Skip to main content

Advertisement

Log in

The Impact of Psychotropic Medications on Bone Health in Youth

  • Complex Medical-Psychiatric Issues (M Riba, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Psychotropics are prescribed to youth at rapidly growing rates and may negatively impact bone health. Little awareness exists of this association among prescribing providers. Childhood and adolescence are critical times for bone development. Understanding these effects and their management is important to informed psychotropic use.

Recent Findings

Through a variety of mechanisms, antidepressants, benzodiazepines, mood stabilizers, neuroleptics, and stimulants may all negatively impact pediatric bone health. This confers added risk of osteoporosis in a population already at high risk for suboptimal bone health.

Summary

Awareness of psychotropic-mediated effects on pediatric bone development is clinically relevant to the use and monitoring of these agents. Clinicians can manage these effects through informed consent, vitamin D supplementation, lifestyle modifications, and reducing polypharmacy. For mood stabilizers, vitamin D level monitoring and secondary prevention is indicated. Future longitudinal studies and development of monitoring guidelines regarding psychotropic impact on bone health are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Howie L, Pastor P, Lukacs S. Use of medication prescribed for emotional or behavioral difficulties among children ages 6–17 years in the United States, 2011–2012. In: Services USDoHaH, editor. 2014.

  2. Olfson M, Blanco C, Wang S, Laje G, Correll CU. National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 2014;71(1):81–90.

    Article  Google Scholar 

  3. Olfson M, Druss BG, Marcus SC. Trends in mental health care among children and adolescents. N Engl J Med. 2015;372(21):2029–38.

    Article  Google Scholar 

  4. Fontanella CA, Warner LA, Phillips GS, Bridge JA, Campo JV. Trends in psychotropic polypharmacy among youths enrolled in Ohio Medicaid, 2002–2008. Psychiatr Serv. 2014;65(11):1332–40.

    Article  Google Scholar 

  5. Hilt RJ, Chaudhari M, Bell JF, Wolf C, Koprowicz K, King BH. Side effects from use of one or more psychiatric medications in a population-based sample of children and adolescents. J Child Adolesc Psychopharmacol. 2014;24(2):83–9.

    Article  CAS  Google Scholar 

  6. Association of American Medical Colleges. Physician Specialty Data Report. 2016.

  7. Lempp T, Heinzel-Gutenbrunner M, Bachmann C. Child and adolescent psychiatry: which knowledge and skills do primary care physicians need to have? A survey in general practitioners and paediatricians. Eur Child Adolesc Psychiatry. 2016;25(4):443–51.

    Article  Google Scholar 

  8. Le L, Bostwick JR, Andreasen A, Malas N. Neuroleptic prescribing and monitoring practices in pediatric inpatient medical and psychiatric settings. Hosp Pediatr. 2018;8(7):410–8.

    Article  Google Scholar 

  9. The Global Burden of Osteoporosis: A Fact Sheet. 2014.

  10. Calarge CA, Butcher BD, Burns TL, Coryell WH, Schlechte JA, Zemel BS. Major depressive disorder and bone mass in adolescents and young adults. J Bone Miner Res 2014;29:2230–2237.

    Article  Google Scholar 

  11. •• Calarge C, Mills J, Coryell W. Skeletal effects of depression and SSRIs. Biol Psychiatry. 2017;81:S82. Larger and long-term longitudinal study of youth just starting SSRIs for treatment of either depression or anxiety. They did not find the worrisome relationship between SSRI use and decreased BMD as has been so well-established in the elderly population. They also found some interesting sex differences in this study.

    Article  Google Scholar 

  12. Eriksen SA, Prietzel H, Ibsen JR, Lauritsen MB, Vestergaard P, Telléus GK, et al. Bone and vitamin D status in patients with anorexia nervosa. Dan Med J. 2014;61(11)

  13. Guo NW, Lin CL, Lin CW, Huang MT, Chang WL, Lu TH, et al. Fracture risk and correlating factors of a pediatric population with attention deficit hyperactivity disorder: a nationwide matched study. J Pediatr Orthop B. 2016;25(4):369–74.

