Skip to main content

Advertisement

Log in

Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment

  • Disaster Psychiatry: Trauma, PTSD, and Related Disorders (MJ Friedman, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes neurotransmitter, peptide, and other neurohormone abnormalities associated with posttraumatic stress disorder (PTSD) and relevant to development of precision medicine therapeutics for PTSD.

Recent Findings

As the number of molecular abnormalities associated with PTSD across a variety of subpopulations continues to grow, it becomes clear that no single abnormality characterizes all individuals with PTSD. Instead, individually variable points of molecular dysfunction occur within several different stress-responsive systems that interact to produce the clinical PTSD phenotype.

Summary

Future work should focus on critical interactions among the systems that influence PTSD risk, severity, chronicity, comorbidity, and response to treatment. Effort also should be directed toward development of clinical procedures by which points of molecular dysfunction within these systems can be identified in individual patients. Some molecular abnormalities are more common than others and may serve as subpopulation biological endophenotypes for targeting of currently available and novel treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACTH:

adrenocorticotropic hormone

ADIOL:

5-Androsten-3β,17β-diol

ALLO:

Allopregnanolone and pregnanolone

AP-1:

Activator protein 1

AUG:

Adenine-uracil-guinine

AVP:

Arginine vasopression

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotropic factor

cAMP:

Cyclic adenosine monophosphate

CpG:

Cytosine-guanine

CPT:

Cognitive processing therapy

CRH:

Corticotropin releasing hormone

CSF:

Cerebrospinal fluid

CtBP:

C-terminal binding protein

CYP2D6:

Cytochrome P450 2D6: enzyme coded by the CYP2D6 gene

CYP3A4:

Cytochrome P450 3A4: enzyme coded by the CYP3A4 gene.

DAG:

Diacyl glycerol

DHEA:

Dehydroepiandrosterone

DHEAS:

Dehydroepiandrosterone sulfate

DNA:

Deoxyribonucleic acid

DSM-5:

Diagnostic and Statistical Manual of Mental Disorders

EC50 :

Median effective dose

ER:

Estrogen receptor

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

ERE:

Estrogen response element

EMG:

Electromyographic

EPSP:

Excitatory post-synaptic potential

ERK:

Extracellular signal-related kinase

FKBP5:

FK binding protein 506

GABA:

Gamma-amino-butyric acid

GBOs:

Gamma-band oscillations

GPER:

G-protein coupled estrogen receptor 1

GCMS:

Gas chromatography-mass spectrometry

GPRCs:

G-protein coupled receptors

GR:

Glucocorticoid receptor

GRE:

Glucocorticoid response element

HPA:

Hypothalamic-pituitary-adrenal

IP3:

Inositol 1,4,5 triphosphate

LTD:

Long-term depression

LTP:

Long-term potentiation

mCPP:

Meta-chlorophenylpiperazine

MAPK:

Mitogen-activated protein kinase

MDD:

Major depressive disorder

MR:

Mineralocorticoid receptor

mRNA:

Messenger RNA

NR3C1:

Glucocorticoid receptor (GR) gene

NE:

Norepinephrine

NMDA:

N-methyl-D-aspartate

NPY:

Neuropeptide Y

OEF/OIF:

Operation Enduring Freedom/ Operation Iraqi Freedom

OR:

Odds ratio

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PAC1:

Class of G-protein coupled receptors

PBMC:

Peripheral blood mononuclear cell

PE:

Prolonged Exposure

PET:

Positron emission tomography

PFC:

Prefrontal cortex

PKA:

Protein kinase A

PLC:

Phospholipase C

PTSD:

Posttraumatic stress disorder

RNA:

Ribonucleic acid

RIA:

Radioimmunoassay

VIP:

Vasoactive intestinal protein

VPAC:

Class of G-protein coupled receptors

3α-HSD:

3α-hydroxysteroid dehydrogenase

5α-DHP:

5α-dihydroprogesterone

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Arlington: American Psychiatric Association; 2013.

    Book  Google Scholar 

  2. Resick PA, Galovski TE, Uhlmansiek MO, Scher CD, Clum GA, Young-Xu Y. A randomized clinical trial to dismantle components of cognitive processing therapy for posttraumatic stress disorder in female victims of interpersonal violence. J Consult Clin Psychol. 2008;76:243–58.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chard KM. An evaluation of cognitive processing therapy for the treatment of posttraumatic stress disorder related to childhood sexual abuse. J Consult Clin Psychol. 2005;73:965–71.

    Article  PubMed  Google Scholar 

  4. Resick PA, Nishith P, Weaver TL, Astin MC, Feuer CA. A comparison of cognitive-processing therapy with prolonged exposure and a waiting condition for the treatment of chronic posttraumatic stress disorder in female rape victims. J Consult Clin Psychol. 2002;70:867–79.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galovski TE, Blain LM, Mott JM, Elwood L, Houle T. Manualized therapy for PTSD: flexing the structure of cognitive processing therapy. J Consult Clin Psychol. 2012;80:968–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bass JK, Annan J, Sarah MIM, Kaysen D, Griffiths S, Cetinoglu T, et al. Controlled trial of psychotherapy for Congolese survivors of sexual violence. N Engl J Med. 2013;368:2182–91.

    Article  PubMed  CAS  Google Scholar 

  7. Galovski TE, Harik JM, Blain LM, Elwood L, Gloth C, Fletcher TD. Augmenting cognitive processing therapy to improve sleep impairment in PTSD: a randomized controlled trial. J Consult Clin Psychol. 2016;84:167–77.

    Article  PubMed  Google Scholar 

  8. Monson CM, Schnurr PP, Resick PA, Friedman MJ, Young-Xu Y, Stevens SP. Cognitive processing therapy for veterans with military-related posttraumatic stress disorder. J Consult Clin Psychol. 2006;74:898–907.

    Article  PubMed  Google Scholar 

  9. Forbes D, Lloyd D, Nixon RDV, Elliott P, Varker T, Perry D, et al. A multisite randomized controlled effectiveness trial of cognitive processing therapy for military-related posttraumatic stress disorder. J Anxiety Disorders. 2012;26:442–52.

    Article  CAS  Google Scholar 

  10. Surıs A, Link-Malcolm J, Chard K, Ahn C, North C. A randomized clinical trial of cognitive processing therapy for veterans with PTSD related to military sexual trauma. J Traumatic Stress. 2013;26:1–10.

    Article  Google Scholar 

  11. Morland LA, Mackintosh M-A, Greene CJ, Rosen CS, Chard KM, Resick P, et al. Cognitive processing therapy for posttraumatic stress disorder delivered to rural veterans via telemental health: a randomized noninferiority clinical trial. J Clin Psychiatry. 2014;75:470–6.

    Article  PubMed  Google Scholar 

  12. Resick PA, Wachen JS, Mintz J, Young-McCaughan S, Roache JD, Borah AM, et al. A randomized clinical trial of group cognitive processing therapy compared with group present-centered therapy for PTSD among active duty military personnel. J Consult Clin Psychol. 2015;83:1058–68.

