Skip to main content

Advertisement

Log in

Suicide Has Many Faces, So Does Ketamine: a Narrative Review on Ketamine’s Antisuicidal Actions

  • Mood Disorders (E Baca-Garcia, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Suicidal behaviours are a challenge for a medical system and public health, partly due to the current lack of evidence-based, effective, rapid tools for suicidal crisis management. Ketamine and its enantiomer esketamine have raised hopes regarding this issue in the recent years. However, their efficacy in suicidal behaviours and mechanisms for it remain a topic of debate.

Recent Findings

Subanesthetic ketamine doses rapidly, albeit transiently decrease suicidal ideation, with effects emerging within an hour and persisting up to a week. Current evidence points to various and not necessarily exclusive mechanisms for ketamine’s antisuicidal action, including effects on neuroplasticity, inflammation, reward system and pain processing.

Summary

Ketamine rapidly decreases suicidal ideation, but whether it leads to meaningful clinical outcomes past 1 week is unclear. Multiple putative mechanisms drive ketamine’s antisuicidal action. Future studies will have to show long-term ketamine treatment outcomes and further elucidate its mechanisms of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Uddin R, Burton NW, Maple M, Khan SR, Khan A. Suicidal ideation, suicide planning, and suicide attempts among adolescents in 59 low-income and middle-income countries: a population-based study. Lancet Child Adolesc Heal. 2019;3:223–33. https://doi.org/10.1016/S2352-4642(18)30403-6.

    Article  Google Scholar 

  2. Bachmann S. Epidemiology of suicide and the psychiatric perspective. Int J Environ Res Public Health. 2018;15:1425. https://doi.org/10.3390/ijerph15071425.

    Article  PubMed Central  Google Scholar 

  3. Lorant V, de Gelder R, Kapadia D, Borrell C, Kalediene R, Kovács K, et al. Socioeconomic inequalities in suicide in Europe: the widening gap. Br J Psychiatry. 2018;212:356–61. https://doi.org/10.1192/bjp.2017.32.

    Article  PubMed  Google Scholar 

  4. Andrade C. Ketamine for depression, 6: effects on suicidal ideation and possible use as crisis intervention in patients at suicide risk. J Clin Psychiatry 2018;79:18f12242. doi:https://doi.org/10.4088/JCP.18f12242.

    Article  PubMed  Google Scholar 

  5. Lopez-Castroman J, Jaussent I, Gorwood P, Courtet P. Suicidal depressed patients respond less well to antidepressants in the short term. Depress Anxiety. 2016;33:483–94. https://doi.org/10.1002/da.22473.

    Article  CAS  PubMed  Google Scholar 

  6. Stübner S, Grohmann R, Greil W, Zhang X, Müller-Oerlinghausen B, Bleich S, et al. Suicidal ideation and suicidal behavior as rare adverse events of antidepressant medication: current report from the AMSP Multicenter Drug Safety Surveillance Project. Int J Neuropsychopharmacol. 2018;21:814–21. https://doi.org/10.1093/ijnp/pyy048.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Méndez-Bustos P, Calati R, Rubio-Ramírez F, Olié E, Courtet P, Lopez-Castroman J. Effectiveness of psychotherapy on suicidal risk: a systematic review of observational studies. Front Psychol. 2019;10:1–10. https://doi.org/10.3389/fpsyg.2019.00277.

    Article  Google Scholar 

  8. Griffiths JJ, Zarate CA, Rasimas JJ. Existing and novel biological therapeutics in suicide prevention. Am J Prev Med. 2014;47:S195–203. https://doi.org/10.1016/j.amepre.2014.06.012.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andrade C, Arumugham SS, Thirthalli J. Adverse effects of electroconvulsive therapy. Psychiatr Clin North Am. 2016;39:513–30. https://doi.org/10.1016/j.psc.2016.04.004.

    Article  PubMed  Google Scholar 

  10. Crumb MW, Bryant C, Atkinson TJ. Emerging trends in pain medication management: back to the future: a focus on ketamine. Am J Med. 2018;131:883–6. https://doi.org/10.1016/j.amjmed.2018.02.037.

    Article  PubMed  Google Scholar 

  11. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4. https://doi.org/10.1016/S0006-3223(99)00230-9.

