Skip to main content
Log in

Neuroimaging Markers of Risk, Disease Expression, and Resilience to Bipolar Disorder

  • Precision Medicine in Psychiatry (S Kennedy, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Familial predisposition to bipolar disorder is associated with increased risk of affective morbidity in the first-degree relatives of patients. Nevertheless, a substantial proportion of relatives remain free of psychopathology throughout their lifetime. A series of studies reviewed here were designed to test whether resilience in these high-risk individuals is associated with adaptive brain plasticity.

Recent Findings

The findings presented here derive from structural and functional magnetic resonance imaging data obtained from patients, their resilient first-degree relatives, and healthy individuals. Patients and relatives showed similar abnormalities in activation and connectivity while performing tasks of interference control and facial affect recognition and in the resting-state connectivity of sensory and motor regions. Resilient relatives manifested unique neuroimaging features that differentiated them from patients and healthy individuals. Specifically, they had larger cerebellar vermis volume, enhanced prefrontal connectivity during task performance, and enhanced functional integration of the default mode network in task-free conditions.

Summary

Resilience to bipolar disorder is not the reverse of risk but is associated with adaptive brain changes indicative of increased neural reserve. This line of research may open new avenues in preventing and treating bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. McLaughlin KA, Gadermann AM, Hwang I, Sampson NA, Al-Hamzawi A, Andrade LH, et al. Parent psychopathology and offspring mental disorders: results from the WHO World Mental Health Surveys. Br J Psychiatry. 2012;200(4):290–9. https://doi.org/10.1192/bjp.bp.111.101253.

    Article  PubMed  Google Scholar 

  2. Belbasis L, Köhler CA, Stefanis N, Stubbs B, van Os J, Vieta E, et al. Risk factors and peripheral biomarkers for schizophrenia spectrum disorders: an umbrella review of meta-analyses. Acta Psychiatr Scand. 2018;137(2):88–97. https://doi.org/10.1111/acps.12847.

    Article  CAS  PubMed  Google Scholar 

  3. Bortolato B, Köhler CA, Evangelou E, León-Caballero J, Solmi M, Stubbs B, et al. Systematic assessment of environmental risk factors for bipolar disorder: an umbrella review of systematic reviews and meta-analyses. Bipolar Disord. 2017;19(2):84–96. https://doi.org/10.1111/bdi.12490.

    Article  PubMed  Google Scholar 

  4. Köhler CA, Evangelou E, Stubbs B, Solmi M, Veronese N, Belbasis L, et al. Mapping risk factors for depression across the lifespan: an umbrella review of evidence from meta-analyses and Mendelian randomization studies. J Psychiatr Res. 2018;103:189–207. https://doi.org/10.1016/j.jpsychires.2018.05.020.

    Article  PubMed  Google Scholar 

  5. Kan C, Silva N, Golden SH, Rajala U, Timonen M, Stahl D, et al. A systematic review and meta-analysis of the association between depression and insulin resistance. Diabetes Care. 2013;36(2):480–9. https://doi.org/10.2337/dc12-1442.

    Article  PubMed  Google Scholar 

  6. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74(3):261–9. https://doi.org/10.1001/jamapsychiatry.2016.3803.

    Article  PubMed  Google Scholar 

  7. Perry BI, Upthegrove R, Thompson A, Marwaha S, Zammit S, Singh SP, et al. Dysglycaemia, inflammation and psychosis: findings from the UK ALSPAC Birth Cohort. Schizophr Bull. 2018. https://doi.org/10.1093/schbul/sby040.

    Article  Google Scholar 

  8. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9. https://doi.org/10.1016/S0140-6736(12)62129-1.

    Article  CAS  Google Scholar 

  9. Rutter M. Protective factors in children’s responses to stress and disadvantage. Ann Acad Med Singapore. 1979;8(3):324–38.

