Skip to main content

Advertisement

Log in

Insights into Rheumatoid Arthritis from Use of MRI

  • IMAGING (P CONAGHAN, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) is ideal for imaging the joints of rheumatoid arthritis (RA) patients. It produces anatomically detailed images of bone, cartilage, tendons and synovial membrane. It can reveal structural damage, in the form of bone erosion, cartilage thinning and/or tendon rupture, and regions of inflammation, using sequences that reveal water content and vascularity. MRI synovitis, tenosynovitis and bone oedema/osteitis all have prognostic significance, and MRI studies of RA have helped elucidate the mechanisms whereby bone and synovial inflammation lead to joint damage. Bone oedema/osteitis has become an important imaging biomarker, and can be used to help predict progression from undifferentiated arthritis to definite RA. Recent MRI studies have confirmed that subclinical inflammation is often present in patients in clinical remission, and these data may affect disease management. Finally, recent clinical trials are reviewed, in which MRI outcome measures are being established as sensitive response markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Peterfy CG. Magnetic resonance imaging of the wrist in rheumatoid arthritis. Semin Musculoskelet Radiol. 2001;5(3):275–88.

    Article  CAS  PubMed  Google Scholar 

  2. Joshua F. Ultrasound applications for the practicing rheumatologist. Best Pract Res Clin Rheumatol. 2012;26(6):853–67. doi:10.1016/j.berh.2012.10.002.

    Article  PubMed  Google Scholar 

  3. Gold GE, Suh B, Sawyer-Glover A, et al. Musculoskeletal MRI at 3.0 T: initial clinical experience. AJR Am J Roentgenol. 2004;183(5):1479–86.

    Article  PubMed  Google Scholar 

  4. McQueen FM, Stewart N, Crabbe J, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals a high prevalence of erosions at four months after symptom onset. Ann Rheum Dis. 1998;57(6):350–6.

    Article  CAS  PubMed  Google Scholar 

  5. Ejbjerg BJ, Vestergaard A, Jacobsen S, et al. Conventional radiography requires a MRI-estimated bone volume loss of 20 % to 30 % to allow certain detection of bone erosions in rheumatoid arthritis metacarpophalangeal joints. Arthritis Res Ther. 2006;8(3):R59.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Peterfy CG, DiCarlo JC, Olech E, et al. Evaluating joint-space narrowing and cartilage loss in rheumatoid arthritis by using MRI. Arthritis Res Ther. 2012;14(3):R131. doi:10.1186/ar3861.

    Article  PubMed Central  PubMed  Google Scholar 

  7. McQueen F, Beckley V, Crabbe J, et al. Magnetic resonance imaging evidence of tendinopathy in early rheumatoid arthritis predicts tendon rupture at six years. Arthritis Rheum. 2005;52(3):744–51.

    Article  PubMed  Google Scholar 

  8. McQueen FM. Bone marrow edema and osteitis in rheumatoid arthritis: the imaging perspective. Arthritis Res Ther. 2012;14:224.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Østergaard M, Peterfy C, Conaghan P, et al. OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol. 2003;30(6):1385–6.

    PubMed  Google Scholar 

  10. Conaghan PG, Durez P, Alten RE, et al. Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. Ann Rheum Dis. 2013;72(8):1287–94. doi:10.1136/annrheumdis-2012-201611.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Østergaard M, Edmonds J, McQueen F, et al. An introduction to the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. Ann Rheum Dis. 2005;64 Suppl 1:i3–7.

    Article  PubMed  Google Scholar 

  12. Haavardsholm EA, Ostergaard M, Ejbjerg BJ, et al. Introduction of a novel magnetic resonance imaging tenosynovitis score for rheumatoid arthritis: reliability in a multireader longitudinal study. Ann Rheum Dis. 2007;66(9):1216–20.

    Article  PubMed  Google Scholar 

  13. McQueen FM, Clarke A, McHaffie A, et al. Assessment of cartilage loss at the wrist in rheumatoid arthritis using a new MRI scoring system. Ann Rheum Dis. 2010;69:1971–5.

    Article  PubMed  Google Scholar 

  14. Ostergaard M, Boyesen P, Eshed I, et al. Development and preliminary validation of a magnetic resonance imaging joint space narrowing score for use in rheumatoid arthritis: potential adjunct to the OMERACT RA MRI scoring system. J Rheumatol. 2011;38(9):2045–50. doi:10.3899/jrheum.110422.

    Article  PubMed  Google Scholar 

  15. Haavardsholm EA, Ostergaard M, Ejbjerg BJ, et al. Reliability and sensitivity to change of the OMERACT rheumatoid arthritis magnetic resonance imaging score in a multireader, longitudinal setting. Arthritis Rheum. 2005;52(12):3860–7.