    Article  CAS  PubMed  Google Scholar 

  12. Domany Y, Bleich-Cohen M, Tarrasch R, Meidan R, Litvak-Lazar O, Stoppleman N, et al. Repeated oral ketamine for out-patient treatment of resistant depression: randomised, double-blind, placebo-controlled, proof-of-concept study. Br J Psychiatry. 2019;214:20–6. https://doi.org/10.1192/bjp.2018.196.

    Article  PubMed  Google Scholar 

  13. Fava M, Freeman MP, Flynn M, Judge H, Hoeppner BB, Cusin C, et al. Double-blind, placebo-controlled, dose-ranging trial of intravenous ketamine as adjunctive therapy in treatment-resistant depression (TRD). Mol Psychiatry. 2018;20:163–78. https://doi.org/10.1038/s41380-018-0256-5.

    Article  CAS  Google Scholar 

  14. Xu Y, Hackett M, Carter G, Loo C, Gálvez V, Glozier N, et al. Effects of low-dose and very low-dose ketamine among patients with major depression: a systematic review and meta-analysis. Int J Neuropsychopharmacol. 2016;19:pyv124. https://doi.org/10.1093/ijnp/pyv124.

    Article  PubMed  Google Scholar 

  15. Bartoli F, Riboldi I, Crocamo C, Di Brita C, Clerici M, Carrà G. Ketamine as a rapid-acting agent for suicidal ideation: a meta-analysis. Neurosci Biobehav Rev. 2017;77:232–6. https://doi.org/10.1016/j.neubiorev.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  16. •• Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am J Psychiatry 2018;175:150–158. doi:https://doi.org/10.1176/appi.ajp.2017.17040472. A meta-analysis that demonstrated that ketamine rapidly decreased suicidal ideation, but this effect is proven up to one week.

    Article  PubMed  Google Scholar 

  17. Grunebaum MF, Ellis SP, Keilp JG, Moitra VK, Cooper TB, Marver JE, et al. Ketamine versus midazolam in bipolar depression with suicidal thoughts: a pilot midazolam-controlled randomized clinical trial. Bipolar Disord. 2017;19:176–83. https://doi.org/10.1111/bdi.12487.

    Article  CAS  PubMed  Google Scholar 

  18. •• Grunebaum MF, Galfalvy HC, Choo T-H, Keilp JG, Moitra VK, Parris MS, et al. Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am J Psychiatry. 2018;175:327–35. https://doi.org/10.1176/appi.ajp.2017.17060647 A randomized controlled trial that showed that intravenous subanesthetic dose of ketamine reduces suicidal ideation in depressed patients.

    Article  PubMed  Google Scholar 

  19. Vidal S, Gex-Fabry M, Bancila V, Michalopoulos G, Warrot D, Jermann F, et al. Efficacy and safety of a rapid intravenous injection of ketamine 0.5 mg/kg in treatment-resistant major depression. J Clin Psychopharmacol. 2018;38:1. https://doi.org/10.1097/JCP.0000000000000960.

    Article  CAS  Google Scholar 

  20. Zheng W, Zhou Y-L, Liu W-J, Wang C-Y, Zhan Y-N, Li H-Q, et al. Investigation of medical effect of multiple ketamine infusions on patients with major depressive disorder. J Psychopharmacol. 2019;33:494–501. https://doi.org/10.1177/0269881119827811.

    Article  CAS  PubMed  Google Scholar 

  21. Zhan Y, Zhang B, Zhou Y, Zheng W, Liu W, Wang C, et al. A preliminary study of anti-suicidal efficacy of repeated ketamine infusions in depression with suicidal ideation. J Affect Disord. 2019;251:205–12. https://doi.org/10.1016/j.jad.2019.03.071.

    Article  CAS  PubMed  Google Scholar 

  22. Burger J, Capobianco M, Lovern R, Boche B, Ross E, Darracq MA, et al. A double-blinded, randomized, placebo-controlled sub-dissociative dose ketamine pilot study in the treatment of acute depression and suicidality in a military emergency department setting. Mil Med. 2016;181:1195–9. https://doi.org/10.7205/MILMED-D-15-00431.