    CAS  PubMed  Google Scholar 

  10. Rutter M. Developmental catch-up, and deficit, following adoption after severe global early privation. English and Romanian Adoptees (ERA) Study Team. J Child Psychol Psychiatry. 1998;39(4):465–76.

    Article  CAS  Google Scholar 

  11. Rutter M. Implications of resilience concepts for scientific understanding. Ann N Y Acad Sci. 2006;1094:1–12. https://doi.org/10.1196/annals.1376.002.

    Article  PubMed  Google Scholar 

  12. Rutter M. Resilience, competence, and coping. Child Abuse Negl. 2007;31(3):205–9. https://doi.org/10.1016/j.chiabu.2007.02.001.

    Article  PubMed  Google Scholar 

  13. Rutter M. Institutional effects on children: design issues and substantive findings. Monogr Soc Res Child Dev. 2008;73(3):271–8.

    Article  Google Scholar 

  14. Rutter M. Resilience as a dynamic concept. Dev Psychopathol. 2012;24(2):335–44. https://doi.org/10.1017/S0954579412000028.

    Article  PubMed  Google Scholar 

  15. Rutter M. Annual research review: resilience—clinical implications. J Child Psychol Psychiatry. 2013;54(4):474–87. https://doi.org/10.1111/j.1469-7610.2012.02615.x.

    Article  PubMed  Google Scholar 

  16. Rutter M, Colvert E, Kreppner J, Beckett C, Castle J, Groothues C, et al. Early adolescent outcomes for institutionally-deprived and non-deprived adoptees. I: disinhibited attachment. J Child Psychol Psychiatry. 2007;48(1):17–30. https://doi.org/10.1111/j.1469-7610.2006.01688.x.

    Article  PubMed  Google Scholar 

  17. Ungar M. A constructionist discourse on resilience: multiple contexts, multiple realities among at-risk children and youth. Youth & Society. 2004;35(3):341–65. https://doi.org/10.1177/0044118X03257030.

    Article  Google Scholar 

  18. Ungar M, Brown M, Liebenberg l CM, Levine K. Distinguishing differences in pathways to resilience among Canadian youth. CJCMH. 2008;27:1):1–13. https://doi.org/10.7870/cjcmh-2008-0001.

    Article  Google Scholar 

  19. Ungar M, Brown M, Liebenberg L, Othman R, Kwong WM, Armstrong M, et al. Unique pathways to resilience across cultures. Adolescence. 2007 Summer;42(166):287–310.

    PubMed  Google Scholar 

  20. Werner EE, Smith RS. Vulnerable but invincible: a study of resilient children. New York: McGraw-Hill; 1982.

    Google Scholar 

  21. Werner EE. High-risk children in young adulthood: a longitudinal study from birth to 32 years. Am J Orthopsychiatry. 1989;59(1):72–81. https://doi.org/10.1111/j.1467-8624.1991.tb01555.x.

    Article  CAS  PubMed  Google Scholar 

  22. Garmezy N, Tellegen A. Studies of stress-resistant children: methods, variables and preliminary findings. In: Morrison FJ, Lord C, Keating DP, editors. Applied developmental psychology, vol. 1. New York: Academic Press; 1984.

    Google Scholar 

  23. Garmezy N, Masten AS, Tellegen A. The study of stress and competence in children: a building block for developmental psychopathology. Child Dev. 1984;55(1):97–111. https://doi.org/10.2307/1129837.

    Article  CAS  PubMed  Google Scholar 

  24. Masten AS, Garmezy N, Tellegen A, Pellegrini DS, Larkin K, Larsen A. Competence and stress in school children: the moderating effects of individual and family qualities. J Child Psychol Psychiatry. 1988;29(6):745–64. https://doi.org/10.1111/j.1469-7610.1988.tb00751.x.