    Article  Google Scholar 

  14. Wu Q, Liu B, Tonmoy S. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies. Osteoporos Int. 2018;29:1303–12.

    Article  CAS  Google Scholar 

  15. Golden NH, Abrams SA, Daniels SR, Corkins MR, De Ferranti SD, Magge SN, et al. Optimizing bone health in children and adolescents. Pediatrics. 2014;134(4):e1229–e43.

    Article  Google Scholar 

  16. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  CAS  Google Scholar 

  17. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11(12):985–1009.

    Article  CAS  Google Scholar 

  18. Hamed SA. Markers of bone turnover in patients with epilepsy and their relationship to the management of bone diseases induced by antiepileptic drugs. Expert Rev Clin Pharmacol. 2016;9:267–86.

    Article  CAS  Google Scholar 

  19. Arora E, Singh H, Gupta YK. Impact of antiepileptic drugs on bone health: need for monitoring, treatment, and prevention strategies. J Family Med Prim Care. 2016;5:248–53.

    Article  Google Scholar 

  20. Shellhaas RA, Joshi SM. Vitamin D and bone health among children with epilepsy. Pediatr Neurol. 2010;42:385–93.

    Article  Google Scholar 

  21. Harijan P, Khan A, Hussain N. Vitamin D deficiency in children with epilepsy: do we need to detect and treat it? J Pediatr Neurosci. 2013;8:5–10.

    Article  Google Scholar 

  22. Meier C, Kraenzlin ME. Antiepileptics and bone health. Ther Adv Musculoskelet Dis. 2011;3:235–43.

    Article  CAS  Google Scholar 

  23. Baird J, Kurshid MA, Kim M, Harvey N, Dennison E, Cooper C. Does birthweight predict bone mass in adulthood? A systematic review and meta-analysis. Osteoporos Int. 2011;22(5):1323–34.

    Article  CAS  Google Scholar 

  24. Winzenberg TM, Powell S, Shaw KA, Jones G. Vitamin D supplementation for improving bone mineral density in children. Cochrane Database Syst Rev. 2010;(10):CD006944.

  25. Movassagh EZ, Baxter-Jones ADG, Kontulainen S, Whiting S, Szafron M, Vatanparast H. Vegetarian-style dietary pattern during adolescence has long-term positive impact on bone from adolescence to young adulthood: a longitudinal study. Nutr J. 2018;17(1):36.

    Article  Google Scholar 

  26. Swanson CM, Kohrt WM, Buxton OM, Everson CA, Wright KP Jr, Orwoll ES, et al. The importance of the circadian system & sleep for bone health. Metab Clin Exp. 2017;09

  27. Absoud M, Cummins C, Lim MJ, Wassmer E, Shaw N. Prevalence and predictors of vitamin D insufficiency in children: a Great Britain population based study. PLoS One. 2011;6(7):e22179.

    Article  CAS  Google Scholar 

  28. Bonnot O, Inaoui R, Raffin-Viard M, Bodeau N, Coussieu C, Cohen D. Children and adolescents with severe mental illness need vitamin D supplementation regardless of disease or treatment. J Child Adolesc Psychopharmacol. 2011;21:157–61.

    Article  Google Scholar 

  29. Davidge Pitts CJ, Kearns AE. Update on medications with adverse skeletal effects. Mayo Clin Proc. 2011;86:338–43. quiz 43

    Article  Google Scholar 

  30. Bab I, Yirmiya R. Depression, selective serotonin reuptake inhibitors, and osteoporosis. Curr Osteoporos Rep. 2010;8:185–91.

    Article  Google Scholar 

  31. Calarge CA, Schlechte JA. Bone mass in boys with autism spectrum disorder. J Autism Dev Disord. 2017;47:1749–55.

    Article  Google Scholar 

  32. Perry BA, Archer KR, Song Y, Ma Y, Green JK, Elefteriou F, et al. Medication therapy for attention deficit/hyperactivity disorder is associated with lower risk of fracture: a retrospective cohort study. Osteoporos Int. 2016;27:2223–7.