    Article  PubMed  Google Scholar 

  23. Singh JB, Fedgchin M, Daly E, Xi L, Melman C, De Bruecker G, et al. Intravenous esketamine in adult treatment-resistant depression: a double-blind, double-randomization, placebo-controlled study. Biol Psychiatry. 2016;80:424–31. https://doi.org/10.1016/j.biopsych.2015.10.018.

    Article  CAS  PubMed  Google Scholar 

  24. Daly EJ, Singh JB, Fedgchin M, Cooper K, Lim P, Shelton RC, et al. Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression. JAMA Psychiatry. 2018;75:139. https://doi.org/10.1001/jamapsychiatry.2017.3739.

    Article  PubMed  Google Scholar 

  25. •• Canuso CM, Singh JB, Fedgchin M, Alphs L, Lane R, Lim P, et al. Efficacy and safety of intranasal esketamine for the rapid reduction of symptoms of depression and suicidality in patients at imminent risk for suicide: results of a double-blind, randomized, placebo-controlled study. Am J Psychiatry. 2018;175:620–30. https://doi.org/10.1176/appi.ajp.2018.17060720 A randomized controlled trial that showed that intranasal esketamine reduces suicidal ideation in several hours.

    Article  PubMed  Google Scholar 

  26. Short B, Fong J, Galvez V, Shelker W, Loo CK. Side-effects associated with ketamine use in depression: a systematic review. Lancet Psychiatry. 2018;5:65–78. https://doi.org/10.1016/S2215-0366(17)30272-9.

    Article  PubMed  Google Scholar 

  27. McHugh CM, Corderoy A, Ryan CJ, Hickie IB, Large MM. Association between suicidal ideation and suicide: meta-analyses of odds ratios, sensitivity, specificity and positive predictive value. BJPsych Open. 2019;5:e18. https://doi.org/10.1192/bjo.2018.88.

    Article  PubMed  PubMed Central  Google Scholar 

  28. • Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11. https://doi.org/10.1038/mp.2017.255 A detailed review on ketamine’s molecular and cellular mechanisms of actions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. • Duman RS, Shinohara R, Fogaça MV, Hare B. Neurobiology of rapid-acting antidepressants: convergent effects on GluA1-synaptic function. Mol psychiatry. 2019. https://doi.org/10.1038/s41380-019-0400-x A detailed review on ketamine’s molecular and cellular mechanisms of actions.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–5. https://doi.org/10.1038/nature10130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2 R ,6 R )-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci. 2019;116:5160–9. https://doi.org/10.1073/pnas.1816071116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang C, Ren Q, Qu Y, Zhang J-C, Ma M, Dong C, et al. Mechanistic target of rapamycin–independent antidepressant effects of ( R )-ketamine in a social defeat stress model. Biol Psychiatry. 2018;83:18–28. https://doi.org/10.1016/j.biopsych.2017.05.016.

    Article  CAS  PubMed  Google Scholar 

  33. • Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM. NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry. 2018;2:1–11. https://doi.org/10.1038/s41380-018-0083-8 This study demonstrated that ketamine might induce neuroplasticity without blocking NMDA receptors.

    Article  CAS  Google Scholar 

  34. Chen M-H, Lin W-C, Wu H-J, Cheng C-M, Li C-T, Hong C-J, et al. Antisuicidal effect, BDNF Val66Met polymorphism, and low-dose ketamine infusion: reanalysis of adjunctive ketamine study of Taiwanese patients with treatment-resistant depression (AKSTP-TRD). J Affect Disord. 2019;251:162–9. https://doi.org/10.1016/j.jad.2019.03.075.

    Article  CAS  PubMed  Google Scholar 

  35. Garner JM, Chambers J, Barnes AK, Datta S. Changes in brain-derived neurotrophic factor expression influence sleep-wake activity and homeostatic regulation of rapid eye movement sleep. Sleep. 2018;41:1–14. https://doi.org/10.1093/sleep/zsx194.