    Article  CAS  PubMed  Google Scholar 

  25. Luthar SS. Vulnerability and resilience: a study of high-risk adolescents. Child Dev. 1991;62(3):600–16. https://doi.org/10.1111/j.1467-8624.1991.tb01555.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frangou S. Risk and resilience in bipolar disorder: rationale and design of the Vulnerability to Bipolar Disorders Study (VIBES). Biochem Soc Trans. 2009;37(Pt 5:1085–9. https://doi.org/10.1042/BST0371085.

    Article  CAS  PubMed  Google Scholar 

  27. Kempton MJ, Haldane M, Jogia J, Grasby PM, Collier D, Frangou S. Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. J Neurosci. 2009;29(35):10863–10,868. https://doi.org/10.1523/JNEUROSCI.2204-09.2009.

    Article  CAS  PubMed  Google Scholar 

  28. Walterfang M, Wood AG, Barton S, Velakoulis D, Chen J, Reutens DC, et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(6):1050–7. https://doi.org/10.1016/j.pnpbp.2009.05.019.

    Article  PubMed  Google Scholar 

  29. Takahashi T, Walterfang M, Wood SJ, Kempton MJ, Jogia J, Lorenzetti V, et al. Pituitary volume in patients with bipolar disorder and their first-degree relatives. J Affect Disord. 2010;124(3):256–61. https://doi.org/10.1016/j.jad.2009.12.002.

    Article  PubMed  Google Scholar 

  30. Pompei F, Jogia J, Tatarelli R, Girardi P, Rubia K, Kumari V, et al. Familial and disease specific abnormalities in the neural correlates of the Stroop Task in Bipolar Disorder. Neuroimage. 2011;56(3):1677–84. https://doi.org/10.1016/j.neuroimage.2011.02.052.

    Article  PubMed  Google Scholar 

  31. Pompei F, Dima D, Rubia K, Kumari V, Frangou S. Dissociable functional connectivity changes during the Stroop task relating to risk, resilience and disease expression in bipolar disorder. Neuroimage. 2011;57(2):576–82. https://doi.org/10.1016/j.neuroimage.2011.04.055.

    Article  PubMed  Google Scholar 

  32. Forcada I, Papachristou E, Mur M, Christodoulou T, Jogia J, Reichenberg A, et al. The impact of general intellectual ability and white matter volume on the functional outcome of patients with bipolar disorder and their relatives. J Affect Disord. 2011;130(3):413–20. https://doi.org/10.1016/j.neuroimage.2016.08.066.

    Article  PubMed  Google Scholar 

  33. Lelli-Chiesa G, Kempton MJ, Jogia J, Tatarelli R, Girardi P, Powell J, et al. The impact of the Val158Met catechol-O-methyltransferase genotype on neural correlates of sad facial affect processing in patients with bipolar disorder and their relatives. Psychol Med. 2011;41(4):779–88. https://doi.org/10.1017/S0033291710001431.

    Article  CAS  PubMed  Google Scholar 

  34. Frangou S. Brain structural and functional correlates of resilience to Bipolar Disorder. Front Hum Neurosci. 2012;5:184. https://doi.org/10.3389/fnhum.2011.00184.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dima D, Roberts RE, Frangou S. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder. Transl Psychiatry. 2016;6:e706. https://doi.org/10.1038/tp.2015.193 This study provided first evidence for task-specific aspects of resilience in healthy relatives of patients with bipolar disorder by showing dissociation between working memory and specific aspects of facial affect processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frangou S, Dima D, Jogia J. Toward person-centered neuroimaging markers for resilience and vulnerability in Bipolar Disorder. Neuroimage. 2017;145(Pt B):230–7. https://doi.org/10.1016/j.neuroimage.2016.08.066.

    Article  PubMed  Google Scholar 

  37. Doucet GE, Bassett DS, Yao N, Glahn DC, Frangou S. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry. 2017;174(12):1214–22. https://doi.org/10.1176/appi.ajp.2017.17010095 This is the first study to show that the functional integration of the default mode network plays an important role in differentiating resilient from affected siblings.

