2013;13:272–9.

    Article  PubMed  CAS  Google Scholar 

  50. Wharton JM, Coleman DL, Wofsy CB, et al. Trimethoprim–sulfamethoxazole or pentamidine for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. A prospective randomized trial. Ann Intern Med. 1986;105:37–44.

    Article  PubMed  CAS  Google Scholar 

  51. Klein NC, Duncanson FP, Lenox TH, et al. Trimethoprim–sulfamethoxazole versus pentamidine for Pneumocystis carinii pneumonia in AIDS patients: results of a large prospective randomized treatment trial. AIDS. 1992;6:301–5.

    Article  PubMed  CAS  Google Scholar 

  52. Sattler FR, Cowan R, Nielsen DM, et al. Trimethoprim–sulfamethoxazole compared with pentamidine for treatment of Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome: a prospective, noncrossover study. Ann Intern Med. 1988;109:280–7.

    Article  PubMed  CAS  Google Scholar 

  53. Helweg-Larsen J, Benfield T, Atzori C, Miller RF. Clinical efficacy of first- and second-line treatments for HIV-associated Pneumocystis jirovecii pneumonia: a tri-centre cohort study. J Antimicrob Chemother. 2009;64(6):1282–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Crothers K, Beard CB, Turner J, et al. Severity and outcome of HIV-associated Pneumocystis pneumonia containing Pneumocystis jirovecii dihydropteroate synthase gene mutations. AIDS. 2005;19:801–5.

    Article  PubMed  Google Scholar 

  55. Huang L, Crothers K, Atzori C, et al. Dihydropteroate synthase gene mutations in Pneumocystis and sulfa resistance. Emerg Infect Dis. 2004;10:1721–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Smego Jr RA, Nagar S, Maloba B, et al. A meta-analysis of salvage therapy for Pneumocystis carinii pneumonia. Arch Intern Med. 2001;161:1529–33.

    Article  PubMed  CAS  Google Scholar 

  57. Benfield T, Atzori C, Miller RF, et al. Second-line salvage treatment of AIDS-associated Pneumocystis jirovecii pneumonia: a case series and systematic review. J Acquir Immune Defic Syndr. 2008;48:63–7.

    Article  PubMed  Google Scholar 

  58. Rosenberg DM, McCarthy W, Slavinsky J, et al. Atovaquone suspension for treatment of Pneumocystis carinii pneumonia in HIV-infected patients. AIDS. 2001;15:211–21.

    Article  PubMed  CAS  Google Scholar 

  59. Dohn MN, Weinberg WG, Torres RA, et al. Oral atovaquone compared with intravenous pentamidine for Pneumocystis carinii pneumonia in patients with AIDS. Atovaquone Study Group. Ann Intern Med. 1994;121:174–80.

    Article  PubMed  CAS  Google Scholar 

  60. Fischl MA, Dickinson GM, La Voie L. Safety and efficacy of sulfamethoxazole and trimethoprim chemoprophylaxis for Pneumocystis carinii pneumonia in AIDS. JAMA. 1988;259:1185–9.

    Article  PubMed  CAS  Google Scholar 

  61. Bucher HC, Griffith L, Guyatt GH, Opravil M. Meta-analysis of prophylactic treatments against Pneumocystis carinii pneumonia and toxoplasma encephalitis in HIV-infected patients. J Acquir Immune Defic Syndr Hum Retrovirol. 1997;15(2):104–14.

    Article  PubMed  CAS  Google Scholar 

  62. Green H et al. Prophylaxis of Pneumocystis pneumonia in immunocompromised non-HIV patients: systemic review and meta-analysis of randomized controlled trials. Mayo Clin Proc. 2007;82(9):1052–9.

    Article  PubMed  CAS  Google Scholar 

  63. Myers MW, Jick H. Hospitalization for serious blood and skin disorders following co-trimoxazole. Br J Clin Pharmacol. 1997;43:649–51.

    Article  PubMed  CAS  Google Scholar 

  64. Green H, Paul M, Vidal L, Leibovici L. Prophylaxis for Pneumocystis pneumonia in non-HIV immunocompromised patients. Cochrane Database Syst. Rev. 2007;(3):Art. No: CD005590.

  65. Warris A, Bjorneklett A. Invasive pulmonary aspergillosis associated with infliximab therapy. N Engl J Med. 2001;344:1099–100.

    Article  PubMed  CAS  Google Scholar 

  66. Keenan GF, Schaible TF, Boscia JA. Response to: Invasive pulmonary aspergillosis associated with infliximab therapy. N Engl J Med. 2001.

  67. Tai TL et al. Pneumocystis carinii pneumonia following a second infusion of infliximab. Rheumatology. 2002;41(8):951–2.

    Article  PubMed  CAS  Google Scholar 

  68. Kaur N, Mahl T. Pneumocystis jirovecii (carinii) pneumonia after infliximab therapy: a review of 84 cases. Dig Dis Sci. 2007;52:1481–4.