    Article  Google Scholar 

  36. • Vande Voort JL, Ballard ED, Luckenbaugh DA, Bernert RA, Richards EM, Niciu MJ, et al. Antisuicidal response following ketamine infusion is associated with decreased nighttime wakefulness in major depressive disorder and bipolar disorder. J Clin Psychiatry. 2017;78:1068–74. https://doi.org/10.4088/JCP.15m10440 This study shows that antisuicidal response to ketamine is associated with sleep pattern changes, possibly implicating BDNF.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Flory JD, Donohue D, Muhie S, Yang R, Miller SA, Hammamieh R, et al. Gene expression associated with suicide attempts in US veterans. Transl Psychiatry. 2017;7:e1226–8. https://doi.org/10.1038/tp.2017.179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou W, Wang N, Yang C, Li X-M, Zhou Z-Q, Yang J-J. Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry. 2014;29:419–23. https://doi.org/10.1016/j.eurpsy.2013.10.005.

    Article  CAS  PubMed  Google Scholar 

  39. Nugent AC, Ballard ED, Gould TD, Park LT, Moaddel R, Brutsche NE, et al. Ketamine has distinct electrophysiological and behavioral effects in depressed and healthy subjects. Mol Psychiatry. 2018;24:1040–52. https://doi.org/10.1038/s41380-018-0028-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Ionescu DF, Felicione JM, Gosai A, Cusin C, Shin P, Shapero BG, et al. Ketamine-associated brain changes. Harv Rev Psychiatry. 2018;26:1. https://doi.org/10.1097/HRP.0000000000000179 An extensive review on ketamine-induced brain changes.

    Article  Google Scholar 

  41. van Heeringen K, Bijttebier S, Desmyter S, Vervaet M, Baeken C. Is there a neuroanatomical basis of the vulnerability to suicidal behavior? A coordinate-based meta-analysis of structural and functional MRI studies. Front Hum Neurosci. 2014;8:1–8. https://doi.org/10.3389/fnhum.2014.00824.

    Article  Google Scholar 

  42. •• Ballard ED, Yarrington JS, Farmer CA, Richards E, Machado-Vieira R, Kadriu B, et al. Characterizing the course of suicidal ideation response to ketamine. J Affect Disord. 2018;241:86–93. https://doi.org/10.1016/j.jad.2018.07.077 This study showed that patients with longstanding history of suicidal ideation are less likely to respond to ketamine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ionescu DF, Bentley KH, Eikermann M, Taylor N, Akeju O, Swee MB, et al. Repeat-dose ketamine augmentation for treatment-resistant depression with chronic suicidal ideation: a randomized, double blind, placebo controlled trial. J Affect Disord. 2019;243:516–24. https://doi.org/10.1016/j.jad.2018.09.037.

    Article  CAS  PubMed  Google Scholar 

  44. Bernanke JA, Stanley BH, Oquendo MA. Toward fine-grained phenotyping of suicidal behavior: the role of suicidal subtypes. Mol Psychiatry. 2017;22:1080–1. https://doi.org/10.1038/mp.2017.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rizk MM, Galfalvy H, Singh T, Keilp JG, Sublette ME, Oquendo MA, et al. Toward subtyping of suicidality: brief suicidal ideation is associated with greater stress response. J Affect Disord. 2018;230:87–92. https://doi.org/10.1016/j.jad.2018.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Xie P, Wu K, Zheng Y, Guo Y, Yang Y, He J, et al. Prevalence of childhood trauma and correlations between childhood trauma, suicidal ideation, and social support in patients with depression, bipolar disorder, and schizophrenia in southern China. J Affect Disord. 2018;228:41–8. https://doi.org/10.1016/j.jad.2017.11.011.

    Article  PubMed  Google Scholar 

  47. Doherty TS, Roth TL. Epigenetic landscapes of the adversity-exposed brain. 2018;25:1–19. https://doi.org/10.1016/bs.pmbts.2017.11.025.

    Google Scholar 

  48. Underwood MD, Bakalian MJ, Escobar T, Kassir S, Mann JJ, Arango V. Early-life adversity, but not suicide, is associated with less prefrontal cortex gray matter in adulthood. Int J Neuropsychopharmacol. 2019. https://doi.org/10.1093/ijnp/pyz013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lutz J, Morton K, Turiano NA, Fiske A. Health conditions and passive suicidal ideation in the survey of health, ageing, and retirement in Europe. Journals Gerontol Ser B Psychol Sci Soc Sci. 2016;71:936–46. https://doi.org/10.1093/geronb/gbw019.

