Skip to main content

Advertisement

Log in

Clinically Significant Psychotropic Drug-Drug Interactions in the Primary Care Setting

  • Psychiatry in Primary Care (BN Gaynes, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

In recent years, the growing numbers of patients seeking care for a wide range of psychiatric illnesses in the primary care setting has resulted in an increase in the number of psychotropic medications prescribed. Along with the increased utilization of psychotropic medications, considerable variability is noted in the prescribing patterns of primary care providers and psychiatrists. Because psychiatric patients also suffer from a number of additional medical comorbidities, the increased utilization of psychotropic medications presents an elevated risk of clinically significant drug interactions in these patients. While life-threatening drug interactions are rare, clinically significant drug interactions impacting drug response or appearance of serious adverse drug reactions have been documented and can impact long-term outcomes. Additionally, the impact of genetic variability on the psychotropic drug’s pharmacodynamics and/or pharmacokinetics may further complicate drug therapy. Increased awareness of clinically relevant psychotropic drug interactions can aid clinicians to achieve optimal therapeutic outcomes in patients in the primary care setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK. The de facto us mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry. 1993;50:85–94.

    Article  PubMed  CAS  Google Scholar 

  2. Barrett JE, Barrett JA, Oxman TE, Gerber PD. The prevalence of psychiatric disorders in a primary care practice. Arch Gen Psychiatry. 1988;45:1100–6.

    Article  PubMed  CAS  Google Scholar 

  3. Lieberman JA. The use of antipsychotics in primary care. J Clin Psychiatry. 2003;5 suppl 3:3–8.

    Google Scholar 

  4. Chen DT, Wynia MK, Moloney RM, Alexander GC. U.S. Physician knowledge of the fda-approved indications and evidence base for commonly prescribed drugs: results of a national survey. Pharmacoepidemiol Drug Saf. 2009;18:1094–100.

    Article  PubMed  Google Scholar 

  5. Sleath B, Svarstad B, Roter D. Physician vs patient initiation of psychotropic prescribing in primary care settings: a content analysis of audiotapes. Soc Sci Med. 1997;44:541–8.

    Article  PubMed  CAS  Google Scholar 

  6. Sleath B, Shih YC. Sociological influences on antidepressant prescribing. Soc Sci Med. 2003;56:1335–44.

    Article  PubMed  Google Scholar 

  7. Olfson M, Marcus SC. National patterns in antidepressant medication treatment. Arch Gen Psychiatry. 2009;66:848–56.

    Article  PubMed  Google Scholar 

  8. Bell RA, Taylor LD, Kravitz RL. Do antidepressant advertisements educate consumers and promote communication between patients with depression and their physicians? Patient Educ Couns. 2010;81:245–50.

    Article  PubMed  Google Scholar 

  9. Pharoah PD, Melzer D. Variation in prescribing of hypnotics, anxiolytics and antidepressants between 61 general practices. Br J Gen Pract. 1995;45:595–9.

    PubMed  CAS  Google Scholar 

  10. Linden M, Lecrubier Y, Bellantuono C, Benkert O, Kisely S, Simon G. The prescribing of psychotropic drugs by primary care physicians: An international collaborative study. J Clin Psychopharmacol. 1999;19:132–40.

    Article  PubMed  CAS  Google Scholar 

  11. Viron MJ, Stern TA. The impact of serious mental illness on health and healthcare. Psychosomatics. 2010;51:458–65.

    PubMed  Google Scholar 

  12. Suppes T, McElroy SL, Hirschfeld R. Awareness of metabolic concerns and perceived impact of pharmacotherapy in patients with bipolar disorder: A survey of 500 us psychiatrists. Psychopharmacol Bull. 2007;40:22–37. quiz 38–40.

    PubMed  Google Scholar 

  13. Ereshefsky L, Jhee S, Grothe D. Antidepressant drug-drug interaction profile update. Drugs R D. 2005;6:323–36.

    Article  PubMed  CAS  Google Scholar 

  14. Johnson JA, Bootman JL. Drug-related morbidity and mortality and the economic impact of pharmaceutical care. Am J Health Syst Pharm. 1997;54:554–8.

    PubMed  CAS  Google Scholar 

  15. Kalgutkar AS, Obach RS, Maurer TS. Mechanism-based inactivation of cytochrome p450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr Drug Metab. 2007;8:407–47.

    Article  PubMed  CAS  Google Scholar 

  16. Leucuta SE, Vlase L. Pharmacokinetics and metabolic drug interactions. Curr Clin Pharmacol. 2006;1:5–20.

    Article  PubMed  CAS  Google Scholar 

  17. •• Ereshefsky L. Drug-drug interactions with the use of psychotropic medications. Interview by diane m. Sloan. CNS Spectr. 2009;14:1–8. Excellent review on mechanisms and potential clinical effects of drug-drug interactions with psychotropic medications.