    Article  CAS  Google Scholar 

  33. Elefteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int. 2014;94(1):140–51.

    Article  CAS  Google Scholar 

  34. Limonard EJ, Schoenmaker T, de Vries TJ, Tanck MW, Heijboer AC, Endert E, et al. Clonidine increases bone resorption in humans. Osteoporos Int. 2016;27:1063–71.

    Article  CAS  Google Scholar 

  35. Fernandes BS, Hodge JM, Pasco JA, Berk M, Williams LJ. Effects of depression and serotonergic antidepressants on bone: mechanisms and implications for the treatment of depression. Drugs Aging. 2016;33:21–5.

    Article  CAS  Google Scholar 

  36. Fan HC, Lee HS, Chang KP, Lee YY, Lai HC, Hung PL, et al. The impact of anti-epileptic drugs on growth and bone metabolism. Int J Mol Sci. 2016;17:01.

    Google Scholar 

  37. Verrotti A, Coppola G, Parisi P, Mohn A, Chiarelli F. Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg. 2010;112:1–10.

    Article  Google Scholar 

  38. Xing D, Ma XL, Ma JX, Wang J, Yang Y, Chen Y. Association between use of benzodiazepines and risk of fractures: a meta-analysis. Osteoporos Int. 2014;25(1):105–20.

    Article  CAS  Google Scholar 

  39. Zhang T, Shao H, Xu KQ, Kuang LT, Chen RF, Xiu HH. Midazolam suppresses osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Eur Rev Med Pharmacol Sci. 2014;18:1411–8.

    CAS  PubMed  Google Scholar 

  40. Chen C, Xu C, Zhou T, Gao B, Zhou H, Zhang C, et al. Abnormal osteogenic and chondrogenic differentiation of human mesenchymal stem cells from patients with adolescent idiopathic scoliosis in response to melatonin. Mol Med Rep. 2016;14:1201–9.

    Article  CAS  Google Scholar 

  41. Zhang L, Su P, Xu C, Chen C, Liang A, Du K, et al. Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res. 2010;49:364–72.

    Article  CAS  Google Scholar 

  42. Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L. Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res. 2015;59(2):221–9.

    Article  CAS  Google Scholar 

  43. He X, Jiang P, Zhu W, Xue Y, Li H, Dang R, et al. Effect of antiepileptic therapy on serum 25(OH)D3 and 24,25(OH)2D3 levels in epileptic children. Ann Nutr Metab. 2016;68(2):119–27.

    Article  CAS  Google Scholar 

  44. Vestergaard P. Effects of antiepileptic drugs on bone health and growth potential in children with epilepsy. Paediatric Drugs. 2015;17:141–50.

    Article  Google Scholar 

  45. Mak TW, Shek CC, Chow CC, Wing YK, Lee S. Effects of lithium therapy on bone mineral metabolism: a two-year prospective longitudinal study. J Clin Endocrinol Metab. 1998;83(11):3857–9.

    CAS  PubMed  Google Scholar 

  46. Zamani A, Omrani GR, Nasab MM. Lithium’s effect on bone mineral density. Bone. 2009;44(2):331–4.

    Article  CAS  Google Scholar 

  47. Borusiak P, Langer T, Heruth M, Karenfort M, Bettendorf U, Jenke AC. Antiepileptic drugs and bone metabolism in children: data from 128 patients. J Child Neurol. 2013;28(2):176–83.

    Article  Google Scholar 

  48. Sheth RD, Hermann BP. Bone mineral density with lamotrigine monotherapy for epilepsy. Pediatr Neurol. 2007;37(4):250–4.

    Article  Google Scholar 

  49. Albaghdadi O, Alhalabi MS, Alourfi Z, Youssef LA. Bone health and vitamin D status in young epilepsy patients on valproate monotherapy. Clin Neurol Neurosurg. 2016;146:52–6.

    Article  Google Scholar 

  50. Fong CY, Mallick AA, Burren CP, Patel JS. Evaluation and management of bone health in children with epilepsy on long-term antiepileptic drugs: United Kingdom survey of paediatric neurologists. Eur J Paediatr Neurol. 2011;15:417–23.