    Article  PubMed  PubMed Central  Google Scholar 

  38. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Publishing; 2013.

    Book  Google Scholar 

  39. Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003;123C(1):48–58. https://doi.org/10.1002/ajmg.c.20013.

    Article  PubMed  Google Scholar 

  40. Mesman E, Nolen WA, Reichart CG, Wals M, Hillegers MH. The Dutch bipolar offspring study: 12-year follow-up. Am J Psychiatry. 2013;170:542–9. https://doi.org/10.1176/appi.ajp.2012.12030401.

    Article  PubMed  Google Scholar 

  41. Loftus J, Etain B, Scott J. What can we learn from offspring studies in bipolar disorder? BJPsych Advances. 2016;22(3):176–85. https://doi.org/10.1192/apt.bp.114.013086.

    Article  Google Scholar 

  42. Carpenter SR, Walker B, Anderies JM, Abel N. From metaphor to measurement: resilience of what to what? Ecosystems. 2001;4(8):765–81. https://doi.org/10.1007/s10021-001-0045-9.

    Article  Google Scholar 

  43. Hibar DP, Westlye LT, van Erp TG, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21(12):1710–6. https://doi.org/10.1038/mp.2015.227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23(4):932–42. https://doi.org/10.1038/mp.2017.73.

    Article  CAS  PubMed  Google Scholar 

  45. Pezzoli S, Emsell L, Yip SW, Dima D, Giannakopoulos P, Zarei M, et al. Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neurosci Biobehav Rev. 2018;84:162–70. https://doi.org/10.1016/j.neubiorev.2017.11.005.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med. 2008;38(6):771–85. https://doi.org/10.1017/S0033291707001675.

    Article  CAS  PubMed  Google Scholar 

  47. Glahn DC, Almasy L, Barguil M, Hare E, Peralta JM, Kent JW Jr, et al. Neurocognitive endophenotypes for bipolar disorder identified in multiplex multigenerational families. Arch Gen Psychiatry. 2010;67(2):168–77. https://doi.org/10.1001/archgenpsychiatry.2009.184.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen CH, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13(1):1–15. https://doi.org/10.1111/j.1399-5618.2011.00893.x.

    Article  CAS  PubMed  Google Scholar 

  49. Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O, et al. Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol. 2012;22(2):100–13. https://doi.org/10.1016/j.euroneuro.2011.07.003.

    Article  CAS  PubMed  Google Scholar 

  50. Birur B, Kraguljac NV, Shelton RC, Lahti AC. Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr. 2017;3:15. https://doi.org/10.1038/s41537-017-0013-9.

    Article  CAS  PubMed  Google Scholar 

  51. Vargas C, López-Jaramillo C, Vieta E. A systematic literature review of resting state network—functional MRI in bipolar disorder. J Affect Disord. 2013;150(3):727–35. https://doi.org/10.1016/j.jad.2013.05.083.

    Article  PubMed  Google Scholar 

  52. Ongür D, Lundy M, Greenhouse I, Shinn AK, Menon V, Cohen BM, et al. Default mode network abnormalities in bipolar disorder and schizophrenia. Psychiatry Res. 2010;183(1):59–68. https://doi.org/10.1016/j.pscychresns.2010.04.008.

    Article  PubMed  Google Scholar 

  53. Calhoun VD, Sui J, Kiehl K, Turner JA, Allen EA, Pearlson G. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Front Psychiatry. 2012;2:75. https://doi.org/10.3389/fpsyt.2011.00075.

    Article  PubMed  Google Scholar 

  54. Khadka S, Meda SA, Stevens MC, Glahn DC, Calhoun VD, Sweeney JA, et al. Is aberrant functional connectivity psychosis endophenotype? A resting state functional magnetic resonance imaging study. Biol Psychiatry. 2013;74(6):458–66. https://doi.org/10.1016/j.biopsych.2013.04.024.