    Article  PubMed  Google Scholar 

  13. Maieritsch KP, Smith TL, Hessinger JD, Ahearn EP, Eickhoff JC, Zhao Q. Randomized controlled equivalence trial comparing videoconference and in person delivery of cognitive processing therapy for PTSD. J Telemed Telecare. 2016;22:238–43.

    Article  PubMed  Google Scholar 

  14. Morland LA, Mackintosh MA, Rosen CS, Willis E, Resick P, Chard K, et al. Telemedicine versus in-person delivery of cognitive processing therapy for women with posttraumatic stress disorder: a randomized noninferiority trial. Depression Anxiety. 2015;32:811–20.

    Article  PubMed  Google Scholar 

  15. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13:769–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Breslau N, Davis GC, Peterson EL, Schultz LR. A second look at comorbidity in victims of trauma: the posttraumatic stress disorder–major depression connection. Biol Psychiatry. 2000;48:902–9.

    Article  PubMed  CAS  Google Scholar 

  17. Rasmusson AM, Schnurr P, Zukowska Z, Scioli E, Forman DE. Adaptation to extreme stress: PTSD, NPY and metabolic syndrome. Exp Biol Med. 2010;235:1150–6.

    Article  CAS  Google Scholar 

  18. Scioli-Salter ER, Forman DE, Otis JD, Gregor K, Valovski I, Rasmusson AM. The shared neuroanatomy and neurobiology of comorbid chronic pain and PTSD: therapeutic implications. Clin J Pain. 2015;31:363–74.

    Article  PubMed  Google Scholar 

  19. Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma. 2005;22:106–18.

    Article  PubMed  Google Scholar 

  20. Rasmusson AM. The gut peptide neuropeptide Y and post-traumatic stress disorder. Curr Op Endocrin Diabetes Obes. 2017;24:3–8.

    CAS  Google Scholar 

  21. Southwick SM, Krystal JH, Morgan CA, Johnson D, Nagy LM, Nicolaou A, et al. Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1993;50:266–74.

    Article  PubMed  CAS  Google Scholar 

  22. Geracioti TD Jr, Baker DG, Ekhator NN, West SA, Hill KK, Bruce AB, et al. CSF norepinephrine concentrations in posttraumatic stress disorder. Am J Psychiatry. 2001;158:1227–30.

    Article  PubMed  Google Scholar 

  23. Strawn JR, Ekhator NN, Horn PS, Baker DG, Geracioti TD Jr. Blood pressure and cerebrospinal fluid norepinephrine in combat-related posttraumatic stress disorder. Psychosom Med. 2004;66:757–9.

    Article  PubMed  Google Scholar 

  24. Neumeister A, Charney DS, Belfer I, Geraci M, Holmes C, Sharabi Y, et al. Sympathoneural and adrenomedullary functional effects of alpha2C-adrenoreceptor gene polymorphism in healthy humans. Pharmacogenetic Genomics. 2005;15:143–9.

    Article  CAS  Google Scholar 

  25. Neumeister A, Drevets WC, Belfer I, Luckenbaugh DA, Henry S, Bonne O, et al. Effects of a α 2C-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression. Neuropsychopharmacology. 2006;31:1750.

    Article  PubMed  CAS  Google Scholar 

  26. Goldstein LE, Rasmusson AM, Bunney BS, Roth RH. Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci. 1996;16:4787–98.

    Article  PubMed  CAS  Google Scholar 

  27. Pitman RK, Orr SP. Twenty-four hour urinary cortisol and catecholamine excretion in combat-related posttraumatic stress disorder. Biol Psychiatry. 1990;27:245–7.

    Article  PubMed  CAS  Google Scholar 

  28. de Kloet C, Vermetten E, Rademaker A, Geuze E, Westenberg HM. Neuroendocrine and immune responses to a cognitive stress challenge in veterans with and without PTSD. Eur J Psychotraumatol. 2012;3:16206.

    Article  Google Scholar 

  29. Morgan CA III, Wang S, Rasmusson A, Hazlett G, Anderson G, Charney DS. Relationship among plasma cortisol, catecholamines, neuropeptide Y, and human performance during exposure to uncontrollable stress. Psychosom Med. 2001;63:412–22.

    Article  PubMed  CAS  Google Scholar 

  30. Arnsten AF. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10:410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Southwick SM, Davis M, Horner B, Cahill L, Morgan CA III, Gold PE, et al. Relationship of enhanced norepinephrine activity during memory consolidation to enhanced long-term memory in humans. Am J Psychiatry. 2002;159:1420–2.

    Article  PubMed  Google Scholar 

  32. Bremner JD, Innis RB, Ng CK, Staib LH, Salomon RM, Bronen RA, et al. Positron emission tomography measurement of cerebral metabolic correlates of yohimbine administration in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54:246–54.

    Article  PubMed  CAS  Google Scholar 

  33. Friedman MJ, Bernardy NC. Considering future pharmacotherapy for PTSD. Neurosci Lett. 2017;649:181–5.

    Article  PubMed  CAS  Google Scholar 

  34. Raskind MA, Peskind ER, Chow B, Harris C, Davis-Karim A, Holmes HA, et al. Trial of prazosin for post-traumatic stress disorder in military veterans. New Engl J Med. 2018;378:507.

    Article  PubMed  CAS  Google Scholar 

  35. Pitman RK, Sanders KM, Zusman RM, Healy AR, Cheema F, Lasko NB, et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry. 2002;51:189–92.

    Article  PubMed  CAS  Google Scholar 

  36. Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman R. Pre-reactivation propranolol therapy reduces posttraumatic stress disorder: a randomized controlled trial. Am J Psychiatry. (in press).

  37. Yehuda R, Siever LJ, Teicher MH, Levengood RA, Gerber DK, Schmeidler J, et al. Plasma norepinephrine and 3-methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder. Biol Psychiatry. 1998;44:56–63.

    Article  PubMed  CAS  Google Scholar 

  38. Southwick SM, Krystal JH, Bremner JD. Morgan C3, Nicolaou AL, Nagy LM, Johnson DR, Heninger GR, Charney DS. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch Gen Psychiatry. 1997;54:749–58.

    Article  PubMed  CAS  Google Scholar 

  39. Rasmusson AM, Hauger RL, Morgan CA III, Bremner JD, Charney DS, Southwick SM. Low baseline and yohimbine-stimulated plasma neuropeptide Y (NPY) in combat-related posttraumatic stress disorder. Biol Psychiatry. 2000;47:526–39.

    Article  PubMed  CAS  Google Scholar 

  40. Sah R, Ekhator NN, Strawn JR, Sallee FR, Baker DG, Horn PS, et al. Low cerebrospinal fluid neuropeptide Y concentrations in posttraumatic stress disorder. Biol Psychiatry. 2009;66:705–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sah R, Ekhator NN, Jefferson-Wilson L, Horn PS, Geracioti TD. Cerebrospinal fluid neuropeptide Y in combat veterans with and without posttraumatic stress disorder. Psychoneuroendocrinology. 2014;40:277–83.