    Article  PubMed  Google Scholar 

  16. Langs G, Peloschek P, Bischof H, et al. Automatic quantification of joint space narrowing and erosions in rheumatoid arthritis. IEEE Trans Med Imaging. 2009;28(1):151–64. doi:10.1109/TMI.2008.2004401.

    Article  PubMed  Google Scholar 

  17. Poh MQW, Lassere M, Bird P, et al. Reliability and longitudinal validity of computer-assisted methods for measuring joint damage progression in subjects with rheumatoid arthritis. J Rheumatol. 2013;40(1):23–9. doi:10.3899/jrheum.120549.

    Article  PubMed  Google Scholar 

  18. Crowley AR, Dong J, McHaffie A, et al. Measuring bone erosion and edema in rheumatoid arthritis: a comparison of manual segmentation and RAMRIS methods. J Magn Reson Imaging. 2011;33(2):364–71. doi:10.1002/jmri.22425.

    Article  PubMed  Google Scholar 

  19. Chand AS, McHaffie A, Clarke AW, et al. Quantifying synovitis in rheumatoid arthritis using computer-assisted manual segmentation with 3 Tesla MRI scanning. J Magn Reson Imaging. 2011;33(5):1106–13. doi:10.1002/jmri.22524.

    Article  PubMed  Google Scholar 

  20. Østergaard M, Stoltenberg M, Lovgreen-Nielsen P, et al. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium.[see comment]. Arthritis Rheum. 1997;40(10):1856–67.

    Article  PubMed  Google Scholar 

  21. Boesen M, Kubassova O, Parodi M, et al. Comparison of the manual and computer-aided techniques for evaluation of wrist synovitis using dynamic contrast-enhanced MRI on a dedicated scanner. Eur J Radiol. 2011;77(2):202–6. doi:10.1016/j.ejrad.2010.09.041.

    Article  PubMed  Google Scholar 

  22. Pap T, Aupperle KR, Gay S, et al. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 2001;44(3):676–81.

    Article  CAS  PubMed  Google Scholar 

  23. Schett G, Firestein GS. Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann Rheum Dis. 2010;69(5):787–9.

    Article  PubMed  Google Scholar 

  24. McQueen FM, Ostendorf B. What is MRI bone oedema in rheumatoid arthritis and why does it matter? Arthritis Res Ther. 2006;8:222–5.

    Article  PubMed Central  PubMed  Google Scholar 

  25. McQueen FM, Benton N, Perry D, et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 2003;48(7):1814–27.

    Article  PubMed  Google Scholar 

  26. McQueen FM, Stewart N, Crabbe J, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann Rheum Dis. 1999;58(3):156–63.

    Article  CAS  PubMed  Google Scholar 

  27. Mundwiler ML, Maranian P, Brown DH, et al. The utility of MRI in predicting radiographic erosions in the metatarsophalangeal joints of the rheumatoid foot: a prospective longitudinal cohort study. Arthritis Res Ther. 2009;11(3):R94.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Haavardsholm EA, Bøyesen P, Østergaard M, et al. MRI-detected bone marrow edema is a predictor of subsequent radiographic progression in early rheumatoid arthritis. Ann Rheum Dis. 2007. doi:10.1136/ard.2007.071977.

    Google Scholar 

  29. Hetland ML, Ejbjerg BJ, Hørslev-Petersen K, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2 year randomized controlled trial (CIMESTRA). Ann Rheum Dis 2008;67:doi:10.1136/ard.2008.088245.

  30. Hetland ML, Ejbjerg B, Horslev-Petersen K, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68(3):384–90.

    Article  CAS  PubMed  Google Scholar 

  31. Jimenez-Boj E, Nöbauer-Huhmann I, Hanslik-Schnabel F, et al. Bone erosions and bone marrow edema as defined by magnetic resonance imaging reflect true bone marrow inflammation in rheumatoid arthritis. Arthritis Rheum. 2007;56(4):1118–24.

    Article  PubMed  Google Scholar 

  32. McQueen FM, Gao A, Østergaard M, et al. High grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone. Ann Rheum Dis. 2007;66:1581–7. doi:10.1136/ard.2007.070326.