    Article  PubMed  CAS  Google Scholar 

  69. Lichtenstein GR et al. Serious infection and mortality in patients with Crohn’s disease: more than 5 years of follow-up in the TREAT registry. Am J Gastroenterol. 2012;107:1409–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Baddley JW, et al. Non-viral opportunistic infections in new users of tumor necrosis factor inhibitor therapy: results of the Safety assessment of biological therapy (SABER) study. Ann Rheum Dis. 2013;1–7. A large retrospective study based on insurance claims data describing the incidence of OI in United States patients on TNFi.

  71. Dixon WG et al. Rates of serious infection, including site-specific and bacterial intracellular infection, in rheumatoid arthritis patients receiving anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 2006;54(8):2368–76.

    Article  PubMed  CAS  Google Scholar 

  72. Greenberg JD et al. Association of methotrexate and tumour necrosis factor antagonists with risk of infectious outcomes including opportunistic infections in the CORRONA registry. Ann Rheum Dis. 2010;69:380–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  73. Salmon-Ceron D et al. Drug specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3 year prospective French RATIO registry. Ann Rheum Dis. 2011;70:616–23. A large, prospective cohort study describing the incidence of OI in French patients on TNFi.

    Article  PubMed  CAS  Google Scholar 

  74. Takeuchi T et al. Postmarketing surveillance of the safety profile of infliximab in 5000 Japanese patients with rheumatoid arthritis. Ann Rheum Dis. 2008;67:189–94.

    Article  PubMed  CAS  Google Scholar 

  75. Koike T et al. Postmarketing surveillance of the safety and effectiveness of etanercept in Japan. J Rheumatol. 2009;36(5):898–906.

    Article  PubMed  CAS  Google Scholar 

  76. Komano Y et al. Incidence and risk factors for serious infection in patients with rheumatoid arthritis treated with tumor necrosis factor inhibitors: a report from the Registry of Japanese Rheumatoid Arthritis Patients for Long term Safety. J Rheumatol. 2011;38(7):1258–64.

    Article  PubMed  CAS  Google Scholar 

  77. Beukelman T et al. Brief report: incidence of selected opportunistic infections among children with juvenile idiopathic arthritis. Arthritis Rheum. 2013;65(5):1384–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mori S, Sugimoto M. Pneumocystis jirovecii infection: an emerging threat in patients with rheumatoid arthritis. Rheumatology. 2012;51:2120–30. A report summarizing the concern for PJP in patients on TNFi arising from the Japanese studies on OI in this patient population.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Louie G, Wang Z, Ward MW. Trends in hospitalizations for Pneumocystis jiroveci pneumonia among patients with rheumatoid arthritis in the US: 1996–2007. Arthritis Rheum. 2010;62(12):3826–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Dartel SAA et al. Difference in the risk of serious infections in patients with rheumatoid arthritis treated with adalimumab, infliximab and etanercept: results from the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry. Ann Rheum Dis. 2013;72:895–900.

    Article  PubMed  Google Scholar 

  81. Atzeni F et al. Long-term anti-TNF therapy and the risk of serious infections in a cohort of patients with rheumatoid arthritis: comparison of adalimumab, etanercept, and infliximab in the GISEA registry. Autoimmun Rev. 2012;12(2):225–9.

    Article  PubMed  CAS  Google Scholar 

  82. Favalli EG et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun Rev. 2009;8(3):266–73.

    Article  PubMed  CAS  Google Scholar 

  83. Lawrance IC et al. Serious infections in patients with inflammatory bowel disease receiving anti-tumor-necrosis-factor-alpha therapy: an Australian and New Zealand experience. J Gastroenterol Hepatol. 2010;25:1732–8.

    Article  PubMed  Google Scholar 

  84. Tschudy J, Michail S. Disseminated histoplasmosis and Pneumocystis pneumonia is a child with Crohn’s disease receiving infliximab. J Pediatr Gastroenterol Nutr. 2010;51(2):221–2.

    Article  PubMed  Google Scholar 

  85. Katsuyama et al. Prophylaxis for Pneumocystis pneumonia in patients with rheumatoid arthritis treated with biologics, based on risk factors found in a retrospective study. Arthritis Res Ther. 2014;16:R43.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Takenaka K. A dose-escalation regimen of trimethoprim-sulfamethoxazole is tolerable for prophylaxis against Pneumocystis jiroveci pneumonia in rheumatic diseases. Mod Rheumatol. 2013;23(4):752–8.

    Article  PubMed  CAS  Google Scholar 

  87. Curtis JR et al. Use of a disease risk score to compare serious infections associated with anti-tumor necrosis factor therapy among high- and low-risk rheumatoid arthritis patients. Arthritis Care Res. 2012;64(10):1480–9.

    Article  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

James A. Grubbs declares that he has no conflict of interest. John W. Baddley declares that he has served as a consultant for Pfizer, Astellas, and Merck, and that he has received a research grant from BMS.

Human and animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Baddley.

Additional information

This article is part of the Topical Collection on Infections and Arthritis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grubbs, J.A., Baddley, J.W. Pneumocystis jirovecii Pneumonia in Patients Receiving Tumor-Necrosis-Factor-Inhibitor Therapy: Implications for Chemoprophylaxis. Curr Rheumatol Rep 16, 445 (2014). https://doi.org/10.1007/s11926-014-0445-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-014-0445-4

Keywords

Navigation