    Article  Google Scholar 

  51. Gude D. Epilepsy, anti-epileptic drugs and bone health in children. J Pediatr Neurosci. 2011;6:93.

    PubMed  PubMed Central  Google Scholar 

  52. Wirrell E, Correspondence A, et al. Vitamin D and bone health in children with epilepsy: fad or fact? Pediatr Neurol. 2010;42(6):394–5.

    Article  Google Scholar 

  53. Nakken KO, Tauboll E. Bone loss associated with use of antiepileptic drugs. Expert Opin Drug Saf. 2010;9:561–71.

    Article  CAS  Google Scholar 

  54. Roke Y, van Harten PN, Buitelaar JK, Tenback DE, Quekel LG, de Rijke YB, et al. Bone mineral density in male adolescents with autism spectrum disorders and disruptive behavior disorder with or without antipsychotic treatment. Eur J Endocrinol. 2012;167:855–63.

    Article  CAS  Google Scholar 

  55. De Hert M, Detraux J, Stubbs B. Relationship between antipsychotic medication, serum prolactin levels and osteoporosis/osteoporotic fractures in patients with schizophrenia: a critical literature review. Expert Opin Drug Saf. 2016;15:809–23.

    Article  Google Scholar 

  56. •• Howard JT, Walick KS, Rivera JC, Author A, Army US, Institute of Surgical Research SAUS, et al. Preliminary evidence of an association between ADHD medications and diminished bone health in children and adolescents. J Pediatr Orthop. 2017;37(5):348–54. Recent NHANES-based study finding a link between stimulant use and decreased BMD in youth. They also found a surprising percentage of patients on stimulants whose BMD was already in the osteopenic range.

    Article  Google Scholar 

  57. Zhou C, Fang L, Chen Y, Zhong J, Wang H, Xie P. Effect of selective serotonin reuptake inhibitors on bone mineral density: a systematic review and meta-analysis. Osteoporos Int. 2018;12

  58. Haney EM, Warden SJ, Bliziotes MM. Effects of selective serotonin reuptake inhibitors on bone health in adults: time for recommendations about screening, prevention and management? Bone. 2010;46:13–7.

    Article  CAS  Google Scholar 

  59. Feuer AJ, Demmer RT, Thai A, Vogiatzi MG. Use of selective serotonin reuptake inhibitors and bone mass in adolescents: an NHANES study. Bone. 2015;78:28–33.

    Article  CAS  Google Scholar 

  60. Couturier J, Sy A, Johnson N, Findlay S. Bone mineral density in adolescents with eating disorders exposed to selective serotonin reuptake inhibitors. Brunner-Mazel Eating Disorders Monograph Series. 2013;21:238–48.

    Article  Google Scholar 

  61. DiVasta AD, Feldman HA, O’Donnell JM, Long J, Leonard MB, Gordon CM. Effect of exercise and antidepressants on skeletal outcomes in adolescent girls with anorexia nervosa. J Adolesc Health. 2017;60:229–32.

    Article  Google Scholar 

  62. Misra M, Le Clair M, Mendes N, Miller KK, Lawson E, Meenaghan E, et al. Use of SSRIs may impact bone density in adolescent and young women with anorexia nervosa. Cns Spectr. 2010;15:579–86.

    Article  Google Scholar 

  63. Aydin H, Mutlu N, Akbas NB. Treatment of a major depression episode suppresses markers of bone turnover in premenopausal women. J Psychiatr Res. 2011;45(10):1316–20.

    Article  Google Scholar 

  64. Winterhalder L, Eser P, Widmer J, Villiger PM, Aeberli D. Changes in volumetric BMD of radius and tibia upon antidepressant drug administration in young depressive patients. J Musculoskelet Nueronal Interact. 2012;12:224–9.

    CAS  Google Scholar 

  65. Seifert CF, Wiltrout TR. Calcaneal bone mineral density in young adults prescribed selective serotonin reuptake inhibitors. Clin Ther. 2013;35:1412–7.