    Article  CAS  PubMed  Google Scholar 

  33. Dalbeth N, Smith T, Gray S, et al. Cellular characterisation of magnetic resonance imaging bone oedema in rheumatoid arthritis; implications for pathogenesis of erosive disease. Ann Rheum Dis. 2009;68(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  34. Lam J, Takeshita S, Barker JE, et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106(12):1481–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Gandjbakhch F, Foltz V, Mallet A, et al. Bone marrow oedema predicts structural progression in a 1-year follow-up of 85 patients with RA in remission or with low disease activity with low-field MRI. Ann Rheum Dis. 2011;70(12):2159–62. Recent cohort study revealing that MRI bone oedema, using extremity 0.2 T MRI, is the strongest predictor of subsequent bone erosion in RA. These patients were in remission or had low disease activity.

    Article  CAS  PubMed  Google Scholar 

  36. Ejbjerg BJ, Narvestad E, Jacobsen S, et al. Optimised, low cost, low field dedicated extremity MRI is highly specific and sensitive for synovitis and bone erosions in rheumatoid arthritis wrist and finger joints: comparison with conventional high field MRI and radiography. Ann Rheum Dis. 2005;64(9):1280–7.

    Article  CAS  PubMed  Google Scholar 

  37. Boyesen P, Haavardsholm EA, van der Heijde D, et al. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients. Ann Rheum Dis. 2011;70(1):176–9.

    Article  PubMed  Google Scholar 

  38. Haavardsholm E, Østergaard M, Schildvold A, et al. MRI Findings Reflecting Inflammation is More Responsive than Clinical Measures of Disease Activity when Monitoring Anti-TNF Alpha Treatment in RA Patients. Arthritis Rheum. 2006;54(Suppl):S800.

    Google Scholar 

  39. Krabben A, Stomp W, van der Heijde DMFM, et al. MRI of hand and foot joints of patients with anticitrullinated peptide antibody positive arthralgia without clinical arthritis. Ann Rheum Dis. 2013;72(9):1540–4. doi:10.1136/annrheumdis-2012-202628.

    Article  PubMed  Google Scholar 

  40. Gent YYJ, Voskuyl AE, Kloet RW, et al. Macrophage positron emission tomography imaging as a biomarker for preclinical rheumatoid arthritis: findings of a prospective pilot study. Arthritis Rheum. 2012;64(1):62–6. doi:10.1002/art.30655.

    Article  PubMed  Google Scholar 

  41. Kuo PH. Gadolinium-containing MRI, contrast agents: important variations on a theme for NSF. J Am Coll Radiol. 2008;5(1):29–35.

    Article  PubMed  Google Scholar 

  42. Ostergaard M, Conaghan PG, O’Connor P, et al. Reducing invasiveness, duration, and cost of magnetic resonance imaging in rheumatoid arthritis by omitting intravenous contrast injection—Does it change the assessment of inflammatory and destructive joint changes by the OMERACT RAMRIS? J Rheumatol. 2009;36(8):1806–10.

    Article  PubMed  Google Scholar 

  43. Aoki T, Yamashita Y, Saito K, et al. Diagnosis of early-stage rheumatoid arthritis: usefulness of unenhanced and gadolinium-enhanced MR images at 3 T. Clin Imaging. 2013;37(2):348–53. doi:10.1016/j.clinimag.2012.07.004.

    Article  PubMed  Google Scholar 

  44. Cimmino MA, Barbieri F, Boesen M, et al. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol - Suppl. 2012;89:44–8. doi:10.3899/jrheum.120242.

    Article  PubMed  Google Scholar 

  45. Navalho M, Resende C, Rodrigues AM, et al. Bilateral MR imaging of the hand and wrist in early and very early inflammatory arthritis: tenosynovitis is associated with progression to rheumatoid arthritis. Radiology. 2012;264(3):823–33. doi:10.1148/radiol.12112513.

    Article  PubMed  Google Scholar 

  46. Palosaari K, Vuotila J, Takalo R, et al. Bone oedema predicts erosive progression on wrist MRI in early RA—a 2-yr observational MRI and NC scintigraphy study. Rheumatology. 2006;45(12):1542–8.

    Article  PubMed  Google Scholar 

  47. Østergaard M, Hansen M, Stoltenberg M, et al. New radiographic bone erosions in the wrists of patients with rheumatoid arthritis are detectable with magnetic resonance imaging a median of two years earlier. Arthritis Rheum. 2003;48(8):2128–31.

    Article  PubMed  Google Scholar 

  48. Dohn UM, Ejbjerg B, Boonen A, et al. No overall progression and occasional repair of erosions despite persistent inflammation in adalimumab-treated rheumatoid arthritis patients: results from a longitudinal comparative MRI, ultrasonography, CT and radiography study. Ann Rheum Dis. 2011;70(2):252–8. Multimodality study revealing the response to anti-TNF therapy. The MRI features of inflammation including synovitis and bone oedema persist but erosion as measured by CT scanning is halted.