    Article  PubMed  CAS  Google Scholar 

  42. Kastin AJ, Akerstrom V. Nonsaturable entry of neuropeptide Y into brain. Am J Physiology-Endocrin Metab. 1999;276:E479–82.

    Article  CAS  Google Scholar 

  43. Kawaguchi Y, Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex. 1997;7:476–86.

    Article  PubMed  CAS  Google Scholar 

  44. Banasr M, Lepack A, Fee C, Duric V, Maldonado-Aviles J, DiLeone R, et al. Characterization of GABAergic marker expression in the chronic unpredictable stress model of depression. Chronic Stress. 2017;1:2470547017720459.

    Article  Google Scholar 

  45. Powell SB, Sejnowski TJ, Behrens MM. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology. 2012;62:1322–31.

    Article  PubMed  CAS  Google Scholar 

  46. Cardin JA. Snapshots of the brain in action: local circuit operations through the lens of γ oscillations. J Neurosci. 2016;36:10496–504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Corder R, Castagné V, Rivet JM, Mormède P, Gaillard RC. Central and peripheral effects of repeated stress and high NaCl diet on neuropeptide Y. Physiol Behav. 1992;52:205–10.

    Article  PubMed  CAS  Google Scholar 

  48. Cohen H, Liu T, Kozlovsky N, Kaplan Z, Zohar J, Mathé AA. The neuropeptide Y (NPY)-ergic system is associated with behavioral resilience to stress exposure in an animal model of post-traumatic stress disorder. Neuropsychopharmacology. 2012;37:350.

    Article  PubMed  CAS  Google Scholar 

  49. Morgan CA, Rasmusson AM, Winters B, Hauger RL, Morgan J, Hazlett G, et al. Trauma exposure rather than posttraumatic stress disorder is associated with reduced baseline plasma neuropeptide-Y levels. Biol Psychiatry. 2003;54:1087–91.

    Article  PubMed  CAS  Google Scholar 

  50. Gutman AR, Yang Y, Ressler KJ, Davis M. The role of neuropeptide Y in the expression and extinction of fear-potentiated startle. J Neurosci. 2008;28:12682–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Morgan CA, Wang S, Southwick SM, Rasmusson A, Hazlett G, Hauger RL, et al. Plasma neuropeptide-Y concentrations in humans exposed to military survival training. Biol Psychiatry. 2000;47:902–9.

    Article  PubMed  CAS  Google Scholar 

  52. Morgan CA, Rasmusson AM, Wang S, Hoyt G, Hauger RL, Hazlett G. Neuropeptide-Y, cortisol, and subjective distress in humans exposed to acute stress: replication and extension of previous report. Biol Psychiatry. 2002;52:136–42.

    Article  PubMed  CAS  Google Scholar 

  53. Walker MW, Ewald DA, Perney TM, Miller RJ. Neuropeptide Y modulates neurotransmitter release and Ca2 + currents in rat sensory neurons. J Neurosci. 1988;8:2438–46.

    Article  PubMed  CAS  Google Scholar 

  54. Geracioti MDTD Jr, Carpenter LL, Owens MJ, Baker DG, Ekhator NN, Horn PS, et al. Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am J Psychiatry. 2006;163:637–43.

    Article  PubMed  Google Scholar 

  55. Misaki N, Higuchi H, Yamagata K, Miki N. Identification of glucocorticoid responsive elements (GREs) at far upstream of rat NPY gene. Neurochem Int. 1992;21:185–9.

    Article  PubMed  CAS  Google Scholar 

  56. Zukowska-Grojec Z, Neuropeptide Y. A novel sympathetic stress hormone and more. Ann N Y Acad Sci. 1996;771:219–33.

    Article  Google Scholar 

  57. Kallio J, Pesonen U, Kaipio K, Karvonen MK, Jaakkola U, Heinonen O, et al. Altered intracellular processing and release of neuropeptide Y due to leucine7 to proline7 polymorphism in the signal peptide of pre-proneuropeptide Y in humans. FASEB J. 2001;15:1242–4.

    Article  PubMed  CAS  Google Scholar 

  58. Zhou Z, Zhu G, Hariri AR, Enoch MA, Scott D, Sinha R, et al. Genetic variation in human NPY expression affects stress response and emotion. Nature. 2008;452:997–1001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Kaipio K, Kallio J, Pesonen U. Mitochondrial targeting signal in human neuropeptide Y gene. Biochem Biophysical Res Commun. 2005;337:633–40.

    Article  CAS  Google Scholar 

  60. Kuo LE, Kitlinska JB, Tilan JU, Li L, Baker SB, Johnson MD, et al. Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome. Nat Med. 2007;13:803.

    Article  PubMed  CAS  Google Scholar 

  61. Serova LI, Tillinger A, Alaluf LG, Laukova M, Keegan K, Sabban EL. Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neurosci. 2013;236:298–312.

    Article  CAS  Google Scholar 

  62. Yehuda R, Brand S, Yang RK. Plasma neuropeptide Y concentrations in combat exposed veterans: relationship to trauma exposure, recovery from PTSD, and coping. Biol Psychiatry. 2005;59:660–3.

    Article  PubMed  CAS  Google Scholar 

  63. Yehuda R, Pratchett LC, Elmes MW, Lehrner A, Daskalakis NP, Koch E, et al. Glucocorticoid-related predictors and correlates of post-traumatic stress disorder treatment response in combat veterans. Interface Focus. 2014;4:5.

    Article  Google Scholar 

  64. Antonijevic IA, Murck H, Bohlhalter S, Frieboes RM, Holsboer F, Steiger A. NPY promotes sleep and inhibits ACTH and cortisol release in young men. Neuropharmacology. 2000;39:1474–81.

    Article  PubMed  CAS  Google Scholar 

  65. Held K, Murck H, Antonijevic IA, Künzel H, Ziegenbein M, Steiger A. Neuropeptide Y (NPY) does not differentially affect sleep-endocrine regulation in depressed patients and controls. Pharmacopsychiatry. 1999;32:184.

    Google Scholar 

  66. Bao L, Kopp J, Zhang X, Xu ZQ, Zhang LF, Wong H, et al. Localization of neuropeptide Y Y1 receptors in cerebral blood vessels. ProcNat’l Acad Sci. 1997;94:12661–6.

    Article  CAS  Google Scholar 

  67. Sayed S, Van Dam NT, Horn SR, Kautz MM, Parides M, Costi S, et al. A randomized dose-ranging study of neuropeptide Y in patients with posttraumatic stress disorder. Int J Neuropsychopharmacol. 2017;21:3–11.

    Article  PubMed Central  Google Scholar 

  68. Scioli-Salter E, Forman DE, Otis JD, Tun C, Allsup K, Higgins D, et al. Potential neurobiological benefits of exercise in chronic pain and post-traumatic stress disorder: a pilot study. J Rehabil Res Dev. 2016;53:95.

    Article  PubMed  Google Scholar 

  69. Rämson R, Jürimäe J, Jürimäe T, Mäestu J. The effect of 4-week training period on plasma neuropeptide Y, leptin and ghrelin responses in male rowers. Eur J Appl Physiol. 2012;112:1873–80.