    Article  Google Scholar 

  50. Youssef MM, Underwood MD, Huang YY, Chi HS, Liu Y, Simpson NR, et al. Association of BDNF Val66MET polymorphism and brain BDNF levels with major depression and suicide. Int J Neuropsychopharmacol. 2018;21:528–38. https://doi.org/10.1093/ijnp/pyy008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang W, Liu L, Yang X, Gao H, Tang Q-K, Yin L-Y, et al. Ketamine improved depressive-like behaviors via hippocampal glucocorticoid receptor in chronic stress induced- susceptible mice. Behav Brain Res. 2019;364:75–84. https://doi.org/10.1016/j.bbr.2019.01.057.

    Article  CAS  PubMed  Google Scholar 

  52. Argento E, Strathdee SA, Tupper K, Braschel M, Wood E, Shannon K. Does psychedelic drug use reduce risk of suicidality? Evidence from a longitudinal community-based cohort of marginalised women in a Canadian setting. BMJ Open. 2017;7:1–8. https://doi.org/10.1136/bmjopen-2017-016025.

    Article  Google Scholar 

  53. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc Natl Acad Sci. 2016;113:4853–8. https://doi.org/10.1073/pnas.1518377113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li M, Woelfer M, Colic L, Safron A, Chang C, Heinze H-J, et al. Default mode network connectivity change corresponds to ketamine’s delayed glutamatergic effects. Eur Arch Psychiatry Clin Neurosci. 2018:1–10. https://doi.org/10.1007/s00406-018-0942-y.

  55. • Evans JW, Szczepanik J, Brutsché N, Park LT, Nugent AC, Zarate CA. Default mode connectivity in major depressive disorder measured up to 10 days after ketamine administration. Biol Psychiatry. 2018;84:582–90. https://doi.org/10.1016/j.biopsych.2018.01.027 This study showed changed in DMN connectivity after ketamine administration, providing evidence for similarities with other psychedelics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lehmann M, Seifritz E, Henning A, Walter M, Böker H, Scheidegger M, et al. Differential effects of rumination and distraction on ketamine induced modulation of resting state functional connectivity and reactivity of regions within the default-mode network. Soc Cogn Affect Neurosci. 2016;11:1227–35. https://doi.org/10.1093/scan/nsw034.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rogachov A, Bhatia A, Cheng JC, Bosma RL, Kim JA, Osborne NR, et al. Plasticity in the dynamic pain connectome associated with ketamine-induced neuropathic pain relief. Pain. 2019;1. https://doi.org/10.1097/j.pain.0000000000001545.

    Article  CAS  PubMed  Google Scholar 

  58. Baeken C, Wu GR, van Heeringen K. Placebo aiTBS attenuates suicidal ideation and frontopolar cortical perfusion in major depression. Transl Psychiatry. 2019;9:1–10. https://doi.org/10.1038/s41398-019-0377-x.

    Article  Google Scholar 

  59. Hwang J, Legarreta M, Bueler CE, DiMuzio J, McGlade E, Lyoo IK, et al. Increased efficiency of brain connectivity networks in veterans with suicide attempts. NeuroImage Clin. 2018;20:318–26. https://doi.org/10.1016/j.nicl.2018.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Courtet P, Giner L, Seneque M, Guillaume S, Olie E, Ducasse D. Neuroinflammation in suicide: toward a comprehensive model. World J Biol Psychiatry. 2016;17:564–86. https://doi.org/10.3109/15622975.2015.1054879.

    Article  PubMed  Google Scholar 

  61. Black C, Miller BJ. Meta-analysis of cytokines and chemokines in suicidality: distinguishing suicidal versus nonsuicidal patients. Biol Psychiatry. 2015;78:28–37. https://doi.org/10.1016/j.biopsych.2014.10.014.

    Article  CAS  PubMed  Google Scholar 

  62. Gjervig Hansen H, Köhler-Forsberg O, Petersen L, Nordentoft M, Postolache TT, Erlangsen A, et al. Infections, anti-infective agents, and risk of deliberate self-harm and suicide in a young cohort: a nationwide study. Biol Psychiatry. 2019;85:744–51. https://doi.org/10.1016/j.biopsych.2018.11.008.