    Article  PubMed  Google Scholar 

  49. Perry D, Stewart N, Benton N, et al. Detection of erosions in the rheumatoid hand; a comparative study of multidetector computerized tomography versus magnetic resonance scanning. J Rheumatol. 2005;32(2):256–67.

    PubMed  Google Scholar 

  50. Dohn UM, Ejbjerg BJ, Hasselquist M, et al. Rheumatoid arthritis bone erosion volumes on CT and MRI: reliability and correlations with erosion scores on CT, MRI and radiography. Ann Rheum Dis. 2007;66(10):1388–92.

    Article  PubMed  Google Scholar 

  51. Srikhum W, Virayavanich W, Burghardt AJ, et al. Quantitative and Semiquantitative Bone Erosion Assessment on High-resolution Peripheral Quantitative Computed Tomography in Rheumatoid Arthritis. J Rheumatol. 2013;40(4):408–16. doi:10.3899/jrheum.120780.

    Article  PubMed  Google Scholar 

  52. Conaghan P, Edmonds J, Emery P, et al. Magnetic resonance imaging in rheumatoid arthritis: summary of OMERACT activities, current status, and plans. J Rheumatol. 2001;28(5):1158–62.

    CAS  PubMed  Google Scholar 

  53. McQueen FM, McHaffie A, Clarke A, et al. The progression of cartilage damage in rheumatoid arthritis: a three year prospective 3 T- MRI study examining predictive factors. Arthritis Rheum 2013.

  54. van der Heijde D. Erosions versus joint space narrowing in rheumatoid arthritis: what do we know? Ann Rheum Dis. 2011;70 Suppl 1:i116–8.

    Article  PubMed  Google Scholar 

  55. Buchbender C, Scherer A, Kropil P, et al. Cartilage quality in rheumatoid arthritis: comparison of T2* mapping, native T1 mapping, dGEMRIC, R1 and value of pre-contrast imaging. Skelet Radiol. 2012;41(6):685–92. doi:10.1007/s00256-011-1276-2.

    Article  Google Scholar 

  56. Welsch GH, Mamisch TC, Hughes T, et al. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol. 2008;43(9):619–26. doi:10.1097/RLI.0b013e31817e9122.

    Article  PubMed  Google Scholar 

  57. van der Helm-van Mil AHM. Imaging: use of MRI as an outcome measure in clinical trials in RA. Nat Rev Rheumatol. 2012;8(11):643–4. doi:10.1038/nrrheum.2012.182.

    Article  PubMed  Google Scholar 

  58. Conaghan PG, Durez P, Alten RE, et al. Impact of intravenous abatacept on synovitis, osteitis and structural damage in patients with rheumatoid arthritis and an inadequate response to methotrexate: the ASSET randomised controlled trial. Ann Rheum Dis 2013. The first clinical trial investigating efficacy of abatacept in RA by use of MRI outcome measures, but did not achieve primary outcome, possibly because of small numbers.

  59. Durez P, Malghem J, Nzeusseu Toukap A, et al. Treatment of early rheumatoid arthritis: a randomized magnetic resonance imaging study comparing the effects of methotrexate alone, methotrexate in combination with infliximab, and methotrexate in combination with intravenous pulse methylprednisolone. Arthritis Rheum. 2007;56(12):3919–27.

    Article  CAS  PubMed  Google Scholar 

  60. Dohn UM, Skjodt H, Hetland ML, et al. No erosive progression revealed by MRI in rheumatoid arthritis patients treated with etanercept, even in patients with persistent MRI and clinical signs of joint inflammation. Clin Rheumatol 2007.

  61. Conaghan PG, Emery P, Ostergaard M, et al. Assessment by MRI of inflammation and damage in rheumatoid arthritis patients with methotrexate inadequate response receiving golimumab: results of the GO-FORWARD trial. Ann Rheum Dis. 2011;70(11):1968–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Baker JF, Ostergaard M, Emery P, et al. Early MRI Measures Independently Predict 1- and 2- year X-ray Progression: results from a large clinical trial. Arthritis Rheum. 2012;64(10):S692.

    Google Scholar 

  63. Peterfy CG, Olech E, DiCarlo JC, et al. Monitoring cartilage loss in the hands and wrists in rheumatoid arthritis with magnetic resonance imaging in a multi-center clinical trial: IMPRESS (NCT00425932). Arthritis Res Ther. 2013;15:R44.

    Article  PubMed  Google Scholar 

  64. McQueen F. MRI in rheumatoid arthritis: A useful tool for the clinician? submitted 2013.

  65. Brown AK, Quinn MA, Karim Z, et al. Presence of significant synovitis in rheumatoid arthritis patients with disease-modifying antirheumatic drug-induced clinical remission: evidence from an imaging study may explain structural progression. Arthritis Rheum. 2006;54(12):3761–73.

