Skip to main content
Log in

A Network-Based Neurobiological Model of PTSD: Evidence From Structural and Functional Neuroimaging Studies

  • Disaster Psychiatry: Trauma, PTSD, and Related Disorders (MJ Friedman, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Although a fine-grained understanding of the neurobiology of posttraumatic stress disorder (PTSD) is yet to be elucidated, the last two decades have seen a rapid growth in the study of PTSD using neuroimaging techniques. The current review summarizes important findings from functional and structural neuroimaging studies of PTSD, by primarily focusing on their relevance towards an emerging network-based neurobiological model of the disorder.

Recent Findings

PTSD may be characterized by a weakly connected and hypoactive default mode network (DMN) and central executive network (CEN) that are putatively destabilized by an overactive and hyperconnected salience network (SN), which appears to have a low threshold for perceived saliency, and inefficient DMN-CEN modulation.

Summary

There is considerable evidence for large-scale functional and structural network dysfunction in PTSD. Nevertheless, several limitations and gaps in the literature need to be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Association. Washington, D.C.: Amer Psychiatric Pub Incorporated; 2013.

  2. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry. 2005;62(6):593–602.

    Article  PubMed  Google Scholar 

  3. Fulton JJ, Calhoun PS, Wagner HR, Schry AR, Hair LP, Feeling N, et al. The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis. J Anxiety Disord. 2015;31:98–107. https://doi.org/10.1016/j.janxdis.2015.02.003.

    Article  PubMed  Google Scholar 

  4. • Koch SBJ, Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. Aberrant resting‐state brain activity in posttraumatic stress disorder: a meta‐analysis and systematic review. Depress Anxiety. 2016;33(7):592–605. https://doi.org/10.1002/da.22478. This is a meta-analysis and systematic review of resting-state functional neuroimaging findings in PTSD and includes connectivity and activation studies

    Article  PubMed  Google Scholar 

  5. Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol Mood Anxiety Disord. 2012;2:9. https://doi.org/10.1186/2045-5380-2-9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Patel R, Spreng RN, Shin LM, Girard TA. Neurocircuitry models of posttraumatic stress disorder and beyond: a meta-analysis of functional neuroimaging studies. Neurosci Biobehav Rev. 2012;36(9):2130–42. https://doi.org/10.1016/j.neubiorev.2012.06.003.

    Article  PubMed  Google Scholar 

  7. Wang T, Liu J, Zhang J, Zhan W, Li L, Wu M, et al. Altered resting-state functional activity in posttraumatic stress disorder: a quantitative meta-analysis. Sci Rep. 2016;6:27131. https://doi.org/10.1038/srep27131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15(10):483–506. https://doi.org/10.1016/j.tics.2011.08.003.

    Article  PubMed  Google Scholar 

  9. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769–87. https://doi.org/10.1038/nrn3339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. • Sheynin J, Liberzon I. Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder. Neurosci Lett. 2016; https://doi.org/10.1016/j.neulet.2016.11.014. This recent review describes PTSD abnormalities in terms of threat detection, context-processing, and emotion-regulation circuit dysfunction

  11. • Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG. Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci Lett. 2017;649:147–55. https://doi.org/10.1016/j.neulet.2016.11.064. This review focuses on glutamate and GABA neurochemical and receptor imaging in PTSD

    Article  CAS  PubMed  Google Scholar 

  12. Matosin N, Cruceanu C, Binder EB. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress. 2017;1:2470547017710764. https://doi.org/10.1177/2470547017710764.

    Article  Google Scholar 

  13. Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I, Sanacora G, et al. Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Curr Psychiatry Rep. 2017;19(10):74. https://doi.org/10.1007/s11920-017-0829-z.

    Article  PubMed  Google Scholar 

  14. • DCM O’D, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res Neuroimaging. 2015;232(1):1–33. https://doi.org/10.1016/j.pscychresns.2015.01.002. This is a meta-analysis and systematic review of volumetric structural MRI findings in PTSD

    Article  Google Scholar 

  15. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research—past, present, and future. Biol Psychiatry. 2006;60(4):376–82. https://doi.org/10.1016/j.biopsych.2006.06.004.