    Article  PubMed  Google Scholar 

  55. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98(2):676–82. https://doi.org/10.1073/pnas.98.2.676.

    Article  CAS  PubMed  Google Scholar 

  56. Ladouceur CD, Almeida JR, Birmaher B, Axelson DA, Nau S, Kalas C, et al. Subcortical gray matter volume abnormalities in healthy bipolar offspring: potential neuroanatomical risk marker for bipolar disorder? J Am Acad Child Adolesc Psychiatry. 2008;47(5):532–9. https://doi.org/10.1097/CHI.0b013e318167656e.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hajek T, Gunde E, Slaney C, Propper L, MacQueen G, Duffy A, et al. Amygdala and hippocampal volumes in relatives of patients with bipolar disorder: a high-risk study. Can J Psychiatry. 2009;54(11):726–33. https://doi.org/10.1177/070674370905401102.

    Article  PubMed  Google Scholar 

  58. Hajek T, Gunde E, Slaney C, Propper L, MacQueen G, Duffy A, et al. Striatal volumes in affected and unaffected relatives of bipolar patients—high-risk study. J Psychiatr Res. 2009;43(7):724–9. https://doi.org/10.1016/j.jpsychires.2008.10.008.

    Article  PubMed  Google Scholar 

  59. Hajek T, Gunde E, Bernier D, Slaney C, Propper L, Grof P, et al. Subgenual cingulate volumes in affected and unaffected offspring of bipolar parents. J Affect Disord. 2008;108:263–9. https://doi.org/10.1016/j.jad.2007.10.024.

    Article  PubMed  Google Scholar 

  60. Hajek T, Novak T, Kopecek M, et al. Subgenual cingulate volumes in offspring of bipolar parents and in sporadic bipolar patients. Eur Arch Psychiatry Clin Neurosci. 2010;260:297–304. https://doi.org/10.1007/s00406-009-0077-2.

    Article  PubMed  Google Scholar 

  61. Singh MK, Delbello MP, Adler CM, Kopecek M, Gunde E, Alda M, et al. Neuroanatomical characterization of child offspring of bipolar parents. J Am Acad Child Adolesc Psychiatry. 2008;47(4):526–31. https://doi.org/10.1097/CHI.0b013e318167655a.

    Article  PubMed  Google Scholar 

  62. Fusar-Poli P, Howes O, Bechdolf A, Borgwardt S. Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. J Psychiatry Neurosci. 2012;37(3):170–84. https://doi.org/10.1503/jpn.110061.

    Article  PubMed  Google Scholar 

  63. Bertocci MA, Bebko G, Versace A, Fournier JC, Iyengar S, Olino T, et al. Predicting clinical outcome from reward circuitry function and white matter structure in behaviorally and emotionally dysregulated youth. Mol Psychiatry. 2016;21(9):1194–201. https://doi.org/10.1038/mp.2016.5.

    Article  CAS  PubMed  Google Scholar 

  64. Hafeman D, Bebko G, Bertocci MA, Fournier JC, Chase HW, Bonar L, et al. Amygdala-prefrontal cortical functional connectivity during implicit emotion processing differentiates youth with bipolar spectrum from youth with externalizing disorders. J Affect Disord. 2017;208:94–100. https://doi.org/10.1016/j.jad.2016.09.064.

    Article  PubMed  Google Scholar 

  65. Manelis A, Ladouceur CD, Graur S, Monk K, Bonar LK, Hickey MB, et al. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder. Brain. 2015;138(Pt 9):2777–90. https://doi.org/10.1093/brain/awv176.

    Article  PubMed  Google Scholar 

  66. Ladouceur CD, Diwadkar VA, White R, Bass J, Birmaher B, Axelson DA, et al. Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Dev Cogn Neurosci. 2013;5:185–96. https://doi.org/10.1016/j.dcn.2013.03.004.