    Article  PubMed  Google Scholar 

  63. Madsen T, Erlangsen A, Orlovska S, Mofaddy R, Nordentoft M, Benros ME. Association between traumatic brain injury and risk of suicide. JAMA. 2018;320:580. https://doi.org/10.1001/jama.2018.10211.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Savitz J, Harrison NA. Interoception and inflammation in psychiatric disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:514–24. https://doi.org/10.1016/j.bpsc.2017.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42:193–215. https://doi.org/10.1038/npp.2016.199.

    Article  CAS  PubMed  Google Scholar 

  66. Bradley KAL, Case JAC, Khan O, Ricart T, Hanna A, Alonso CM, et al. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res. 2015;227:206–12. https://doi.org/10.1016/j.psychres.2015.03.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Holmes SE, Hinz R, Conen S, Gregory CJ, Matthews JC, Anton-Rodriguez JM, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: a positron emission tomography study. Biol Psychiatry. 2018;83:61–9. https://doi.org/10.1016/j.biopsych.2017.08.005.

    Article  CAS  PubMed  Google Scholar 

  68. Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, et al. Suicide and microglia: recent findings and future perspectives based on human studies. Front Cell Neurosci. 2019;13:1–10. https://doi.org/10.3389/fncel.2019.00031.

    Article  CAS  Google Scholar 

  69. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38:1609–16. https://doi.org/10.1038/npp.2013.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. • Zhou Y, Zheng W, Liu W, Wang C, Zhan Y, Li H, et al. Antidepressant effect of repeated ketamine administration on kynurenine pathway metabolites in patients with unipolar and bipolar depression. Brain Behav Immun. 2018;74:205–12. https://doi.org/10.1016/j.bbi.2018.09.007 This study demonstrated that ketamine induces kynurenine pathway changes.

    Article  CAS  PubMed  Google Scholar 

  71. Haroon E, Daguanno AW, Woolwine BJ, Goldsmith DR, Baer WM, Wommack EC, et al. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology. 2018;95:43–9. https://doi.org/10.1016/j.psyneuen.2018.05.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uher R, Perlis RH, Henigsberg N, Zobel A, Rietschel M, Mors O, et al. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med. 2012;42:967–80. https://doi.org/10.1017/S0033291711001905.

    Article  CAS  PubMed  Google Scholar 

  73. • Haroon E, Chen X, Li Z, Patel T, Woolwine BJ, Hu XP, et al. Increased inflammation and brain glutamate define a subtype of depression with decreased regional homogeneity, impaired network integrity, and anhedonia. Transl Psychiatry. 2018;8:189. https://doi.org/10.1038/s41398-018-0241-4 This study associated inflammation, anhedonia and impaired network integrity, defining a possible phenotype with increased suicide risk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ducasse D, Loas G, Dassa D, Gramaglia C, Zeppegno P, Guillaume S, et al. Anhedonia is associated with suicidal ideation independently of depression: a meta-analysis. Depress Anxiety. 2018;35:382–92. https://doi.org/10.1002/da.22709.

    Article  PubMed  Google Scholar 

  75. •• Ballard ED, Wills K, Lally N, Richards EM, Luckenbaugh DA, Walls T, et al. Anhedonia as a clinical correlate of suicidal thoughts in clinical ketamine trials. J Affect Disord. 2017;218:195–200. https://doi.org/10.1016/j.jad.2017.04.057 This study examined data from several ketamine trials, and found a possibly independent correlation between suicidal thoughts and anhedonia.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ironside M, Kumar P, Kang M-S, Pizzagalli DA. Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci. 2018;22:106–13. https://doi.org/10.1016/j.cobeha.2018.01.016.

    Article  PubMed  PubMed Central  Google Scholar 

  77. • Stanton CH, Holmes AJ, Chang SWC, Joormann J. From stress to anhedonia: molecular processes through functional circuits. Trends Neurosci. 2019;42:23–42. https://doi.org/10.1016/j.tins.2018.09.008 Extensive review on the link between stress and anhedonia.

    Article  CAS  PubMed  Google Scholar 

  78. Bergamini G, Mechtersheimer J, Azzinnari D, Sigrist H, Buerge M, Dallmann R, et al. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol Stress. 2018;8:42–56. https://doi.org/10.1016/j.ynstr.2018.01.004.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. 2016;21:1351–7. https://doi.org/10.1038/mp.2015.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vichaya EG, Dantzer R. Inflammation-induced motivational changes: perspective gained by evaluating positive and negative valence systems. Curr Opin Behav Sci. 2018;22:90–5. https://doi.org/10.1016/j.cobeha.2018.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Felger JC, Treadway MT. Inflammation effects on motivation and motor activity: role of dopamine. Neuropsychopharmacology. 2017;42:216–41. https://doi.org/10.1038/npp.2016.143.

