Skip to main content

Advertisement

Log in

Inhibition of Nitric Oxide and Antiphospholipid Antibody-Mediated Thrombosis

  • ANTIPHOSPHOLIPID SYNDROME (RAS ROUBEY, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The antiphospholipid syndrome (APS) is characterized by recurrent vascular thrombosis, thrombocytopenia, and fetal loss occurring in the presence of antiphospholipid antibodies (aPL). Along with arterial and venous thrombosis and pregnancy complications, patients with APS have an increased risk of myocardial infarction, stroke, and coronary artery disease, resulting from vascular cell dysfunction induced by aPL. Accumulating evidence to date indicates that interactions between circulating aPL and cell surface molecules of target cells, primarily endothelial cells and platelets, underlie the vascular disease phenotypes of APS. However, the molecular basis of APS is poorly understood. Nitric oxide produced by endothelial cells is a key determinant of vascular health that regulates several physiologic processes, including thrombosis, endothelial-leukocyte interaction, vascular cell migration, and the modulation of vascular tone. This review will discuss recent findings that indicate a novel mechanism by which aPL antagonize endothelial cell production of nitric oxide and thereby promote thrombosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  PubMed  CAS  Google Scholar 

  2. Rai R, Cohen H, Dave M, Regan L. Randomised controlled trial of aspirin and aspirin plus heparin in pregnant women with recurrent miscarriage associated with phospholipid antibodies (or antiphospholipid antibodies). BMJ. 1997;314:253–7.

    Article  PubMed  CAS  Google Scholar 

  3. Kutteh WH. Antiphospholipid antibody-associated recurrent pregnancy loss: treatment with heparin and low-dose aspirin is superior to low-dose aspirin alone. Am J Obstet Gynecol. 1996;174:1584–9.

    Article  PubMed  CAS  Google Scholar 

  4. Duckitt K, Harrington D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ. 2005;330:565.

    Article  PubMed  Google Scholar 

  5. Levine JS, Branch DW, Rauch J. The antiphospholipid syndrome. N Engl J Med. 2002;346:752–63.

    Article  PubMed  CAS  Google Scholar 

  6. Soltesz P, Szekanecz Z, Kiss E, Shoenfeld Y. Cardiac manifestations in antiphospholipid syndrome. Autoimmun Rev. 2007;6:379–86.

    Article  PubMed  CAS  Google Scholar 

  7. Loscalzo J. Nitric oxide and vascular disease. N Engl J Med. 1995;333:251–3.

    Article  PubMed  CAS  Google Scholar 

  8. Freedman JE, Sauter R, Battinelli EM, et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res. 1999;84:1416–21.

    Article  PubMed  CAS  Google Scholar 

  9. Freedman JE, Loscalzo J, Barnard MR, et al. Nitric oxide released from activated platelets inhibits platelet recruitment. J Clin Investig. 1997;100:350–6.

    Article  PubMed  CAS  Google Scholar 

  10. Mehta JL, Chen LY, Kone BC, et al. Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med. 1995;125:370–7.

    PubMed  CAS  Google Scholar 

  11. Sase K, Michel T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci. 1995;57:2049–55.

    Article  PubMed  CAS  Google Scholar 

  12. Stagliano NE, Zhao W, Prado R, et al. The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 1997;17:1182–90.

    Article  PubMed  CAS  Google Scholar 

  13. Shultz PJ, Raij L. Endogenously synthesized nitric oxide prevents endotoxin-induced glomerular thrombosis. J Clin Investig. 1992;90:1718–25.

    Article  PubMed  CAS  Google Scholar 

  14. Waddington S, Cook HT, Reaveley D, et al. L-arginine depletion inhibits glomerular nitric oxide synthesis and exacerbates rat nephrotoxic nephritis. Kidney Int. 1996;49:1090–6.

    Article  PubMed  CAS  Google Scholar 

  15. Yao SK, Ober JC, Krishnaswami A, et al. Endogenous nitric oxide protects against platelet aggregation and cyclic flow variations in stenosed and endothelium-injured arteries. Circulation. 1992;86:1302–9.