    Article  PubMed  CAS  Google Scholar 

  70. Heinrichs SC, Leite-Morris KA, Rasmusson AM, Kaplan GB. Repeated valproate treatment facilitates fear extinction under specific stimulus conditions. Neurosci Lett. 2013;552:108–13.

    Article  PubMed  CAS  Google Scholar 

  71. Nikisch G, Baumann P, Liu T, Mathé AA. Quetiapine affects neuropeptide Y and corticotropin-releasing hormone in cerebrospinal fluid from schizophrenia patients: relationship to depression and anxiety symptoms and to treatment response. Int J Neuropsychopharmacol. 2012;15:1051–61.

    Article  PubMed  CAS  Google Scholar 

  72. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev. 1990;15:71–100.

    Article  PubMed  CAS  Google Scholar 

  73. Heilig M, Koob GF, Ekman R, Britton KT. Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. Trends Neurosci. 1994;17:80–5.

    Article  PubMed  CAS  Google Scholar 

  74. Lee Y, Davis M. Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci. 1997;17:6434–46.

    Article  PubMed  CAS  Google Scholar 

  75. Nemeroff CB, Wiswelov E, Bissette G, Walléus H, Karlsson I, Eklund K, et al. Elevated concentration of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226:1342–3.

    Article  PubMed  CAS  Google Scholar 

  76. Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, et al. Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry. 1997;154:624–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, et al. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am J Psychiatry. 1999;156:585–8.

    PubMed  CAS  Google Scholar 

  78. De Kloet CS, Vermetten E, Geuze E, Lentjes EG, Heijnen CJ, Stalla GK, et al. Elevated plasma corticotrophin-releasing hormone levels in veterans with posttraumatic stress disorder. Prog Brain Res. 2007;167:287–91.

    Article  CAS  Google Scholar 

  79. Geracioti TD, Baker DG, Kasckow JW, Strawn JR, Mulchahey JJ, Dashevsky BA, et al. Effects of trauma-related audiovisual stimulation on cerebrospinal fluid norepinephrine and corticotropin-releasing hormone concentrations in post-traumatic stress disorder. Psychoneuroendocrinology. 2008;33:416–24.

    Article  PubMed  CAS  Google Scholar 

  80. Ehlers CL, Somes C, Seifritz E, Rivier JE. CRF/NPY interactions: a potential role in sleep dysregulation in depression and anxiety. Depression Anxiety. 1997;6:1–9.

    Article  PubMed  CAS  Google Scholar 

  81. Trousselard M, Lefebvre B, Caillet L, Andruetan Y, de Montleau F, Denis J, et al. Is plasma GABA level a biomarker of post-traumatic stress disorder (PTSD) severity? A preliminary study. Psychiatry Res. 2016;241:273–9.

    Article  PubMed  CAS  Google Scholar 

  82. Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S, Charney DS. Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am J Psychiatry. 2000;157:1120–6.

    Article  PubMed  CAS  Google Scholar 

  83. Geuze E, Van Berckel BN, Lammertsma AA, Boellaard R, De Kloet CS, Vermetten E, et al. Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol Psychiatry. 2008;13:74–83.

    Article  PubMed  CAS  Google Scholar 

  84. Meyerhoff DJ, Mon A, Metzler T, Neylan TC. Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality. Sleep. 2014;37:893–900.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rosso IM, Weiner MR, Crowley DJ, Silveri MM, Rauch SL, Jensen JE. Insula and anterior cingulate GABA levels in posttraumatic stress disorder: preliminary findings using magnetic resonance spectroscopy. Depression Anxiety. 2014;31:115–23.

    Article  PubMed  CAS  Google Scholar 

  86. Fujita M, Southwick SM, Denucci CC, Zoghbi SS, Dillon MS, Baldwin RM, et al. Central type benzodiazepine receptors in Gulf War veterans with posttraumatic stress disorder. Biol Psychiatry. 2004;56:95–100.

    Article  PubMed  CAS  Google Scholar 

  87. Michels L, Schulte-Vels T, Schick M, O’Gorman RL, Zeffiro T, Hasler G, et al. Prefrontal GABA and glutathione imbalance in posttraumatic stress disorder: preliminary findings. Psychiatry Res Neuroimaging. 2014;224:288–95.

    Article  Google Scholar 

  88. Vaiva G, Thomas P, Ducrocq F, Fontaine M, Boss V, Devos P, et al. Low posttrauma GABA plasma levels as a predictive factor in the development of acute posttraumatic stress disorder. Biol Psychiatry. 2004;55:250–4.

    Article  PubMed  CAS  Google Scholar 

  89. Vaiva G, Boss V, Ducrocq F, Fontaine M, Devos P, Brunet A, et al. Relationship between posttrauma GABA plasma levels and PTSD at 1-year follow-up. Am J Psychiatry. 2006;163:1446–8.

    Article  PubMed  Google Scholar 

  90. Schür RR, Boks MP, Geuze E, Prinsen HC, Verhoeven-Duif NM, Joëls M, et al. Development of psychopathology in deployed armed forces in relation to plasma GABA levels. Psychoneuroendocrinology. 2016;73:263–70.

    Article  PubMed  CAS  Google Scholar 

  91. Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottschalk C, Charney D, et al. Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry. 2006;60:704–13.

    Article  PubMed  CAS  Google Scholar 

  92. •• Pineles SL, Nillni YI, Irvine J, Pinna G, Webb A, Arditte Hall K, Hauger RH, Miller M, Resick PA, Orr SP, Rasmusson AM. PTSD in women is associated with a block in the conversion of progesterone to the GABAergic neurosteroids allopregnanolone and pregnanolone: confirmed in plasma (under review). This work demonstrated the capacity to identify deficits in allopregnanolone and pregnanolone (ALLO) synthesis in women with PTSD in plasma rather than CSF, an important step in translating this work into a clinically relevant setting. It also demonstrated a PTSD-related inability to increase the conversion of allopregnanolone precursors to allopregnanolone under moderate (but not mild) stress in women—which could potentially contribute to extinction retention deficits in women with PTSD.

  93. Rasmusson A. (unpublished data): “The Role of Hormones in Response to Trauma” Session III “ Lost in Translation: Sex Differences in Pre-clinical and Clinical Research”, Institute of Neurological Disorders and Stroke (NINDS) Understanding Traumatic Brain Injury in Women Workshop, Bethesda, MD Dec 18th, 2017.

  94. Rasmusson AM, Marx CE, Pineles SL, Locci A, Scioli-Salter ER, Nillni YI, et al. Neuroactive steroids and PTSD treatment. Neurosci Lett. 2017;649:156–63.

    Article  PubMed  CAS  Google Scholar 

  95. Gillespie CF, Almli LM, Smith AK, Bradley B, Kerley K, Crain DF, et al. Sex dependent influence of a functional polymorphism in steroid 5-α-reductase type 2 (SRD5A2) on post-traumatic stress symptoms. Am J Medical Genetics Part B Neuropsychiatr Genet. 2013;162:283–92.