    Article  CAS  PubMed  Google Scholar 

  66. Gandjbakhch F, Conaghan PG, Ejbjerg B, et al. Synovitis and osteitis are very frequent in rheumatoid arthritis clinical remission: results from an MRI study of 294 patients in clinical remission or low disease activity state. J Rheumatol. 2011;38(9):2039–44.

    Article  PubMed  Google Scholar 

  67. Naredo E, Valor L, De la Torre I, et al. Ultrasound joint inflammation in rheumatoid arthritis in clinical remission: how many and which joints should be assessed? Arthritis Care Res. 2013;65(4):512–7. doi:10.1002/acr.21869.

    Article  Google Scholar 

  68. van der Heijde D. Remission by imaging in rheumatoid arthritis: should this be the ultimate goal? Ann Rheum Dis. 2012;71 Suppl 2:i89–92.

    Article  PubMed  Google Scholar 

  69. Haavardsholm E, Gandjbakhch F, Conaghan P, et al. Towards imaging remission: determining a MRI inflammatory activity acceptable state in RA. Ann Rheum Dis. 2012;71(Suppl3):149.

    Google Scholar 

  70. Buchbender C, Sewerin P, Mattes-Gyorgy K, et al. Utility of combined high-resolution bone SPECT and MRI for the identification of rheumatoid arthritis patients with high-risk for erosive progression. Eur J Radiol. 2013;82(2):374–9. doi:10.1016/j.ejrad.2012.10.011.

    Article  PubMed  Google Scholar 

  71. Miese F, Scherer A, Ostendorf B, et al. Hybrid 18F-FDG PET-MRI of the hand in rheumatoid arthritis: initial results. Clin Rheumatol. 2011;30(9):1247–50.

    Article  PubMed  Google Scholar 

  72. Werner SG, Langer H-E, Ohrndorf S, et al. Inflammation assessment in patients with arthritis using a novel in vivo fluorescence optical imaging technology.[Erratum appears in Ann Rheum Dis. 2012 Oct;71(10):1756]. Ann Rheum Dis 2012;71(4):504–10. doi:10.1136/annrheumdis-2010-148288

  73. Schafer VS, Hartung W, Hoffstetter P, et al. Quantitative assessment of synovitis in patients with rheumatoid arthritis using fluorescence optical imaging. Arthritis Res Ther. 2013;15:R124.

    Article  Google Scholar 

  74. Cohen SB, Dore RK, Lane NE, et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 2008;58(5):1299–309. doi:10.1002/art.23417.

    Article  CAS  PubMed  Google Scholar 

  75. Szkudlarek M, Court-Payen M, Strandberg C, et al. Power Doppler ultrasonography for assessment of synovitis in the metacarpophalangeal joints of patients with rheumatoid arthritis: a comparison with dynamic magnetic resonance imaging. Arthritis Rheum. 2001;44(9):2018–23.

    Article  CAS  PubMed  Google Scholar 

  76. Genovese MC, Kavanaugh A, Weinblatt ME, et al. An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: a three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum. 2011;63(2):337–45. doi:10.1002/art.30114. Did not achieve primary outcome but there were differences between the groups in the secondary end points including the MRI synovitis score.

    Article  CAS  PubMed  Google Scholar 

  77. Ostergaard M, Emery P, Conaghan PG, et al. Significant improvement in synovitis, osteitis, and bone erosion following golimumab and methotrexate combination therapy as compared with methotrexate alone: a magnetic resonance imaging study of 318 methotrexate-naive rheumatoid arthritis patients. Arthritis Rheum. 2011;63(12):3712–22. doi:10.1002/art.30592. Large study of methotrexate-naïve RA patients where MRI outcomes were examined. Significant improvements were seen at weeks 12 and 24 in synovitis and osteitis in the treatment groups.

    Article  CAS  PubMed  Google Scholar 

  78. van der Heijde DM, van Riel PL, Nuver-Zwart IH, et al. Effects of hydroxychloroquine and sulphasalazine on progression of joint damage in rheumatoid arthritis. Lancet. 1989;1(8646):1036–8.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Fiona M. McQueen and Estee Chan declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. McQueen.

Additional information

This article is part of the Topical Collection on Imaging

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQueen, F.M., Chan, E. Insights into Rheumatoid Arthritis from Use of MRI. Curr Rheumatol Rep 16, 388 (2014). https://doi.org/10.1007/s11926-013-0388-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0388-1

Keywords

Navigation