    Article  PubMed  Google Scholar 

  16. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(3):1125–65. https://doi.org/10.1152/jn.00338.2011.

    Article  PubMed  Google Scholar 

  17. Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X, Sripada CS, et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom Med. 2012;74(9):904–11. https://doi.org/10.1097/PSY.0b013e318273bf33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen AC, Etkin A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology. 2013;38(10):1889–98. https://doi.org/10.1038/npp.2013.122.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bluhm RL, Williamson PC, Osuch EA, Frewen PA, Stevens TK, Boksman K, et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci. 2009;34(3):187–94.

    PubMed  PubMed Central  Google Scholar 

  20. Akiki T, Averill C, Wrocklage K, Scott JC, Alexander-Bloch A, Southwick S, et al. 581. The default mode network in posttraumatic stress disorder (PTSD): a data-driven multimodal approach. Biol Psychiatry. 2017;81(10, Supplement):S235. https://doi.org/10.1016/j.biopsych.2017.02.451.

    Article  Google Scholar 

  21. St. Jacques PL, Kragel PA, Rubin DC. Neural networks supporting autobiographical memory retrieval in posttraumatic stress disorder. Cogn Affect Behav Neurosci. 2013;13(3):554–66. https://doi.org/10.3758/s13415-013-0157-7.

    Article  PubMed  Google Scholar 

  22. Brown VM, LaBar KS, Haswell CC, Gold AL, Mid-Atlantic MW, McCarthy G, et al. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology. 2014;39(2):351–9. https://doi.org/10.1038/npp.2013.197.

    Article  PubMed  Google Scholar 

  23. Sanjuan PM, Thoma R, Claus ED, Mays N, Caprihan A. Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study. Psychiatry Res. 2013;214(3):260–8. https://doi.org/10.1016/j.pscychresns.2013.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kennis Ph DM, van Rooij Ph DS, Reijnen MA, Geuze Ph DE. The predictive value of dorsal cingulate activity and fractional anisotropy on long-term PTSD symptom severity. Depress Anxiety. 2017; https://doi.org/10.1002/da.22605.

  25. Fani N, King TZ, Jovanovic T, Glover EM, Bradley B, Choi K, et al. White matter integrity in highly traumatized adults with and without post-traumatic stress disorder. Neuropsychopharmacology. 2012;37(12):2740–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fani N, King TZ, Shin J, Srivastava A, Brewster RC, Jovanovic T, et al. Structural and functional connectivity in posttraumatic stress disorder: associations with FKBP5. Depress Anxiety. 2016;33(4):300–7. https://doi.org/10.1002/da.22483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Admon R, Leykin D, Lubin G, Engert V, Andrews J, Pruessner J, et al. Stress-induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service. Hum Brain Mapp. 2013;34(11):2808–16. https://doi.org/10.1002/hbm.22100.

    Article  PubMed  Google Scholar 

  28. Sun Y, Wang Z, Ding W, Wan J, Zhuang Z, Zhang Y, et al. Alterations in white matter microstructure as vulnerability factors and acquired signs of traffic accident-induced PTSD. PLoS One. 2013;8(12):e83473. https://doi.org/10.1371/journal.pone.0083473.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meng L, Jiang J, Jin C, Liu J, Zhao Y, Wang W, et al. Trauma-specific grey matter alterations in PTSD. Sci Rep. 2016;6:33748. https://doi.org/10.1038/srep33748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nardo D, Hogberg G, Looi JC, Larsson S, Hallstrom T, Pagani M. Gray matter density in limbic and paralimbic cortices is associated with trauma load and EMDR outcome in PTSD patients. J Psychiatr Res. 2010;44(7):477–85. https://doi.org/10.1016/j.jpsychires.2009.10.014.