    Article  CAS  Google Scholar 

  96. Purdy RH, Morrow AL, Moore PH, Paul SM. Stress-induced elevations of gamma-aminobutyric acid type a receptor-active steroids in the rat brain. Proc Natl Acad Sci. 1991;88:4553–7.

    Article  PubMed  CAS  Google Scholar 

  97. •• Izumi Y, O'Dell KA, Zorumski CF. Metaplastic LTP inhibition after LTD induction in CA1hippocampal slices involves NMDA Receptor-mediated neurosteroidogenesis. Physiol Rep. 2013;1:e00133. This preclinical paper was not focused on PTSD, but demonstrated for the first time that allopregnanolone is critical for LTD and LTP interference, plausible mechanisms by which allopregnanolone may facilitate extinction and extinction retention as suggested by the new findings of Pineles et al. and preclinical work by Pinna and Rasmusson, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Chhatwal JP, Myers KM, Ressler KJ, Davis M. Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci. 2005;25:502–6.

    Article  PubMed  CAS  Google Scholar 

  99. Malayev A, Gibbs TT, Farb DH. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Brit J Pharmacol. 2002;135:901–9.

    Article  CAS  Google Scholar 

  100. • Pineles SL, Nillni YI, King MW, Patton SC, Bauer MR, Mostoufi SM, et al. Extinction retention and the menstrual cycle: Different associations for women with posttraumatic stress disorder. J Abnorm Psychol. 2016;125:349. Using rigorous methods to control for menstrual cycle phase, this work demonstrated deficits in extinction retention in women with PTSD during the luteal phase of the menstrual cycle, rather than in the follicular phase of the cycle as previously described in healthy women.

    Article  PubMed  Google Scholar 

  101. Pinna G, Rasmusson AM. Ganaxolone improves behavioral deficits in a mouse model of post-traumatic stress disorder. Front Cell Neurosci. 2014;8

  102. Pinna G, Costa E, Guidotti A. SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol. 2009;9:24–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sripada RK, Marx CE, King AP, Rampton JC, Ho SS, Liberzon I. Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol Psychiatry. 2013;73:1045–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Locci A, Pinna G. Neurosteroid biosynthesis down-regulation and changes in GABA receptor subunit composition: a biomarker axis in stress-induced cognitive and emotional impairment. Brit J Pharmacol. 2017;174:3226–41.

    Article  CAS  Google Scholar 

  105. Meltzer-Brody et al. 2016, ClinicalTrials.gov identifier: NCT02614547.

  106. Batki SL, Pennington DL, Lasher B, Neylan TC, Metzler T, Waldrop A, et al. Topiramate treatment of alcohol use disorder in veterans with posttraumatic stress disorder: a randomized controlled pilot trial. Alcohol Clin Exp Res. 2014;38:2169–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Shalev AY, Videlock EJ, Peleg T, Segman R, Pitman RK, Yehuda R. Stress hormones and post-traumatic stress disorder in civilian trauma victims: a longitudinal study. Part I: HPA axis responses. Int J Neuropsychopharmacol. 2008;11:365–72.

    Article  PubMed  CAS  Google Scholar 

  108. Rasmusson AM, Lipschitz DS, Wang S, Hu S, Vojvoda D, Bremner JD, et al. Increased pituitary and adrenal reactivity in premenopausal women with posttraumatic stress disorder. Biol Psychiatry. 2001;50:965–77.

    Article  PubMed  CAS  Google Scholar 

  109. Heim C, Newport DJ, Heit S, Graham YP, Wilcox M, Bonsall R, et al. Pituitary-adrenal and autonomic responses to stress in women after sexual and physical abuse in childhood. JAMA. 2000;284:592–7.

    Article  PubMed  CAS  Google Scholar 

  110. Golier JA, Caramanica K, Yehuda R. Neuroendocrine response to CRF stimulation in veterans with and without PTSD in consideration of war zone era. Psychoneuroendocrinology. 2012;37:350–7.

    Article  PubMed  CAS  Google Scholar 

  111. de Kloet C, Vermetten E, Lentjes E, Geuze E, van Pelt J, Manuel R, et al. Differences in the response to the combined DEX-CRH test between PTSD patients with and without co-morbid depressive disorder. Psychoneuroendocrinology. 2008;33:313–20.

    Article  PubMed  CAS  Google Scholar 

  112. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Dejda A, Sokolowska P, Nowak JZ. Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep. 2005;57:307–20.

    PubMed  CAS  Google Scholar 

  114. Stroth N, Liu Y, Aguilera G, Eiden LE. Pituitary adenylate cyclase-activating polypeptide controls stimulus-transcription coupling in the hypothalamic-pituitary-adrenal axis to mediate sustained hormone secretion during stress. J Neuroendocrinol. 2011;23:944–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Zink M, Otto C, Zörner B, Zacher C, Schütz G, Henn FA, et al. Reduced expression of brain-derived neurotrophic factor in mice deficient for pituitary adenylate cyclase activating polypeptide type-I-receptor. Neurosci Lett. 2004;360:106–8.

    Article  PubMed  CAS  Google Scholar 

  116. • Stevens JS, Almli LM, Fani N, Gutman DA, Bradley B, Norrholm SD, et al. PACAP receptor gene polymorphism impacts fear responses in the amygdala and hippocampus. Proc National Acad Sci. 2014;111:3158–63. This paper demonstrated a critical relationship between a sex-specific gene polymorphism in the PACAP receptor and difficulty discerning or learning the distinction between safety and danger cues from a closely related sensory category, thus supporting the idea that at least some genetic factors may predispose to PTSD by influencing learning and/or brain plasticity.

    Article  CAS  Google Scholar 

  117. Fukuchi M, Kuwana Y, Tabuchi A, Tsuda M. Balance between cAMP and Ca2+ signals regulates expression levels of pituitary adenylate cyclase-activating polypeptide gene in neurons. Genes Cells. 2016;21:921–9.

    Article  PubMed  CAS  Google Scholar 

  118. Thompson RR, George K, Walton JC, Orr SP, Benson J. Sex-specific influences of vasopressin on human social communication. PNAS. 2006;103:7889–94.

    Article  PubMed  CAS  Google Scholar 

  119. Uzefovsky F, Shalev I, Israel S, Knafo A, Ebstein RP. Vasopressin selectively impairs emotion recognition in men. Psychoneuroendocrinology. 2012;37:576–80.

    Article  PubMed  CAS  Google Scholar 

  120. Aguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol. 1994;15:321–50.

    Article  PubMed  CAS  Google Scholar 

  121. De Kloet CS, Vermetten E, Geuze E, Wiegant VM, Westenberg HG. Elevated plasma arginine vasopressin levels in veterans with posttraumatic stress disorder. J Psychiatr Res. 2008;42:192–8.

    Article  PubMed  Google Scholar 

  122. Rasmusson AM, Vythilingam M, Morgan CA. The neuroendocrinology of posttraumatic stress disorder: new directions. CNS Spectrums. 2003;8:651–67.