    Article  PubMed  Google Scholar 

  67. Breakspear M, Roberts G, Green MJ, Nguyen VT, Frankland A, Levy F, et al. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder. Brain. 2015;138(Pt 11:3427–39. https://doi.org/10.1093/brain/awv261.

    Article  PubMed  Google Scholar 

  68. Roberts G, Lord A, Frankland A, Wright A, Lau P, Levy F, et al. Functional dysconnection of the inferior frontal gyrus in young people with bipolar disorder or at genetic high risk. Biol Psychiatry. 2017;81(8):718–27. https://doi.org/10.1016/j.biopsych.2016.08.018.

    Article  PubMed  Google Scholar 

  69. Lui S, Yao L, Xiao Y, Keedy SK, Reilly JL, Keefe RS, et al. Resting-state brain function in schizophrenia and psychotic bipolar probands and their first-degree relatives. Psychol Med. 2015;45(1):97–108. https://doi.org/10.1017/S003329171400110X.

    Article  CAS  PubMed  Google Scholar 

  70. Meda SA, Gill A, Stevens MC, Lorenzoni RP, Glahn DC, Calhoun VD, et al. Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biol Psychiatry. 2012;71(10):881–9. https://doi.org/10.1016/j.biopsych.2012.01.025.

    Article  PubMed  Google Scholar 

  71. McIntosh AM, Job DE, Moorhead TW, Harrison LK, Forrester K, Lawrie SM, et al. Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biol Psychiatry. 2004;56(8):544–52. https://doi.org/10.1016/j.biopsych.2004.07.020.

    Article  PubMed  Google Scholar 

  72. van der Schot AC, Vonk R, Brans RG, van Haren NE, Koolschijn PC, Nuboer V, et al. Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry. 2009;66(2):142–51. https://doi.org/10.1001/archgenpsychiatry.2008.541.

    Article  PubMed  Google Scholar 

  73. de Zwarte S, Brouwer R, Ching C, van Erp T, Thompson P, Andreassen O, Turner J, van Haren N, ENIGMA Relatives Group. Biol Psychiatry. 2018; 83 (9): S220.

  74. Reis DJ, Golanov EV. Autonomic and vasomotor regulation. Int Rev. Neurobiol. 1997;41:121–49.

    Article  CAS  Google Scholar 

  75. Parsons LM, Denton D, Egan G, McKinley M, Shade R, Lancaster J, et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc Natl Acad Sci U S A. 2000;97(5):2332–6. https://doi.org/10.1073/pnas.040555497.

    Article  CAS  PubMed  Google Scholar 

  76. Craig AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev. Neurosci. 2002;3(8):655–66. https://doi.org/10.1038/nrn894.

    Article  CAS  PubMed  Google Scholar 

  77. Singer T, Seymour B, O’Doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62. https://doi.org/10.1126/science.1093535.

    Article  CAS  PubMed  Google Scholar 

  78. Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129(Pt 2):290–2. https://doi.org/10.1093/brain/awh729.

    Article  PubMed  Google Scholar 

  79. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121 (Pt 4:561–79.

    Article  Google Scholar 

  80. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

    Article  PubMed  Google Scholar 

  81. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

    Article  PubMed  Google Scholar 

  82. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004 Summer;16(3):367–78. https://doi.org/10.1176/jnp.16.3.367.

    Article  PubMed  Google Scholar 

  83. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev. Neurosci. 2006;7(7):511–22. https://doi.org/10.1038/nrn1953.

    Article  CAS  PubMed  Google Scholar 

  84. Sacchetti B, Scelfo B, Strata P. Cerebellum and emotional behavior. Neuroscience. 2009;162(3):756–62. https://doi.org/10.1016/j.neuroscience.2009.01.064.