    Article  CAS  PubMed  Google Scholar 

  82. Li N, Liu R-J, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61. https://doi.org/10.1016/j.biopsych.2010.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. •• Alexander L, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT, Cockcroft GJ, et al. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron. 2019;101:307–320.e6. https://doi.org/10.1016/j.neuron.2018.11.021 In this primate study, ketamine reversed subgenural anterior cingulate cortex activation-induced brain changes and associated anhedonia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ballard ED, Lally N, Nugent AC, Furey ML, Luckenbaugh DA, Zarate CA. Neural correlates of suicidal ideation and its reduction in depression. Int J Neuropsychopharmacol. 2015;18:pyu069–pyu069. https://doi.org/10.1093/ijnp/pyu069.

    Article  CAS  Google Scholar 

  85. Liu W-H, Valton V, Wang L-Z, Zhu Y-H, Roiser JP. Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder. Soc Cogn Affect Neurosci. 2017;12:1520–33. https://doi.org/10.1093/scan/nsx074.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Yang Y, Wang H, Hu J, Hu H. Lateral habenula in the pathophysiology of depression. Curr Opin Neurobiol. 2018;48:90–6. https://doi.org/10.1016/j.conb.2017.10.024.

    Article  CAS  PubMed  Google Scholar 

  87. Tchenio A, Lecca S, Valentinova K, Mameli M. Limiting habenular hyperactivity ameliorates maternal separation-driven depressive-like symptoms. Nat Commun. 2017;8:1135–8. https://doi.org/10.1038/s41467-017-01192-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shepard RD, Langlois LD, Browne CA, Berenji A, Lucki I, Nugent FS. Ketamine reverses lateral habenula neuronal dysfunction and behavioral immobility in the forced swim test following maternal deprivation in late adolescent rats. Front Synaptic Neurosci. 2018;10:1–8. https://doi.org/10.3389/fnsyn.2018.00039.

    Article  CAS  Google Scholar 

  89. Ambrosi E, Arciniegas DB, Curtis KN, Patriquin MA, Spalletta G, Sani G, et al. Resting-state functional connectivity of the habenula in mood disorder patients with and without suicide-related behaviors. J Neuropsychiatry Clin Neurosci. 2018;31:49–56. https://doi.org/10.1176/appi.neuropsych.17120351.

    Article  PubMed  PubMed Central  Google Scholar 

  90. •• Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nat Publ Gr. 2018;554:317–22. https://doi.org/10.1038/nature25509 This study showed that ketamine blocks bursting in the lateral habenula, which is linked with the reward system.

    Article  CAS  Google Scholar 

  91. •• Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23:59–69. https://doi.org/10.1038/mp.2017.190 This meta-analysis showed that ketamine adminiatration causes dopamine release in rodent brain.

    Article  CAS  PubMed  Google Scholar 

  92. Khakpai F, Ebrahimi-Ghiri M, Alijanpour S, Zarrindast MR. Ketamine-induced antidepressant like effects in mice: a possible involvement of cannabinoid system. Biomed Pharmacother. 2019;112:4–9. https://doi.org/10.1016/j.biopha.2019.108717.

    Article  CAS  Google Scholar 

  93. Ilgen MA, Bohnert ASB, Ganoczy D, Bair MJ, McCarthy JF, Blow FC. Opioid dose and risk of suicide. Pain. 2016;157:1079–84. https://doi.org/10.1097/j.pain.0000000000000484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bodnar RJ. Endogenous opiates and behavior: 2016. Peptides. 2018;101:167–212. https://doi.org/10.1016/j.peptides.2018.01.011.

    Article  CAS  PubMed  Google Scholar 

  95. Doan LV, Wang J. An update on the basic and clinical science of ketamine analgesia. Clin J Pain. 2018;34:1077–88. https://doi.org/10.1097/AJP.0000000000000635.