    Article  PubMed  CAS  Google Scholar 

  16. Broeders MA, Tangelder GJ, Slaaf DW, et al. Endogenous nitric oxide protects against thromboembolism in venules but not in arterioles. Arterioscler Thromb Vasc Biol. 1998;18:139–45.

    Article  PubMed  CAS  Google Scholar 

  17. Atochin DN, Huang PL. Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch. 2010;460:965–74.

    Article  PubMed  CAS  Google Scholar 

  18. Lefer DJ, Jones SP, Girod WG, et al. Leukocyte-endothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol. 1999;276:H1943–50.

    PubMed  CAS  Google Scholar 

  19. Huang Z, Huang PL, Ma J, et al. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab. 1996;16:981–7.

    Article  PubMed  CAS  Google Scholar 

  20. Atochin DN, Wang A, Liu VW, et al. The phosphorylation state of eNOS modulates vascular reactivity and outcome of cerebral ischemia in vivo. J Clin Invest. 2007;117:1961–7.

    Article  PubMed  CAS  Google Scholar 

  21. Kuhlencordt PJ, Rosel E, Gerszten RE, et al. Role of endothelial nitric oxide synthase in endothelial activation: insights from eNOS knockout endothelial cells. Am J Physiol Cell Physiol. 2004;286:C1195–202.

    Article  PubMed  CAS  Google Scholar 

  22. Michelson AD, Benoit SE, Furman MI, et al. Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol. 1996;270:H1640–8.

    PubMed  CAS  Google Scholar 

  23. Folts JD, Stamler J, Loscalzo J. Intravenous nitroglycerin infusion inhibits cyclic blood flow responses caused by periodic platelet thrombus formation in stenosed canine coronary arteries. Circulation. 1991;83:2122–7.

    Article  PubMed  CAS  Google Scholar 

  24. Mergia E, Friebe A, Dangel O, et al. Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Investig. 2006;116:1731–7.

    Article  PubMed  CAS  Google Scholar 

  25. Radomski MW, Moncada S. Regulation of vascular homeostasis by nitric oxide. Thromb Haemost. 1993;70:36–41.

    PubMed  CAS  Google Scholar 

  26. Radomski MW, Moncada S. The biological and pharmacological role of nitric oxide in platelet function. Adv Exp Med Biol. 1993;344:251–64.

    Article  PubMed  CAS  Google Scholar 

  27. Negrescu EV, Sazonova LN, Baldenkov GN, et al. Relationship between the inhibition of receptor-induced increase in cytosolic free calcium concentration and the vasodilator effects of nitrates in patients with congestive heart failure. Int J Cardiol. 1990;26:175–84.

    Article  PubMed  CAS  Google Scholar 

  28. Lowenstein CJ. Nitric oxide regulation of protein trafficking in the cardiovascular system. Cardiovasc Res. 2007;75:240–6.

    Article  PubMed  CAS  Google Scholar 

  29. Matsushita K, Morrell CN, Cambien B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell. 2003;115:139–50.

    Article  PubMed  CAS  Google Scholar 

  30. Freedman JE, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders. J Thromb Haemost. 2003;1:1183–8.

    Article  PubMed  CAS  Google Scholar 

  31. Freedman JE. Oxidative stress and platelets. Arterioscler Thromb Vasc Biol. 2008;28:s11–6.

    Article  PubMed  CAS  Google Scholar 

  32. DeWood MA, Spores J, Notske R, et al. Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. N Engl J Med. 1980;303:897–902.

    Article  PubMed  CAS  Google Scholar 

  33. Falk E. Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation. 1985;71:699–708.

    Article  PubMed  CAS  Google Scholar 

  34. Langford EJ, Wainwright RJ, Martin JF. Platelet activation in acute myocardial infarction and unstable angina is inhibited by nitric oxide donors. Arterioscler Thromb Vasc Biol. 1996;16:51–5.

    Article  PubMed  CAS  Google Scholar 

  35. Freedman JE, Ting B, Hankin B, et al. Impaired platelet production of nitric oxide predicts presence of acute coronary syndromes. Circulation. 1998;98:1481–6.

    Article  PubMed  CAS  Google Scholar 

  36. Minamino T, Kitakaze M, Sato H, et al. Plasma levels of nitrite/nitrate and platelet cGMP levels are decreased in patients with atrial fibrillation. Arterioscler Thromb Vasc Biol. 1997;17:3191–5.