    Article  CAS  Google Scholar 

  66. Lapid MI, Kung S, Frye MA, Biernacka JM, Geske JR, Drake MT, et al. Association of the serotonin transporter-linked polymorphic region genotype with lower bone mineral density. Transl Psychiatry. 2017;7:e1213.

    Article  CAS  Google Scholar 

  67. Kotlarczyk MP, Lassila HC, O'Neil CK, D’Amico F, Enderby LT, Witt-Enderby PA, et al. Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res. 2012;52(4):414–26.

    Article  CAS  Google Scholar 

  68. Baek JH, Seo YH, Kim GH, Kim MK, Eun BL. Vitamin D levels in children and adolescents with antiepileptic drug treatment. Yonsei Med J. 2014;55:417–21.

    Article  CAS  Google Scholar 

  69. El-Hajj Fuleihan G, Dib L, Yamout B, Sawaya R, Mikati MA. Predictors of bone density in ambulatory patients on antiepileptic drugs. Bone. 2008;43(1):149–55.

    Article  CAS  Google Scholar 

  70. Fong CY, Kong AN, Noordin M, Poh BK, Ong LC, Ng CC. Determinants of low bone mineral density in children with epilepsy. Eur J Paediatr Neurol. 2018;22:155–63.

    Article  Google Scholar 

  71. Fong CY, Kong AN, Poh BK, Mohamed AR, Khoo TB, Ng RL, et al. Vitamin D deficiency and its risk factors in Malaysian children with epilepsy. Epilepsia. 2016;57:1271–9.

    Article  CAS  Google Scholar 

  72. Guo CY, Ronen GM, Atkinson SA. Long-term valproate and lamotrigine treatment may be a marker for reduced growth and bone mass in children with epilepsy. Epilepsia. 2001;42(9):1141–7.

    Article  CAS  Google Scholar 

  73. Lee YJ, Park KM, Kim YM, Yeon GM, Nam SO, Author A, et al. Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatr Neurol. 2015;52(2):153–9.

    Article  Google Scholar 

  74. Osman NMM, Abdel Aziz RA, Soliman GT, Gamal Mohamed A, Department of Radiology M, et al. Bone mineral density evaluation of epileptic children on anti-epileptic medications. Egypt J Radiol Nucl Med. 2017;48(4):1083–90.

    Article  Google Scholar 

  75. Yildiz EP, Poyrazoglu S, Bektas G, Kardelen AD, Aydinli N. Potential risk factors for vitamin D levels in medium- and long-term use of antiepileptic drugs in childhood. Acta Neurol Belg. 2017;117:447–53.

    Article  Google Scholar 

  76. Fong CY, Riney CJ. Vitamin D deficiency among children with epilepsy in South Queensland. J Child Neurol. 2014;29:368–73.

    Article  Google Scholar 

  77. Tang L, Chen Y, Pei F, Zhang H. Lithium chloride modulates adipogenesis and osteogenesis of human bone marrow-derived mesenchymal stem cells. Cell Physiol Biochem. 2015;37:143–52.

    Article  CAS  Google Scholar 

  78. Aksoy A, Sönmez FM, Deger O, Hosver I, Karagüzel G. The effects of antiepileptic drugs on the relationships between leptin levels and bone turnover in prepubertal children with epilepsy. J Pediatr Endocrinol Metab. 2011;24(9–10):703–8.

    CAS  PubMed  Google Scholar 

  79. Yaghini O, Tonekaboni SH, Amir Shahkarami SM, Ahmad Abadi F, Shariat F, Abdollah Gorji F. Bone mineral density in ambulatory children with epilepsy. Indian J Pediatr. 2015;82:225–9.

    Article  Google Scholar 

  80. •• Zhang Y, Zheng YX, Zhu JM, Zhang JM, Zheng Z. Effects of antiepileptic drugs on bone mineral density and bone metabolism in children: a meta-analysis. J Zhejiang Univ Sci B 2015;16:611–21. Large meta-analysis of the effects of antiepileptic drugs/mood stabilizers on bone health in children. This work establishes a definite association between these medications and decreased BMD as well as decreased vitamin D levels.