    Article  PubMed  Google Scholar 

  123. Sadeh N, Wolf EJ, Logue MW, Hayes JP, Stone A, Griffin LM, et al. Epigenetic variation at SKA2 predicts suicide phenotypes and internalizing psychopathology. Depression Anxiety. 2016;33:308–15.

    Article  PubMed  CAS  Google Scholar 

  124. Rice L, Waters CE, Eccles J, Garside H, et al. Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J Endocrinol. 2008;198:499–509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Patchev VK, Shoaib M, Holsboer F, Almeida OF. The neurosteroid tetrahydroprogesterone counteracts corticotropin-releasing hormone-induced anxiety and alters the release and gene expression of corticotropin-releasing hormone in the rat hypothalamus. Neurosci. 1994;62:265–71.

    Article  CAS  Google Scholar 

  126. Patchev VK, Hassan AH, Holsboer F, Almeida OF. The neurosteroid tetrahydroprogesterone attenuates the endocrine response to stress and exerts glucocorticoid-like effects on vasopressin gene transcription in the rat hypothalamus. Neuropsychopharmacology. 1996;15:533.

    Article  PubMed  CAS  Google Scholar 

  127. Yehuda R, Lowy MT, Southwick SM, Shaffer D, Giller EL. Lymphocyte glucocorticoid receptor number in posttraumatic stress disorder. Am J Psychiatry. 1991;148:499–504.

    Article  PubMed  CAS  Google Scholar 

  128. Yehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Psychiatry. 1993;150:83–6.

    Article  PubMed  CAS  Google Scholar 

  129. Yehuda R, Boisoneau D, Lowy MT, Giller EL. Dore-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch Gen Psychiatry. 1995;52:583–93.

    Article  PubMed  CAS  Google Scholar 

  130. Stein MB, Yehuda R, Koverola C, Hanna C. Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry. 1997;42:680–6.

    Article  PubMed  CAS  Google Scholar 

  131. Yehuda R, Halligan SL, Grossman R, Golier JA, Wong C. The cortisol and glucocorticoid receptor response to low dose dexamethasone administration in aging combat veterans and holocaust survivors with and without posttraumatic stress disorder. Biol Psychiatry. 2002;52:393–403.

    Article  PubMed  CAS  Google Scholar 

  132. Rohleder N, Joksimovic L, Wolf JM, Kirschbaum C. Hypocortisolism and increased glucocorticoid sensitivity of pro-inflammatory cytokine production in Bosnian war refugees with posttraumatic stress disorder. Biol Psychiatry. 2004;55:745–51.

    Article  PubMed  CAS  Google Scholar 

  133. Yehuda R, Golier JA, Yang RK, Tischler L. Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biol Psychiatry. 2004;55:1110–6.

    Article  PubMed  CAS  Google Scholar 

  134. Yehuda R, Golier JA, Halligan SL, Meaney M, Bierer LM. The ACTH response to dexamethasone in PTSD. Am J Psychiatry. 2004;161:1397–403.

    Article  PubMed  Google Scholar 

  135. Yehuda R, Yang RK, Buchsbaum MS, Golier JA. Alterations in cortisol negative feedback inhibition as examined using the ACTH response to cortisol administration in PTSD. Psychoneuroendocrinology. 2006;31:447–551.

    Article  PubMed  CAS  Google Scholar 

  136. van Zuiden M, Geuze E, Willemen HL, Vermetten E, Maas M, Heijnen CJ, et al. Pre-existing high glucocorticoid receptor number predicting development of posttraumatic stress symptoms after military deployment. Am J Psychiatry. 2011;168:89–96.

    Article  PubMed  Google Scholar 

  137. Gotovac K, Sabioncello A, Berki T, Dekaris D. Flow cytometric determination of glucocorticoid receptor (GCR) expression in lymphocyte subpopulations: lower quantity of GCR in patients with post-traumatic stress disorder (PTSD). Clin Exp Immunol. 2003;131:335–L.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Lipschitz DS, Rasmusson AM, Yehuda R, Wang S, Anyan W, Gueoguieva R, et al. Salivary cortisol responses to dexamethasone in adolescents with posttraumatic stress disorder. J Am Acad Child Adolesc Psychiatry. 2003;42:1310–7.

    Article  PubMed  Google Scholar 

  139. de Kloet CS, Vermetten E, Bikker A, Meulman E, Geuze E, Kavelaars A, et al. Leukocyte glucocorticoid receptor expression and immunoregulation in veterans with and without post-traumatic stress disorder. Mol Psychiatry. 2007;12:443–53.

    Article  PubMed  CAS  Google Scholar 

  140. Labonte B, Azoulay N, Yerko V, Turecki G, Brunet A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry. 2014;4(e368):1–7.

    Google Scholar 

  141. Yehuda R, Flory JD, Bierer LM, Henn-Haase C, Lehrner A, Desarnaud F, et al. Lower methylation of glucocorticoid receptor gene promoter 1F in peripheral blood of veterans with posttraumatic stress disorder. Biol Psychiatry. 2015;77:356–64.

    Article  PubMed  CAS  Google Scholar 

  142. Yehuda R, Daskalakis NP, Desarnaud F, Makotkine I, Lehrner A, Koch E, et al. Epigenetic biomarkers as predictors and correlates of symptom improvement following psychotherapy in combat veterans with PTSD. Front Psychiatry. 2013;4:118.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bremner JD, Vythilingam M, Vermetten E, Adil J, Khan S, Nazeer A, et al. Cortisol response to a cognitive stress challenge in posttraumatic stress disorder (PTSD) related to childhood abuse. Psychoneuroendocrinology. 2003;28:733–50.

    Article  PubMed  CAS  Google Scholar 

  144. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene–childhood trauma interactions. Nature Neurosci. 2013;16:33.

    Article  PubMed  CAS  Google Scholar 

  145. •• Logue MW, Smith AK, Baldwin C, Wolf EJ, Guffanti G, Ratanatharathorn A, et al. An analysis of gene expression in PTSD implicates genes involved in the glucocorticoid receptor pathway and neural responses to stress. Psychoneuroendocrinology. 2015;57:1–3. This study of gene expression in PTSD elegantly demonstrated that glucocorticoid receptor subsensitivity or resistance may play a substantial role in the pathophysiology of PTSD by a related failure of cortisol to up- or down-regulate genes that would otherwise contribute to resilience.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Jovanovic T, Phifer JE, Sicking K, Weiss T, Norrholm SD, Bradley B, et al. Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology. 2011;36:1540–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Schelling G, Kilger E, Roozendaal B, Dominique JF, Briegel J, Dagge A, et al. Stress doses of hydrocortisone, traumatic memories, and symptoms of posttraumatic stress disorder in patients after cardiac surgery: a randomized study. Biol Psychiatry. 2004;55:627–33.

    Article  PubMed  CAS  Google Scholar 

  148. Zohar J, Yahalom H, Kozlovsky N, Cwikel-Hamzany S, Matar MA, Kaplan Z, et al. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: interplay between clinical and animal studies. Europ Neuropsychopharmacol. 2011;21:796–809.