    Article  PubMed  CAS  Google Scholar 

  37. Clark BA, Ludmir J, Epstein FH, et al. Urinary cyclic GMP, endothelin, and prostaglandin E2 in normal pregnancy and preeclampsia. Am J Perinatol. 1997;14:559–62.

    Article  PubMed  CAS  Google Scholar 

  38. Lacolley P, Gautier S, Poirier O, et al. Nitric oxide synthase gene polymorphisms, blood pressure and aortic stiffness in normotensive and hypertensive subjects. J Hypertens. 1998;16:31–5.

    Article  PubMed  CAS  Google Scholar 

  39. Elbaz A, Poirier O, Moulin T, et al. Association between the Glu298Asp polymorphism in the endothelial constitutive nitric oxide synthase gene and brain infarction. The GENIC Investigators. Stroke. 2000;31:1634–9.

    Article  PubMed  CAS  Google Scholar 

  40. Hingorani AD, Liang CF, Fatibene J, et al. A common variant of the endothelial nitric oxide synthase (Glu298 Asp) is a major risk factor for coronary artery disease in the UK. Circulation. 1999;100:1515–20.

    Article  PubMed  CAS  Google Scholar 

  41. Shimasaki Y, Yasue H, Yoshimura M, et al. Association of the missense Glu298Asp variant of the endothelial nitric oxide synthase gene with myocardial infarction. J Am Coll Cardiol. 1998;31:1506–10.

    Article  PubMed  CAS  Google Scholar 

  42. Wang XL, Sim AS, Badenhop RF, et al. A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitric oxide synthase gene. Nat Med. 1996;2:41–5.

    Article  PubMed  CAS  Google Scholar 

  43. Tanus-Santos JE, Desai M, Deak LR, et al. Effects of endothelial nitric oxide synthase gene polymorphisms on platelet function, nitric oxide release, and interactions with estradiol. Pharmacogenetics. 2002;12:407–13.

    Article  PubMed  CAS  Google Scholar 

  44. Pierangeli SS, Chen PP, Raschi E, et al. Antiphospholipid antibodies and the antiphospholipid syndrome: pathogenic mechanisms. Semin Thromb Hemost. 2008;34:236–50.

    Article  PubMed  CAS  Google Scholar 

  45. Pierangeli SS, Gharavi AE, Harris EN. Experimental thrombosis and antiphospholipid antibodies: new insights. J Autoimmun. 2000;15:241–7.

    Article  PubMed  CAS  Google Scholar 

  46. Oku K, Amengual O, Atsumi T. Pathophysiology of thrombosis and pregnancy morbidity in the antiphospholipid syndrome. Eur J Clin Investig. 2012;42:1126–35.

    Article  CAS  Google Scholar 

  47. Jankowski M, Vreys I, Wittevrongel C, et al. Thrombogenicity of beta 2-glycoprotein I-dependent antiphospholipid antibodies in a photochemically induced thrombosis model in the hamster. Blood. 2003;101:157–62.

    Article  PubMed  CAS  Google Scholar 

  48. Pierangeli SS, Colden-Stanfield M, Liu X, et al. Antiphospholipid antibodies from antiphospholipid syndrome patients activate endothelial cells in vitro and in vivo. Circulation. 1999;99:1997–2002.

    Article  PubMed  CAS  Google Scholar 

  49. Espinola RG, Liu X, Colden-Stanfield M, et al. E-Selectin mediates pathogenic effects of antiphospholipid antibodies. J Thromb Haemost. 2003;1:843–8.

    Article  PubMed  CAS  Google Scholar 

  50. Romay-Penabad Z, Montiel-Manzano MG, Shilagard T, et al. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo. Blood. 2009;114:3074–83.

    Article  PubMed  CAS  Google Scholar 

  51. Vega-Ostertag ME, Ferrara DE, Romay-Penabad Z, et al. Role of p38 mitogen-activated protein kinase in antiphospholipid antibody-mediated thrombosis and endothelial cell activation. J Thromb Haemost. 2007;5:1828–34.