    Article  PubMed  Google Scholar 

  31. Liu Y, Li YJ, Luo EP, Lu HB, Yin H. Cortical thinning in patients with recent onset post-traumatic stress disorder after a single prolonged trauma exposure. PLoS One. 2012;7(6):e39025. https://doi.org/10.1371/journal.pone.0039025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woodward SH, Schaer M, Kaloupek DG, Cediel L, Eliez S. Smaller global and regional cortical volume in combat-related posttraumatic stress disorder. Arch Gen Psychiatry. 2009;66(12):1373–82. https://doi.org/10.1001/archgenpsychiatry.2009.160.

    Article  PubMed  Google Scholar 

  33. Smith ME. Bilateral hippocampal volume reduction in adults with post-traumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus. 2005;15(6):798–807. https://doi.org/10.1002/hipo.20102.

    Article  PubMed  Google Scholar 

  34. Vythilingam M, Luckenbaugh DA, Lam T, Morgan CA 3rd, Lipschitz D, Charney DS, et al. Smaller head of the hippocampus in Gulf War-related posttraumatic stress disorder. Psychiatry Res. 2005;139(2):89–99. https://doi.org/10.1016/j.pscychresns.2005.04.003.

    Article  PubMed  Google Scholar 

  35. Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC, Martini B, et al. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities. Chronic Stress. 2017;1:2470547017724069. https://doi.org/10.1177/2470547017724069.

    Article  Google Scholar 

  36. Cisler JM, Steele JS, Smitherman S, Lenow JK, Kilts CD. Neural processing correlates of assaultive violence exposure and PTSD symptoms during implicit threat processing: a network level analysis among adolescent girls. Psychiatry Res. 2013;214(3) https://doi.org/10.1016/j.pscychresns.2013.06.003.

  37. Rabellino D, Tursich M, Frewen PA, Daniels JK, Densmore M, Theberge J, et al. Intrinsic Connectivity Networks in post-traumatic stress disorder during sub- and supraliminal processing of threat-related stimuli. Acta Psychiatr Scand. 2015;132(5):365–78. https://doi.org/10.1111/acps.12418.

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Lei D, Li L, Huang X, Suo X, Xiao F, et al. White matter abnormalities in post-traumatic stress disorder following a specific traumatic event. EBioMedicine. 2016;4:176–83. https://doi.org/10.1016/j.ebiom.2016.01.012.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Geuze E, Westenberg HG, Heinecke A, de Kloet CS, Goebel R, Vermetten E. Thinner prefrontal cortex in veterans with posttraumatic stress disorder. NeuroImage. 2008;41(3):675–81. https://doi.org/10.1016/j.neuroimage.2008.03.007.

    Article  PubMed  Google Scholar 

  40. Li L, Wu M, Liao Y, Ouyang L, Du M, Lei D, et al. Grey matter reduction associated with posttraumatic stress disorder and traumatic stress. Neurosci Biobehav Rev. 2014;43:163–72. https://doi.org/10.1016/j.neubiorev.2014.04.003.

    Article  PubMed  Google Scholar 

  41. Mollica RF, Lyoo I, Chernoff MC, Bui HX, Lavelle J, Yoon SJ, et al. Brain structural abnormalities and mental health sequelae in south Vietnamese ex–political detainees who survived traumatic head injury and torture. Arch Gen Psychiatry. 2009;66(11):1221–32. https://doi.org/10.1001/archgenpsychiatry.2009.127.

    Article  PubMed  Google Scholar 

  42. Wrocklage KM, Averill LA, Cobb Scott J, Averill CL, Schweinsburg B, Trejo M, et al. Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD. Eur Neuropsychopharmacol. 2017;27(5):515–25. https://doi.org/10.1016/j.euroneuro.2017.02.010.