    Article  PubMed  Google Scholar 

  96. Lutz P-E, Gross JA, Dhir SK, Maussion G, Yang J, Bramoulle A, et al. Epigenetic regulation of the kappa opioid receptor by child abuse. Biol Psychiatry. 2018;84:751–61. https://doi.org/10.1016/j.biopsych.2017.07.012.

    Article  CAS  PubMed  Google Scholar 

  97. Lutz PE, Courtet P, Calati R. The opioid system and the social brain: implications for depression and suicide. J Neurosci Res. 2018:1–13. https://doi.org/10.1002/jnr.24269.

  98. Laurent V, Morse AK, Balleine BW. The role of opioid processes in reward and decision-making. Br J Pharmacol. 2015;172:449–59. https://doi.org/10.1111/bph.12818.

    Article  CAS  PubMed  Google Scholar 

  99. Yovell Y, Bar G, Mashiah M, Baruch Y, Briskman I, Asherov J, et al. Ultra-low-dose buprenorphine as a time-limited treatment for severe suicidal ideation: a randomized controlled trial. Am J Psychiatry. 2016;173:491–8. https://doi.org/10.1176/appi.ajp.2015.15040535.

    Article  PubMed  Google Scholar 

  100. Bershad AK, Jaffe JH, Childs E, de Wit H. Opioid partial agonist buprenorphine dampens responses to psychosocial stress in humans. Psychoneuroendocrinology. 2015;52:281–8. https://doi.org/10.1016/j.psyneuen.2014.12.004.

    Article  CAS  PubMed  Google Scholar 

  101. •• Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15. https://doi.org/10.1176/appi.ajp.2018.18020138 This small study was the first to suggest involvement of opioid system in ketamine’s psychiatric actions by demonstrating that ketamine’s antidepressive effect was blocked by naltrexone administration.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry. 2019;76:337. https://doi.org/10.1001/jamapsychiatry.2018.3990.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Umhau JC. Therapeutic drug monitoring and the clinical significance of naltrexone blood levels at the time of a first drink: relevance to the Sinclair method. Alcohol Alcohol. 2019;54:192–192. https://doi.org/10.1093/alcalc/agz014.

    Article  Google Scholar 

  104. Wang J, Echevarria G, Doan L, Ekasumara N, Calvino S, Chae F, et al. Effects of a single subanaesthetic dose of ketamine on pain and mood after laparoscopic bariatric surgery. Eur J Anaesthesiol. 2018;1. https://doi.org/10.1097/EJA.0000000000000860.

  105. • Zhou H, Zhang Q, Martinez E, Dale J, Hu S, Zhang E, et al. Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat Commun. 2018;9:3751–13. https://doi.org/10.1038/s41467-018-06295-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. • Schwertner A, Zortea M, Torres FV, Caumo W. Effects of subanesthetic ketamine administration on visual and auditory event-related potentials (ERP) in humans: a systematic review. Front Behav Neurosci. 2018;12. https://doi.org/10.3389/fnbeh.2018.00070 This systematic review provides summarized evidence for ketamine’s ability to alter discrimination of different stimuli.

  107. Ducasse D, Holden RR, Boyer L, Artéro S, Calati R, Guillaume S, et al. Psychological pain in suicidality. J Clin Psychiatry. 2018;79. https://doi.org/10.4088/JCP.16r10732.

  108. Meerwijk EL, Ford JM, Weiss SJ. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging Behav. 2013;7:1–14. https://doi.org/10.1007/s11682-012-9179-y.

    Article  PubMed  Google Scholar 

  109. Becker S, Navratilova E, Nees F, Van Damme S. Emotional and motivational pain processing: current state of knowledge and perspectives in translational research. Pain Res Manag. 2018;2018:1–12. https://doi.org/10.1155/2018/5457870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Courtet.

Ethics declarations

Conflict of Interest

Aiste Lengvenyte declares no potential conflicts of interest.

Emilie Olié has received personal fees from Janssen Cilag and Otsuka.

Philippe Courtet has received personal fees from Janssen, Otuska and Exeltis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mood Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lengvenyte, A., Olié, E. & Courtet, P. Suicide Has Many Faces, So Does Ketamine: a Narrative Review on Ketamine’s Antisuicidal Actions. Curr Psychiatry Rep 21, 132 (2019). https://doi.org/10.1007/s11920-019-1108-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-019-1108-y

Keywords

Navigation