    Article  PubMed  CAS  Google Scholar 

  52. Vega-Ostertag M, Liu X, Kwan-Ki H, et al. A human monoclonal antiprothrombin antibody is thrombogenic in vivo and upregulates expression of tissue factor and E-selectin on endothelial cells. Br J Haematol. 2006;135:214–9.

    Article  PubMed  CAS  Google Scholar 

  53. Pierangeli SS, Espinola RG, Liu X, Harris EN. Thrombogenic effects of antiphospholipid antibodies are mediated by intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1, and P-selectin. Circ Res. 2001;88:245–50.

    Article  PubMed  CAS  Google Scholar 

  54. Branch DW, Rodgers GM. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: a possible mechanism of thrombosis. Am J Obstet Gynecol. 1993;168:206–10.

    PubMed  CAS  Google Scholar 

  55. Atsumi T, Khamashta MA, Haworth RS, et al. Arterial disease and thrombosis in the antiphospholipid syndrome: a pathogenic role for endothelin 1. Arthritis Rheum. 1998;41:800–7.

    Article  PubMed  CAS  Google Scholar 

  56. Dunoyer-Geindre S, de Moerloose P, Galve-de RB, et al. NFkappaB is an essential intermediate in the activation of endothelial cells by anti-beta(2)-glycoprotein 1 antibodies. Thromb Haemost. 2002;88:851–7.

    PubMed  Google Scholar 

  57. Lopez-Pedrera C, Buendia P, Cuadrado MJ, et al. Antiphospholipid antibodies from patients with the antiphospholipid syndrome induce monocyte tissue factor expression through the simultaneous activation of NF-kappaB/Rel proteins via the p38 mitogen-activated protein kinase pathway, and of the MEK-1/ERK pathway. Arthritis Rheum. 2006;54:301–11.

    Article  PubMed  CAS  Google Scholar 

  58. Simoncini S, Sapet C, Camoin-Jau L, et al. Role of reactive oxygen species and p38 MAPK in the induction of the pro-adhesive endothelial state mediated by IgG from patients with anti-phospholipid syndrome. Int Immunol. 2005;17:489–500.

    Article  PubMed  CAS  Google Scholar 

  59. Vega-Ostertag M, Casper K, Swerlick R, et al. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. Arthritis Rheum. 2005;52:1545–54.

    Article  PubMed  CAS  Google Scholar 

  60. Belizna C, Lartigue A, Favre J, et al. Antiphospholipid antibodies induce vascular functional changes in mice: a mechanism of vascular lesions in antiphospholipid syndrome? Lupus. 2008;17:185–94.

    Article  PubMed  CAS  Google Scholar 

  61. Delgado AJ, Mason LJ, Ames PR, et al. Antiphospholipid antibodies are associated with enhanced oxidative stress, decreased plasma nitric oxide and paraoxonase activity in an experimental mouse model. Rheumatology (Oxford). 2005;44:1238–44.

    Article  Google Scholar 

  62. Ames PR, Tommasino C, Alves J, et al. Antioxidant susceptibility of pathogenic pathways in subjects with antiphospholipid antibodies: a pilot study. Lupus. 2000;9:688–95.

    Article  PubMed  CAS  Google Scholar 

  63. • Ames PR, Batuca JR, Ciampa A, et al. Clinical relevance of nitric oxide metabolites and nitrative stress in thrombotic primary antiphospholipid syndrome. J Rheumatol. 2010;37:2523–30. This is one of the series of studies published by the group that provide the link between nitric oxide and APS in humans.

    Article  PubMed  CAS  Google Scholar 

  64. •• Ramesh S, Morrell CN, Tarango C, et al. Antiphospholipid antibodies promote leukocyte-endothelial cell adhesion and thrombosis in mice by antagonizing eNOS via beta2GPI and apoER2. J Clin Invest. 2011;121:120–31. This work demonstrates for the first time that aPL antagonism of eNOS plays an important role in the abnormal vascular phenotypes in APS.

    Article  PubMed  CAS  Google Scholar 

  65. Mineo C, Shaul PW. New Insights into the Molecular Basis of the Antiphospholipid Syndrome. Drug Discov Today Dis Mech. 2011;8:e47–52.