    Article  CAS  PubMed  Google Scholar 

  43. Rabinak CA, Angstadt M, Welsh RC, Kenndy AE, Lyubkin M, Martis B, et al. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry. 2011;2:62. https://doi.org/10.3389/fpsyt.2011.00062.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pietrzak RH, Averill LA, Abdallah CG, Neumeister A, Krystal JH, Levy I, et al. Amygdala-hippocampal volume and the phenotypic heterogeneity of posttraumatic stress disorder: a cross-sectional study. JAMA Psychiatry. 2015;72(4):396–8. https://doi.org/10.1001/jamapsychiatry.2014.2470.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kuo JR, Kaloupek DG, Woodward SH. Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder: a cross-sectional study. Arch Gen Psychiatry. 2012;69(10):1080–6. https://doi.org/10.1001/archgenpsychiatry.2012.73.

    Article  PubMed  Google Scholar 

  46. Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM, Haswell CC, et al. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch Gen Psychiatry. 2012;69(11) https://doi.org/10.1001/archgenpsychiatry.2012.50.

  47. Rogers MA, Yamasue H, Abe O, Yamada H, Ohtani T, Iwanami A, et al. Smaller amygdala volume and reduced anterior cingulate gray matter density associated with history of post-traumatic stress disorder. Psychiatry Res Neuroimaging. 2009;174(3):210–6. https://doi.org/10.1016/j.pscychresns.2009.06.001.

    Article  PubMed  Google Scholar 

  48. Mueller SG, Ng P, Neylan T, Mackin S, Wolkowitz O, Mellon S, et al. Evidence for disrupted gray matter structural connectivity in posttraumatic stress disorder. Psychiatry Res. 2015;234(2):194–201. https://doi.org/10.1016/j.pscychresns.2015.09.006.

    Article  PubMed  Google Scholar 

  49. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38. https://doi.org/10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  50. Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–62. https://doi.org/10.1016/j.neuron.2010.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chand GB, Dhamala M. Interactions among the brain default-mode, salience, and central-executive networks during perceptual decision-making of moving dots. Brain Connect. 2016;6(3):249–54. https://doi.org/10.1089/brain.2015.0379.

    Article  PubMed  Google Scholar 

  52. Miller DR, Hayes SM, Hayes JP, Spielberg JM, Lafleche G, Verfaellie M. Default mode network subsystems are differentially disrupted in posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(4):363–71. https://doi.org/10.1016/j.bpsc.2016.12.006.

    Article  PubMed  Google Scholar 

  53. Kishi T, Tsumori T, Yokota S, Yasui Y. Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol. 2006;496(3):349–68. https://doi.org/10.1002/cne.20919.

    Article  PubMed  Google Scholar 

  54. Strange BA, Witter MP, Lein ES, Moser EI. Functional organization of the hippocampal longitudinal axis. Nat Rev Neurosci. 2014;15(10):655–69. https://doi.org/10.1038/nrn3785.

    Article  CAS  PubMed  Google Scholar 

  55. Wang Z, Neylan TC, Mueller SG, Lenoci M, Truran D, Marmar CR, et al. Magnetic resonance imaging of hippocampal subfields in posttraumatic stress disorder. Arch Gen Psychiatry. 2010;67(3):296–303. https://doi.org/10.1001/archgenpsychiatry.2009.205.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Abdallah CG, Wrocklage KM, Averill CL, Akiki T, Schweinsburg B, Roy A, et al. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Transl Psychiatry. 2017;7(2):e1045. https://doi.org/10.1038/tp.2017.12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010;35(1):169–91. https://doi.org/10.1038/npp.2009.83.

    Article  Google Scholar 

  58. Lazarov A, Zhu X, Suarez-Jimenez B, Rutherford BR, Neria Y. Resting-state functional connectivity of anterior and posterior hippocampus in posttraumatic stress disorder. J Psychiatr Res. 2017;94:15–22. https://doi.org/10.1016/j.jpsychires.2017.06.003.

    Article  PubMed  Google Scholar 

  59. Vermetten E, Vythilingam M, Southwick SM, Charney DS, Bremner JD. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry. 2003;54(7):693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bryant RA, Felmingham K, Whitford TJ, Kemp A, Hughes G, Peduto A, et al. Rostral anterior cingulate volume predicts treatment response to cognitive-behavioural therapy for posttraumatic stress disorder. J Psychiatry Neurosci. 2008;33(2):142–6.