    Article  CAS  Google Scholar 

  149. • Sawamura T, Klengel T, Armario A, Jovanovic T, Norrholm SD, Ressler KJ, et al. Dexamethasone treatment leads to enhanced fear extinction and dynamic Fkbp5 regulation in amygdala. Neuropsychopharmacol. 2016;41:832–46. This paper demonstrated a potential therapeutic role for glucocorticoid administration in the treatment of PTSD.

    Article  CAS  Google Scholar 

  150. Cai WH, Blundell J, Han J, Greene RW, Powell CM. Postreactivation glucocorticoids impair recall of established fear memory. J Neurosci. 2006;26:9560–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Sandi C. Glucocorticoids act on glutamatergic pathways to affect memory processes. Trends in Neurosci. 2011;34:165–76.

    Article  CAS  Google Scholar 

  152. Yehuda R, Bierer LM, Andrew R, Schmeidler J, Seckl JR. Enduring effects of severe developmental adversity, including nutritional deprivation, on cortisol metabolism in aging holocaust survivors. J Psychiatr Res. 2009;43:877–83.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yehuda R, Bierer LM, Sarapas C, Makotkine I, Andrew R, Seckl JR. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology. 2009;34:1304–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Yehuda R, Brand SR, Golier JA, Yang RK. Clinical correlates of DHEA associated with post-traumatic stress disorder. Acta Psychiatrica Scand. 2006;114:187–93.

    Article  CAS  Google Scholar 

  155. Dor RB, Marx CE, Shampine LJ, Rubinow DR, Schmidt PJ. DHEA metabolism to the neurosteroid androsterone: a possible mechanism of DHEA’s antidepressant action. Psychopharmacology. 2015;232:3375–83.

    Article  PubMed  CAS  Google Scholar 

  156. Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell. 2011;145:584–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kilts JD, Tupler LA, Keefe FJ, Payne VM, Hamer RM, Calnaido RP, et al. Neurosteroids and self-reported pain in veterans who served in the US military after September 11, 2001. Pain Med. 2010;11:1469–76.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Naylor JC, Kilts JD, Strauss JL, Szabo ST, Dunn CE, Wagner HR. An exploratory pilot investigation of neurosteroids and self-reported pain in female Iraq/Afghanistan-era veterans. J Rehabil Res Dev. 2016;53:499.

    Article  PubMed  Google Scholar 

  159. Dennis MK, Bura R, Ramesh C, Petrie WK, Alcon SN, Nayak TK, et al. In vivo effects of a GPR30 antagonist. Nat Chem Biol. 2009;5:421–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu Rev Physiol. 2008;70:165–90. https://doi.org/10.1146/annurev.physiol.70.113006.100518.

    Article  PubMed  CAS  Google Scholar 

  161. Lebron-Milad K, Milad MR. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. Biol Mood Anxiety Disorders. 2012;2:1–12.

    Article  Google Scholar 

  162. Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, et al. Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatry. 2012;72:19–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Glover EM, Mercer KB, Norrholm SD, Davis M, Duncan E, Bradley B, et al. Inhibition of fear is differentially associated with cycling estrogen levels in women. J Psychiatry Neurosci. 2013;38:341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Maeng LY, Milad MR. Sex differences in anxiety disorders: interactions between fear, stress, and gonadal hormones. Horm Behav. 2015;76:106–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Mitev YA, Darwish M, Wolf SS, Holsboer F, Almeida OF, Patchev VK. Gender differences in the regulation of 3α-hydroxysteroid dehydrogenase in rat brain and sensitivity to neurosteroid-mediated stress protection. Neuroscience. 2003;120:541–9.

    Article  PubMed  CAS  Google Scholar 

  166. Frokjaer VG, Erritzoe D, Juul A, Nielsen FÅ, Holst K, Svarer C, et al. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding. Psychoneuroendocrinology. 2010;35:1311–20.

    Article  PubMed  CAS  Google Scholar 

  167. Mann JJ, Arango V, Marzuk PM, Theccanat S, Reis DJ. Evidence for the 5-HT hypothesis of suicide. A review of post-mortem studies. Brit J Psychiatry – Supplementum. 1989;8:7–14.

    Article  Google Scholar 

  168. Hrdina PD, Demeter E, Vu TB, Sotonyi P, Palkovits M. 5-HT uptake sites and 5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: increase in 5-HT2 sites in cortex and amygdala. Brain Res. 1993;614:37–44.

    Article  PubMed  CAS  Google Scholar 

  169. Laruelle M, Abi-Dargham A, Siever LJ. Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry. 2010;67:1154–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Rosell DR, Thompson JL, Slifstein M, Xu X, Frankle WG, New AS, et al. Increased serotonin 2A receptor availability in the orbitofrontal cortex of physically aggressive personality disordered patients. Biol Psychiatry. 2010;67:1154–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Vermeire S, Audenaert K, De Meester R, Vandermeulen E, Waelbers T, De Spiegeleer B, et al. Neuro-imaging the serotonin 2A receptor as a valid biomarker for canine behavioral disorders. Res Veterinary Sci. 2011;91:465–72.

    Article  CAS  Google Scholar 

  172. Weisstaub NV, Zhou M, Lira A, Lambe E, González-Maeso J, Hornung JP, et al. Cortical 5-HT2A receptor signaling modulates anxiety-like behaviors in mice. Science. 2006;313:536–40.

    Article  PubMed  CAS  Google Scholar 

  173. Bryant RA, Felmingham KL, Silove D, Creamer M, O'Donnell M, McFarlane AC. The association between menstrual cycle and traumatic memories. J Affect Disord. 2011;131:398–401.

    Article  PubMed  Google Scholar 

  174. Admoni O, Israel S, Lavi I, Gur M, Tenenbaum-Rakover Y. Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin Endocrinol. 2006;64:645–51.

    Article  CAS  Google Scholar 

  175. Witchel S, Lee P, Suda-Hartman S, Trucco M, Hoffman E. Evidence for a heterozygote advantage in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 1997;82:2097–101.

    PubMed  CAS  Google Scholar 

  176. Charmandari E, Merke DP, Negro PJ, Keil MF, Martinez PE, Haim A, et al. Endocrinologic and psychologic evaluation of 21-hydroxylase deficiency carriers and matched normal subjects: evidence for physical and/or psychologic vulnerability to stress. J Clin Endocrinol Metab. 2004;89:2228–36.

    Article  PubMed  CAS  Google Scholar 

  177. Kyritsi EM, Koltsida G, Farakla I, Papanikolaou A, Critselis E, Mantzou E, et al. Psychological vulnerability to stress in carriers of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hormones. 2017;16:42–53.

    PubMed  Google Scholar 

  178. Anderson DJ. Optogenetics, sex, and violence in the brain: implications for psychiatry. Biol Psychiatry. 2012;71:1081–9.

    Article  PubMed  Google Scholar 

  179. Biegon A, Alia-Klein N, Fowler JS. Potential contribution of aromatase inhibition to the effects of nicotine and related compounds on the brain. Front Pharmacol. 2012;3:1–10. https://doi.org/10.3389/fphar.2012.00185.