    Article  PubMed  CAS  Google Scholar 

  66. Mineo C, Gormley AK, Yuhanna IS, et al. FcgammaRIIB mediates C-reactive protein inhibition of endothelial NO synthase. Circ Res. 2005;97:1124–31.

    Article  PubMed  CAS  Google Scholar 

  67. Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res. 2001;88:756–62.

    Article  PubMed  CAS  Google Scholar 

  68. Galli M, Luciani D, Bertolini G, Barbui T. Anti-beta 2-glycoprotein I, antiprothrombin antibodies, and the risk of thrombosis in the antiphospholipid syndrome. Blood. 2003;102:2717–23.

    Article  PubMed  CAS  Google Scholar 

  69. Miyakis S, Giannakopoulos B, Krilis SA. Beta 2 glycoprotein I–function in health and disease. Thromb Res. 2004;114:335–46.

    Article  PubMed  CAS  Google Scholar 

  70. Ninivaggi M, Kelchtermans H, Lindhout T, de Laat B. Conformation of beta2glycoprotein I and its effect on coagulation. Thromb Res. 2012;130(1):S33–6.

    Article  PubMed  CAS  Google Scholar 

  71. de Groot PG, van Lummel M, Pennings M, et al. Beta2-glycoprotein I and LDL-receptor family members. Thromb Res. 2004;114:455–9.

    Article  PubMed  Google Scholar 

  72. Urbanus RT, Derksen RH, de Groot PG. Platelets and the antiphospholipid syndrome. Lupus. 2008;17:888–94.

    Article  PubMed  CAS  Google Scholar 

  73. Pierangeli SS, Vega-Ostertag M, Harris EN. Intracellular signaling triggered by antiphospholipid antibodies in platelets and endothelial cells: a pathway to targeted therapies. Thromb Res. 2004;114:467–76.

    Article  PubMed  CAS  Google Scholar 

  74. de Laat B, de Groot PG. Autoantibodies directed against domain I of beta2-glycoprotein I. Curr Rheumatol Rep. 2011;13:70–6.

    Article  PubMed  Google Scholar 

  75. de Laat B, Derksen RH, Urbanus RT, de Groot PG. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood. 2005;105:1540–5.

    Article  PubMed  Google Scholar 

  76. de Laat B, Pengo V, Pabinger I, et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost. 2009;7:1767–73.

    Article  PubMed  Google Scholar 

  77. Del Papa N, Guidali L, Sala A, et al. Endothelial cells as target for antiphospholipid antibodies. Human polyclonal and monoclonal anti-beta 2-glycoprotein I antibodies react in vitro with endothelial cells through adherent beta 2-glycoprotein I and induce endothelial activation. Arthritis Rheum. 1997;40:551–61.

    Article  PubMed  Google Scholar 

  78. Del Papa N, Guidali L, Spatola L, et al. Relationship between anti-phospholipid and anti-endothelial cell antibodies III: beta 2 glycoprotein I mediates the antibody binding to endothelial membranes and induces the expression of adhesion molecules. Clin Exp Rheumatol. 1995;13:179–85.

    PubMed  Google Scholar 

  79. He J, Luster TA, Thorpe PE. Radiation-enhanced vascular targeting of human lung cancers in mice with a monoclonal antibody that binds anionic phospholipids. Clin Cancer Res. 2007;13:5211–8.

    Article  PubMed  CAS  Google Scholar 

  80. Ran S, He J, Huang X, et al. Antitumor effects of a monoclonal antibody that binds anionic phospholipids on the surface of tumor blood vessels in mice. Clin Cancer Res. 2005;11:1551–62.

    Article  PubMed  CAS  Google Scholar 

  81. Herz J, Chen Y. Reelin, lipoprotein receptors and synaptic plasticity. Nat Rev Neurosci. 2006;7:850–9.

    Article  PubMed  CAS  Google Scholar 

  82. Pennings MT, van Lummel M, Derksen RH, et al. Interaction of beta2-glycoprotein I with members of the low density lipoprotein receptor family. J Thromb Haemost. 2006;4:1680–90.

    Article  PubMed  CAS  Google Scholar 

  83. Urbanus RT, Pennings MT, Derksen RH, de Groot PG. Platelet activation by dimeric beta2-glycoprotein I requires signaling via both glycoprotein Ibalpha and apolipoprotein E receptor 2'. J Thromb Haemost. 2008;6:1405–12.