    Article  CAS  PubMed  Google Scholar 

  85. Maschke M, Schugens M, Kindsvater K, Drepper J, Kolb FP, Diener HC, et al. Fear conditioned changes of heart rate in patients with medial cerebellar lesions. J Neurol Neurosurg Psychiatry. 2002;72(1):116–8. https://doi.org/10.1136/jnnp.72.1.116.

    Article  CAS  PubMed  Google Scholar 

  86. Turner BM, Paradiso S, Marvel CL, Pierson R, Boles Ponto LL, Hichwa RD, et al. The cerebellum and emotional experience. Neuropsychologia. 2007;45(6):1331–41. https://doi.org/10.1016/j.neuropsychologia.2006.09.023.

    Article  PubMed  Google Scholar 

  87. Stroop JR. Studies of interference in serial verbal reactions. J Exp Psychol. 1935;XVIII:643–62.

    Article  Google Scholar 

  88. Owen AM, McMillan KM, Laird AR, Bullmore ET. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25(1):46–59. https://doi.org/10.1002/hbm.20131.

    Article  PubMed  Google Scholar 

  89. Said CP, Haxby JV, Todorov A. Brain systems for assessing the affective value of faces. Philos Trans R Soc Lond B Biol Sci. 2011;366(1571):1660–70. https://doi.org/10.1098/rstb.2010.0351.

    Article  PubMed  Google Scholar 

  90. Vuilleumier P, Pourtois G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia. 2007;45(1):174–94. https://doi.org/10.1016/j.neuropsychologia.2006.06.003.

    Article  PubMed  Google Scholar 

  91. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci. 2012;12(2):241–68. https://doi.org/10.3758/s13415-011-0083-5.

    Article  PubMed  Google Scholar 

  92. Wager TD, Sylvester CY, Lacey SC, Nee DE, Franklin M, Jonides J. Common and unique components of response inhibition revealed by fMRI. Neuroimage. 2005;27(2):323–40. https://doi.org/10.1016/j.neuroimage.2005.01.054.

    Article  PubMed  Google Scholar 

  93. Nee DE, Wager TD, Jonides J. Interference resolution: insights from a meta-analysis of neuroimaging tasks. Cogn Affect Behav Neurosci. 2007;7(1):1–17. https://doi.org/10.3758/CABN.7.1.1.

    Article  PubMed  Google Scholar 

  94. Robbins TW. Shifting and stopping: fronto-striatal substrates, neurochemical modulation and clinical implications. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):917–32. https://doi.org/10.1098/rstb.2007.2097.

    Article  CAS  PubMed  Google Scholar 

  95. Pochon JB, Riis J, Sanfey AG, Nystrom LE, Cohen JD. Functional imaging of decision conflict. J Neurosci. 2008;28(13):3468–73. https://doi.org/10.1523/JNEUROSCI.4195-07.2008.

    Article  CAS  PubMed  Google Scholar 

  96. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends Cogn Sci. 2000;4(6):223–33. https://doi.org/10.1016/S1364-6613(00)01482-0.

    Article  CAS  PubMed  Google Scholar 

  97. Hoffman EA, Haxby JV. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci. 2000;3(1):80–4. https://doi.org/10.1038/71152.

    Article  CAS  PubMed  Google Scholar 

  98. Haxby JV, Hoffman EA, Gobbini MI. Human neural systems for face recognition and social communication. Biol Psychiatry. 2000;51(1):59–67. https://doi.org/10.1016/S0006-3223(01)01330-0.

    Article  Google Scholar 

  99. Adolphs R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002;12(2):169–77. https://doi.org/10.1016/S0959-4388(02)00301-X.

    Article  CAS  PubMed  Google Scholar 

  100. Dima D, Stephan KE, Roiser JP, Friston KJ, Frangou S. Effective connectivity during processing of facial affect: evidence for multiple parallel pathways. J Neurosci. 2011;31(40):14378–14,385. https://doi.org/10.1523/JNEUROSCI.2400-11.2011.