    Article  CAS  Google Scholar 

  81. Lambrinoudaki I, Kaparos G, Armeni E, Alexandrou A, Damaskos C, Logothetis E, et al. BsmI vitamin D receptor’s polymorphism and bone mineral density in men and premenopausal women on long-term antiepileptic therapy. Eur J Neurol. 2011;18:93–8.

    Article  CAS  Google Scholar 

  82. Babacan O, Karaoglu A, Vurucu S, Yesilkaya E, Yesilyurt O, Cayci T, et al. May long term oxcarbazepine treatment be lead to secondary hyperparathyroidism? J Clin Neurol. 2012;8:65–8.

    Article  CAS  Google Scholar 

  83. Lin CM, Fan HC, Chao TY, Chu DM, Lai CC, Wang CC, et al. Potential effects of valproate and oxcarbazepine on growth velocity and bone metabolism in epileptic children - a medical center experience. BMC Pediatr. 2016;16:61.

    Article  Google Scholar 

  84. Shellhaas RA, Barks AK, Joshi SM. Prevalence and risk factors for vitamin D insufficiency among children with epilepsy. Pediatr Neurol. 2010;42(6):422–6.

    Article  Google Scholar 

  85. Hasaneen B, Elsayed RM, Salem N, Elsharkawy A, Tharwat N, Fathy K, et al. Bone mineral status in children with epilepsy: biochemical and radiologic markers. J Pediatr Neurosci. 2017;12:138–43.

    Article  Google Scholar 

  86. Heo K, Rhee Y, Lee HW, Lee SA, Shin DJ, Kim WJ, et al. The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia. 2011;52:1884–9.

    Article  CAS  Google Scholar 

  87. Shen C, Chen F, Zhang Y, Guo Y, Ding M. Association between use of antiepileptic drugs and fracture risk: a systematic review and meta-analysis. Bone. 2014;64:246–53.

    Article  CAS  Google Scholar 

  88. Leonard H, Downs J, Jian L, Bebbington A, Jacoby P, Nagarajan L, et al. Valproate and risk of fracture in Rett syndrome. Arch Dis Child. 2010;95:444–8.

    Article  CAS  Google Scholar 

  89. Vera V, Moran JM, Barros P, Canal-Macias ML, Guerrero-Bonmatty R, Costa-Fernandez C, et al. Greater calcium intake is associated with better bone health measured by quantitative ultrasound of the phalanges in pediatric patients treated with anticonvulsant drugs. Nutrients. 2015;7:9908–17.

    Article  CAS  Google Scholar 

  90. Serin HM, Koc ZP, Temelli B, Esen I. The bone mineral content alterations in pediatric patients medicated with levetiracetam, valproic acid, and carbamazepine. Epilepsy Behav. 2015;51:221–4.

    Article  Google Scholar 

  91. Turan MI, Cayir A, Ozden O, Tan H. An examination of the mutual effects of valproic acid, carbamazepine, and phenobarbital on 25-hydroxyvitamin D levels and thyroid function tests. Neuropediatrics. 2014;45:16–21.

    CAS  PubMed  Google Scholar 

  92. Calarge CA, Zimmerman B, Xie D, Kuperman S, Schlechte JA. A cross-sectional evaluation of the effect of risperidone and selective serotonin reuptake inhibitors on bone mineral density in boys. J Clin Psychiatry. 2010;71:338–47.

    Article  CAS  Google Scholar 

  93. Calarge CA, Burns TL, Schlechte JA, Zemel BS. Longitudinal examination of the skeletal effects of selective serotonin reuptake inhibitors and risperidone in boys. J Clin Psychiatry. 2015;76:607–13.

    Article  Google Scholar 

  94. Sackett G, Unis A, Crouthamel B. Some effects of risperidone and quetiapine on growth parameters and hormone levels in young pigtail macaques. J Child Adolesc Psychopharmacol. 2010;20:489–93.

    Article  Google Scholar 

  95. Correll CU, Detraux J, De Lepeleire J, De Hert M. Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry. 2015;14(2):119–36.

    Article  Google Scholar 

  96. Stubbs B, Gaughran F, Mitchell AJ, De Hert M, Farmer R, Soundy A, et al. Schizophrenia and the risk of fractures: a systematic review and comparative meta-analysis. Gen Hosp Psychiatry. 2015;37:126–33.