    Article  PubMed  CAS  Google Scholar 

  84. Pennings MT, Derksen RH, Urbanus RT, et al. Platelets express three different splice variants of ApoER2 that are all involved in signaling. J Thromb Haemost. 2007;5:1538–44.

    Article  PubMed  CAS  Google Scholar 

  85. Herz J, Goldstein JL, Strickland DK, et al. 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J Biol Chem. 1991;266:21232–8.

    PubMed  CAS  Google Scholar 

  86. •• Romay-Penabad Z, Guilar-Valenzuela R, Urbanus RT, et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood. 2011;117:1408–14. The paper provides concrete evidence that apoER2 is required for aPL-induced thrombus formation in vivo.

    Article  PubMed  CAS  Google Scholar 

  87. Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn't calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    PubMed  CAS  Google Scholar 

  88. Shaul PW. Regulation of endothelial nitric oxide synthase: location, location, location. Annu Rev Physiol. 2002;64:749–74.

    Article  PubMed  CAS  Google Scholar 

  89. Greif DM, Kou R, Michel T. Site-specific dephosphorylation of endothelial nitric oxide synthase by protein phosphatase 2A: evidence for crosstalk between phosphorylation sites. Biochemistry (Mosc). 2002;41:15845–53.

    Article  CAS  Google Scholar 

  90. Michell BJ, Chen Z, Tiganis T, et al. Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem. 2001;276:17625–8.

    Article  PubMed  CAS  Google Scholar 

  91. Mumby MC, Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993;73:673–99.

    PubMed  CAS  Google Scholar 

  92. Leidi M, Mariotti M, Maier JA. EDF-1 contributes to the regulation of nitric oxide release in VEGF-treated human endothelial cells. Eur J Cell Biol. 2010;89:654–60.

    Article  PubMed  CAS  Google Scholar 

  93. Urbich C, Reissner A, Chavakis E, et al. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J. 2002;16:706–8.

    PubMed  CAS  Google Scholar 

  94. Wu F, Wilson JX. Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovasc Res. 2009;81:38–45.

    Article  PubMed  CAS  Google Scholar 

  95. Meroni PL, Raschi E, Testoni C, et al. Innate immunity in the antiphospholipid syndrome: role of toll-like receptors in endothelial cell activation by antiphospholipid antibodies. Autoimmun Rev. 2004;3:510–5.

    Article  PubMed  CAS  Google Scholar 

  96. Fischetti F, Durigutto P, Pellis V, et al. Thrombus formation induced by antibodies to beta2-glycoprotein I is complement dependent and requires a priming factor. Blood. 2005;106:2340–6.

    Article  PubMed  CAS  Google Scholar 

  97. Pierangeli SS, Erkan D. Antiphospholipid syndrome treatment beyond anticoagulation: are we there yet? Lupus. 2010;19:475–85.

    Article  PubMed  CAS  Google Scholar 

  98. Erkan D, Harrison MJ, Levy R, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 2007;56:2382–91.

    Article  PubMed  CAS  Google Scholar 

  99. Finazzi G, Marchioli R, Brancaccio V, et al. A randomized clinical trial of high-intensity warfarin vs. conventional antithrombotic therapy for the prevention of recurrent thrombosis in patients with the antiphospholipid syndrome (WAPS). J Thromb Haemost. 2005;3:848–53.

    Article  PubMed  CAS  Google Scholar 

  100. Garcia DA, Khamashta MA, Crowther MA. How we diagnose and treat thrombotic manifestations of the antiphospholipid syndrome: a case-based review. Blood. 2007;110:3122–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Chieko Mineo has received grant support from the Alliance for Lupus Research and the National Institutes of Health.

Conflict of Interest

Chieko Mineo declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieko Mineo.

Additional information

This article is part of the Topical Collection on Antiphospholipid Syndrome

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineo, C. Inhibition of Nitric Oxide and Antiphospholipid Antibody-Mediated Thrombosis. Curr Rheumatol Rep 15, 324 (2013). https://doi.org/10.1007/s11926-013-0324-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0324-4

Keywords

Navigation