    PubMed  PubMed Central  Google Scholar 

  61. Dickie EW, Brunet A, Akerib V, Armony JL. Anterior cingulate cortical thickness is a stable predictor of recovery from post-traumatic stress disorder. Psychol Med. 2013;43(3):645–53. https://doi.org/10.1017/S0033291712001328.

    Article  CAS  PubMed  Google Scholar 

  62. Helpman L, Papini S, Chhetry BT, Shvil E, Rubin M, Sullivan GM, et al. PTSD remission after prolonged exposure treatment is associated with anterior cingulate cortex thinning and volume reduction. Depress Anxiety. 2016;33(5):384–91. https://doi.org/10.1002/da.22471.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Levy-Gigi E, Szabo C, Kelemen O, Keri S. Association among clinical response, hippocampal volume, and FKBP5 gene expression in individuals with posttraumatic stress disorder receiving cognitive behavioral therapy. Biol Psychiatry. 2013;74(11):793–800. https://doi.org/10.1016/j.biopsych.2013.05.017.

    Article  CAS  PubMed  Google Scholar 

  64. Rubin M, Shvil E, Papini S, Chhetry BT, Helpman L, Markowitz JC, et al. Greater hippocampal volume is associated with PTSD treatment response. Psychiatry Res. 2016;252:36–9. https://doi.org/10.1016/j.pscychresns.2016.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  65. King AP, Block SR, Sripada RK, Rauch S, Giardino N, Favorite T, et al. Altered default mode network (DMN) resting state functional connectivity following a mindfulness-based exposure therapy for posttraumatic stress disorder (PTSD) in combat veterans of Afghanistan and Iraq. Depress Anxiety. 2016;33(4):289–99. https://doi.org/10.1002/da.22481.

    Article  PubMed  Google Scholar 

  66. Lyoo IK, Kim JE, Yoon SJ, Hwang J, Bae S, Kim DJ. The neurobiological role of the dorsolateral prefrontal cortex in recovery from trauma. Longitudinal brain imaging study among survivors of the South Korean subway disaster. Arch Gen Psychiatry. 2011;68(7):701–13. https://doi.org/10.1001/archgenpsychiatry.2011.70.

    Article  PubMed  Google Scholar 

  67. Nicholson AA, Densmore M, Frewen PA, Theberge J, Neufeld RW, McKinnon MC, et al. The dissociative subtype of posttraumatic stress disorder: unique resting-state functional connectivity of basolateral and centromedial amygdala complexes. Neuropsychopharmacology. 2015;40(10):2317–26. https://doi.org/10.1038/npp.2015.79.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mutschler I, Wieckhorst B, Kowalevski S, Derix J, Wentlandt J, Schulze-Bonhage A, et al. Functional organization of the human anterior insular cortex. Neurosci Lett. 2009;457(2):66–70. https://doi.org/10.1016/j.neulet.2009.03.101.

    Article  CAS  PubMed  Google Scholar 

  69. Lanius RA, Vermetten E, Loewenstein RJ, Brand B, Schmahl C, Bremner JD, et al. Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry. 2010;167(6):640–7. https://doi.org/10.1176/appi.ajp.2009.09081168.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Abdallah CG, Southwick SM, Krystal JH. Neurobiology of posttraumatic stress disorder (PTSD): a path from novel pathophysiology to innovative therapeutics. Neurosci Lett. 2017;649:130–2. https://doi.org/10.1016/j.neulet.2017.04.046.

    Article  CAS  PubMed  Google Scholar 

  71. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron. 2011;72(4):665–78. https://doi.org/10.1016/j.neuron.2011.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nilsen AS, Hilland E, Kogstad N, Heir T, Hauff E, Lien L, et al. Right temporal cortical hypertrophy in resilience to trauma: an MRI study. Eur J Psychotraumatol. 2016;7:31314. https://doi.org/10.3402/ejpt.v7.31314.