    Article  CAS  Google Scholar 

  180. Koenen KC, Hitsman B, Lyons MJ, Niaura R, McCaffery J, Goldberg J, et al. Twin registry study of the relationship between posttraumatic stress disorder and nicotine dependence in men. Archives Gen Psychiatry. 2005;62:1258–65.

    Article  Google Scholar 

  181. Japuntich SJ, Gregor K, Pineles SL, Gradus JL, Street AE, Prabhala R, et al. Deployment stress, tobacco use, and post-deployment posttraumatic stress disorder: Gender differences. Psychol Trauma Theory Res Pract Policy. 2016;8:123.

    Article  Google Scholar 

  182. Bernardy NC, Friedman MJ. Pharmacological management of posttraumatic stress disorder. Curr Opinion Psychol. 2017;14:116–21.

    Article  Google Scholar 

  183. Rasmusson AM, Friedman MJ. The neurobiology of PTSD in women. In: Kimerling R, Ouimette PC, Wolfe J, editors. Gender and post-traumatic stress disorder: clinical, research, and program level applications. New York: Guilford Publications, Inc.; 2002. p. 43–75.

    Google Scholar 

  184. Aston-Jones G, Akaoka H, Charlety P, Chouvet G. Serotonin selectively attenuates glutamate-evoked activation of noradrenergic locus coeruleus neurons. J Neurosci. 1991;11:760–9.

    Article  PubMed  CAS  Google Scholar 

  185. Harada K, Yamaji T, Matsuoka N. Activation of the serotonin 5-HT2C receptor is involved in the enhanced anxiety in rats after single-prolonged stress. Pharmacol Biochem Behav. 2008;89:11–6.

    Article  PubMed  CAS  Google Scholar 

  186. Burghardt NS, Bush DE, McEwen BS, LeDoux JE. Acute selective serotonin reuptake inhibitors increase conditioned fear expression: blockade with a 5-HT2C receptor antagonist. Biol Psychiatry. 2007;62:1111–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. •• Villarreal G, Hamner MB, Cañive JM, Robert S, Calais LA, Durklaski V, et al. Efficacy of quetiapine monotherapy in posttraumatic stress disorder: a randomized, placebo-controlled trial. Am J Psychiatry. 2016;173:1205–12. This paper showed a significant improvement in PTSD in response to the atypical neuroleptic quetiapine when provided as monotherapy, whereas a previous study of risperidone provided in combination with an SSRI was negative, thus reopening the door regarding the therapeutic potential of such drugs in at least in a substantial subpopulation of individuals with PTSD.

    Article  PubMed  Google Scholar 

  188. Kennett GA, Lightower S, de Biasi V, Stevens NC, Wood MD, Tulloch IF, et al. Effect of chronic administration of selective 5-hydroxytryptamine and noradrenaline uptake inhibitors on a putative index of 5-HT2C/2B receptor function. Neuropharmacology. 1994;33:1581–8.

    Article  PubMed  CAS  Google Scholar 

  189. Krystal JH, Rosenheck RA, Cramer JA, Vessicchio JC, Jones KM, Vertrees JE, et al. Veterans affairs cooperative study no. 504 group. Adjunctive risperidone treatment for antidepressant-resistant symptoms of chronic military service–related PTSD: A randomized trial. JAMA. 2011;306:493–502.

    Article  PubMed  CAS  Google Scholar 

  190. Schneier FR, Campeas R, Carcamo J, Glass A, Lewis-Fernandez R, Neria Y, et al. Combined mirtazapine and SSRI treatment of PTSD: a placebo-controlled trial. Depression Anxiety. 2015;32:570–9.

    Article  PubMed  CAS  Google Scholar 

  191. Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab Disposition. 1998;26:572–5.

    CAS  Google Scholar 

  192. von Moltke LL, Greenblatt DJ, Granda BW, Grassi JM, Schmider J, Harmatz JS, et al. Nefazodone, meta-chlorophenylpiperazine, and their metabolites in vitro: cytochromes mediating transformation, and P450-3A4 inhibitory actions. Psychopharmacol. 1999;145:113–22.

    Article  Google Scholar 

  193. Maes M, Westenberg H, Vandoolaeghe E, Demedts P, Wauters A, Nells H, et al. Effects of trazodone and fluoxetine in the treatment of major depression: therapeutic pharmacokinetic and pharmacodynamic interactions through formation of meta-chlorophenylpiperazine. J Clin Psychopharmacol. 1997;17:358–64.

    Article  PubMed  CAS  Google Scholar 

  194. • Familoni BO, Gregor KL, Dodson TS, Krzywicki AT, Lowery BN, Orr SP, et al. Sweat pore reactivity as a surrogate measure of sympathetic nervous system activity in trauma-exposed individuals with and without posttraumatic stress disorder. Psychophysiology. 2016;53:1417–28. This paper shows a strong relationship between current PTSD reexperiencing symptoms and sympathetic reactivity measured by traditional skin conductance and novel infrared monitoring of skin pore openings; it also illustrates the importance of controlling for smoking trait and state during the psychophysiological assessment of sympathetic tone in PTSD.

    Article  PubMed  Google Scholar 

  195. Calhoun PS, Wagner HR, McClernon FJ, Lee S, Dennis MF, Vrana SR, et al. The effect of nicotine and trauma context on acoustic startle in smokers with and without posttraumatic stress disorder. Psychopharmacology. 2011;215:379–89.

    Article  PubMed  CAS  Google Scholar 

  196. McGlinchey, R.E., Milberg, W.P., Fonda, JR, Fortier, CB. A Methodology for Assessing Deployment Trauma and its Consequences in OEF/OIF/OND veterans: The TRACTS Longitudinal Prospective Cohort Study. Int J Methods Psychiatr Res. 2017;e1556.

  197. Rasmusson AM, Picciotto MR, Krishnan-Sarin S. Smoking as a complex but critical covariate in neurobiological studies of posttraumatic stress disorders: a review. J Psychopharmacol. 2006;20:693–707.

    Article  PubMed  CAS  Google Scholar 

  198. Rasmusson AM, Wu R, Paliwal P, Anderson GM, Krishnan-Sarin S. A decrease in the plasma DHEA to cortisol ratio during smoking abstinence may predict relapse: a preliminary study. Psychopharmacol. 2006;186:473.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Rasmusson.

Ethics declarations

Conflict of Interest

Suzanne L. Pineles declares no conflict of interest. Ann M. Rasmusson has received personal fees from Resilience Therapeutics and Cohen Veterans Bioscience (non-profit).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disaster Psychiatry: Trauma, PTSD, and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmusson, A.M., Pineles, S.L. Neurotransmitter, Peptide, and Steroid Hormone Abnormalities in PTSD: Biological Endophenotypes Relevant to Treatment. Curr Psychiatry Rep 20, 52 (2018). https://doi.org/10.1007/s11920-018-0908-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-018-0908-9

Keywords

Navigation