    Article  CAS  PubMed  Google Scholar 

  101. LeDoux JE. The emotional brain: the mysterious underpinnings of emotional life. New York: Touchstone; 1998.

    Google Scholar 

  102. Rolls ET. The brain and emotion. Oxford: Oxford UP; 1999.

    Google Scholar 

  103. Ochsner KN, Gross JJ. The cognitive control of emotion. Trends Cogn Sci. 2005;9(9):242–9. https://doi.org/10.1016/j.tics.2005.03.010.

    Article  PubMed  Google Scholar 

  104. Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol. 2006;16(6):723–7. https://doi.org/10.1016/j.conb.2006.07.004.

    Article  CAS  PubMed  Google Scholar 

  105. Friston KJ, Harrison L, Penny W. Dynamic causal modeling. Neuroimage. 2003;19:1273–302. https://doi.org/10.1016/S1053-8119(03)00202-7.

    Article  CAS  PubMed  Google Scholar 

  106. Fornito A, Zalesky A, Bullmore ET. Network scaling effects in graph analytic studies of human resting-state FMRI data. Front Syst Neurosci. 2010;4:22. https://doi.org/10.3389/fnsys.2010.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Reynaud E, Lesourd M, Navarro J, Osiurak F. On the neurocognitive origins of human tool use: a critical review of neuroimaging data. Neurosci Biobehav Rev. 2016;64:421–37. https://doi.org/10.1016/j.neubiorev.2016.03.009.

    Article  PubMed  Google Scholar 

  108. Fridman EA, Immisch I, Hanakawa T, Bohlhalter S, Waldvogel D, Kansaku K, et al. The role of the dorsal stream for gesture production. Neuroimage. 2006;29(2):417–28. https://doi.org/10.1016/j.neuroimage.2005.07.026.

    Article  PubMed  Google Scholar 

  109. Igelström KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: a network perspective. Neuropsychologia. 2017;105:70–83. https://doi.org/10.1016/j.neuropsychologia.2017.01.001.

    Article  PubMed  Google Scholar 

  110. Cona G, Semenza C. Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev. 2017;72:28–42. https://doi.org/10.1016/j.neubiorev.2016.10.033.

    Article  PubMed  Google Scholar 

  111. Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev. 2016;68:602–10. https://doi.org/10.1016/j.neubiorev.2016.06.030.

    Article  PubMed  Google Scholar 

  112. Gu S, Satterthwaite TD, Medaglia JD, Yang M, Gur RE, Gur RC, et al. Emergence of system roles in normative neurodevelopment. Proc Natl Acad Sci U S A. 2015;3;112(44):13,681–6. https://doi.org/10.1073/pnas.1502829112.

    Article  CAS  Google Scholar 

  113. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003;54(5):515–28. https://doi.org/10.1016/S0006-3223(03)00171-9.

    Article  PubMed  Google Scholar 

  114. Strakowski SM, DelBello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005;10(1):105–16. https://doi.org/10.1038/sj.mp.4001585.

    Article  CAS  PubMed  Google Scholar 

  115. Fischer AS, Camacho MC, Ho TC, Whitfield-Gabrieli S, Gotlib IH. Neural markers of resilience in adolescent females at familial risk for major depressive disorder. JAMA Psychiatry. 2018;75(5):493–502. https://doi.org/10.1001/jamapsychiatry.2017.4516 This study provided evidence of enhanced connectivity being associated with resilience to major affective disorder using a longitudinal design.

    Article  PubMed  Google Scholar 

  116. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60. https://doi.org/10.1017/S1355617702813248.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Frangou.

Ethics declarations

Conflict of Interest

Sophia Frangou declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Precision Medicine in Psychiatry

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frangou, S. Neuroimaging Markers of Risk, Disease Expression, and Resilience to Bipolar Disorder. Curr Psychiatry Rep 21, 52 (2019). https://doi.org/10.1007/s11920-019-1039-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-019-1039-7

Keywords

Navigation