    Article  Google Scholar 

  97. Tseng PT, Chen YW, Yeh PY, Tu KY, Cheng YS, Wu CK. Bone mineral density in schizophrenia: an update of current meta-analysis and literature review under guideline of PRISMA. Medicine. 2015;94:e1967.

    Article  Google Scholar 

  98. Bulut SD, Bulut S, Atalan DG, Tulaci RG, Turker T, Gurcay E, et al. The effect of antipsychotics on bone mineral density and sex hormones in male patients with schizophrenia. Psychiatr Danub. 2016;28:255–62.

    CAS  PubMed  Google Scholar 

  99. Liang Y, Su YA, Zhao ZG, Gao N, Huang JZ, Tang MQ, et al. Acute effects of haloperidol, amisulpride, and quetiapine on bone turnover markers in patients with schizophrenia. J Clin Psychopharmacol. 2015;35:583–6.

    Article  CAS  Google Scholar 

  100. Poulton AS, Bui Q, Melzer E, Evans R. Stimulant medication effects on growth and bone age in children with attention-deficit/hyperactivity disorder: a prospective cohort study. Int Clin Psychopharmacol. 2016;31:93–9.

    Article  Google Scholar 

  101. Poulton A, Briody J, McCorquodale T, Melzer E, Herrmann M, Baur LA, et al. Weight loss on stimulant medication: how does it affect body composition and bone metabolism? - a prospective longitudinal study. Int J Pediatr Endocrinol. 2012;2012:30.

    Article  Google Scholar 

  102. Schermann H, Ben-Ami IS, Tudor A, Amar E, Rath E, Yanovich R. Past methylphenidate exposure and stress fractures in combat soldiers: a case-control study. Am J Sports Med. 2018;46:728–33.

    Article  Google Scholar 

  103. Calarge CA, Schlechte JA, Burns TL, Zemel BS. The effect of psychostimulants on skeletal health in boys co-treated with risperidone. J Pediatr. 2015;166(6):1449–1454.e1.

    Article  CAS  Google Scholar 

  104. Feuer AJ, Thai A, Demmer RT, Vogiatzi M. Association of Stimulant Medication use with Bone Mass in children and adolescents with attention-deficit/hyperactivity disorder. JAMA Pediatr. 2016;170:e162804.

    Article  Google Scholar 

  105. Takeda S, Karsenty G. Molecular bases of the sympathetic regulation of bone mass. Bone. 2008;42(5):837–40.

    Article  CAS  Google Scholar 

  106. Emiliano AB, Fudge JL. From galactorrhea to osteopenia: rethinking serotonin-prolactin interactions. Neuropsychopharmacology. 2004;29(5):833–46.

    Article  CAS  Google Scholar 

  107. Comer JS, Olfson M, Mojtabai R. National trends in child and adolescent psychotropic polypharmacy in office-based practice, 1996–2007. J Am Acad Child Adolesc Psychiatry. 2010;49(10):1001–10.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank medical informationist Mark MacEachern, MLIS, at the University of Michigan Taubman Health Sciences Library for his guidance regarding the literature search for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessie N. Rice.

Ethics declarations

Conflict of Interest

Jessie N. Rice and Carrie B. Gillett each declare no potential conflicts of interest.

Nasuh M. Malas reports a grant from the Michigan Department of Health and Human Services, part of funding for the Michigan Child Collaborative Care Program (MC3), a telepsychiatry service for primary care providers in the state of Michigan. This grant funds 1% of Dr. Malas’ clinical effort at the University of Michigan.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

The editors would like to thank Dr. Harrison Levine for taking the time to review this manuscript.

This article is part of the Topical Collection on Complex Medical-Psychiatric Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, J.N., Gillett, C.B. & Malas, N.M. The Impact of Psychotropic Medications on Bone Health in Youth. Curr Psychiatry Rep 20, 104 (2018). https://doi.org/10.1007/s11920-018-0960-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-018-0960-5

Keywords

Navigation