    Article  PubMed  Google Scholar 

  73. Admon R, Milad MR, Hendler T. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn Sci. 2013;17(7):337–47. https://doi.org/10.1016/j.tics.2013.05.005.

    Article  PubMed  Google Scholar 

  74. Robinson BL, Shergill SS. Imaging in posttraumatic stress disorder. Curr Opin Psychiatry. 2011;24(1):29–33. https://doi.org/10.1097/YCO.0b013e3283413519.

    Article  PubMed  Google Scholar 

  75. Bremner JD. Hypotheses and controversies related to effects of stress on the hippocampus: an argument for stress-induced damage to the hippocampus in patients with posttraumatic stress disorder. Hippocampus. 2001;11(2):75–81; discussion 2-4. https://doi.org/10.1002/hipo.1023.

    Article  CAS  PubMed  Google Scholar 

  76. Winter H, Irle E. Hippocampal volume in adult burn patients with and without posttraumatic stress disorder. Am J Psychiatry. 2004;161(12):2194–200. https://doi.org/10.1176/appi.ajp.161.12.2194.

    Article  PubMed  Google Scholar 

  77. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002;5(11):1242–7. https://doi.org/10.1038/nn958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kasai K, Yamasue H, Gilbertson MW, Shenton ME, Rauch SL, Pitman RK. Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry. 2008;63(6):550–6. https://doi.org/10.1016/j.biopsych.2007.06.022.

    Article  PubMed  Google Scholar 

  79. Patriat R, Birn RM, Keding TJ, Herringa RJ. Default-mode network abnormalities in pediatric posttraumatic stress disorder. J Am Acad Child Adolesc Psychiatry. 2016;55(4):319–27. https://doi.org/10.1016/j.jaac.2016.01.010.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Herringa RJ. Trauma, PTSD, and the developing brain. Curr Psychiatry Rep. 2017;19(10):69. https://doi.org/10.1007/s11920-017-0825-3.

    Article  PubMed  Google Scholar 

  81. Apps R, Strata P. Neuronal circuits for fear and anxiety—the missing link. Nat Rev Neurosci. 2015;16(10):642. https://doi.org/10.1038/nrn4028.

    Article  CAS  PubMed  Google Scholar 

  82. Meabon JS, Huber BR, Cross DJ, Richards TL, Minoshima S, Pagulayan KF, et al. Repetitive blast exposure in mice and combat veterans causes persistent cerebellar dysfunction. Sci Transl Med. 2016;8(321):321ra6. https://doi.org/10.1126/scitranslmed.aaa9585.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the US Department of Veterans Affairs National Center for PTSD, the NIMH, and the Brain and Behavior Foundation for their support. We would also like to thank our colleagues for their thoughtful conversation while preparing this manuscript.

Funding

This work was supported by the US Department of Veterans Affairs (DVA) National Center for PTSD, NIH [MH-101498]; Brain and Behavior Foundation Young Investigator Award [NARSAD]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors. The sponsors had no role in the preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chadi G. Abdallah.

Ethics declarations

Conflict of Interest

Teddy J. Akiki and Christopher L. Averill declare that they have no conflict of interest.

Chadi G. Abdallah has received grants from the NIH [MH-101498], the Brain and Behavior Foundation Young Investigator Award [NARSAD], and the US Department of Veterans Affairs (DVA) National Center for PTSD. Dr. Abdallah has served as a consultant or on advisory boards for Genentech and Janssen. He also serves as editor for the journal Chronic Stress published by SAGE Publications, Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disaster Psychiatry: Trauma, PTSD, and Related Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akiki, T.J., Averill, C.L. & Abdallah, C.G. A Network-Based Neurobiological Model of PTSD: Evidence From Structural and Functional Neuroimaging Studies. Curr Psychiatry Rep 19, 81 (2017). https://doi.org/10.1007/s11920-017-0840-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-017-0840-4

Keywords

Navigation