    PubMed  Google Scholar 

  18. Yap KY, Tay WL, Chui WK, Chan A. Clinically relevant drug interactions between anticancer drugs and psychotropic agents. Eur J Cancer Care (Engl). 2011;20:6–32.

    Article  Google Scholar 

  19. •• Schellander R, Donnerer J. Antidepressants: clinically relevant drug interactions to be considered. Pharmacology. 2010;86:203–15. Review of mechanisms of clinically relevelant drug interactions involving commonly prescribed antidepressants.

    Article  PubMed  CAS  Google Scholar 

  20. Strain JJ, Chiu NM, Sultana K, Karim A, Caliendo G, Mustafa S. Psychotropic drug versus psychotropic drug-update. Gen Hosp Psychiatry. 2004;26:87–105.

    Article  PubMed  Google Scholar 

  21. Baxter Ke. Stockley’s drug interactions. 9th ed. London: Pharmaceutical Press; 2010.

    Google Scholar 

  22. Zolk O, Fromm MF. Transporter-mediated drug uptake and efflux: important determinants of adverse drug reactions. Clin Pharmacol Ther. 2011;89:798–805.

    Article  PubMed  CAS  Google Scholar 

  23. Muller F, Fromm MF. Transporter-mediated drug-drug interactions. Pharmacogenomics. 2011;12:1017–37.

    Article  PubMed  CAS  Google Scholar 

  24. Sansom LN, Evans AM. What is the true clinical significance of plasma protein binding displacement interactions? Drug Saf. 1995;12:227–33.

    Article  PubMed  CAS  Google Scholar 

  25. Kanamura S, Watanabe J. Cell biology of cytochrome p-450 in the liver. Int Rev Cytol. 2000;198:109–52.

    Article  PubMed  CAS  Google Scholar 

  26. Mansuy D. The great diversity of reactions catalyzed by cytochromes p450. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998;121:5–14.

    Article  PubMed  CAS  Google Scholar 

  27. Sikka R, Magauran B, Ulrich A, Shannon M. Bench to bedside: pharmacogenomics, adverse drug interactions, and the cytochrome p450 system. Acad Emerg Med. 2005;12:1227–35.

    Article  PubMed  Google Scholar 

  28. Roses AD. Pharmacogenetics and the practice of medicine. Nature. 2000;405:857–65.

    Article  PubMed  CAS  Google Scholar 

  29. Ma MK, Woo MH, McLeod HL. Genetic basis of drug metabolism. Am J Health Syst Pharm. 2002;59:2061–9.

    PubMed  CAS  Google Scholar 

  30. Murray M. Role of cyp pharmacogenetics and drug-drug interactions in the efficacy and safety of atypical and other antipsychotic agents. J Pharm Pharmacol. 2006;58:871–85.

    Article  PubMed  CAS  Google Scholar 

  31. Shin JG, Soukhova N, Flockhart DA. Effect of antipsychotic drugs on human liver cytochrome p-450 (cyp) isoforms in vitro: preferential inhibition of cyp2d6. Drug Metab Dispos. 1999;27:1078–84.

    PubMed  CAS  Google Scholar 

  32. Ozdemir V, Naranjo CA, Herrmann N, Reed K, Sellers EM, Kalow W. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome p4502d6 inhibition in vivo. Clin Pharmacol Ther. 1997;62:334–47.

    Article  PubMed  CAS  Google Scholar 

  33. Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug-drug interactions. Psychosomatics. 2005;46:464–94.

    Article  PubMed  CAS  Google Scholar 

  34. Kato Y, Nakajima M, Oda S, Fukami T, Yokoi T. Human udp-glucuronosyltransferase isoforms involved in haloperidol glucuronidation and quantitative estimation of their contribution. Drug Metab Dispos. 2012;40:240–8.

    Article  PubMed  CAS  Google Scholar 

  35. Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999;37:435–56.

    Article  PubMed  CAS  Google Scholar 

  36. Ereshefsky L, Jann MW, Saklad SR, Davis CM, Richards AL, Burch NR. Effects of smoking on fluphenazine clearance in psychiatric inpatients. Biol Psychiatry. 1985;20:329–32.

    Article  PubMed  CAS  Google Scholar 

  37. Jann MW, Saklad SR, Ereshefsky L, Richards AL, Harrington CA, Davis CM. Effects of smoking on haloperidol and reduced haloperidol plasma concentrations and haloperidol clearance. Psychopharmacology (Berl). 1986;90:468–70.

    Article  CAS  Google Scholar 

  38. Zevin S, Benowitz NL. Drug interactions with tobacco smoking. An update. Clin Pharmacokinet. 1999;36:425–38.

    Article  PubMed  CAS  Google Scholar 

  39. Decina P, Caracci G, Sandik R, Berman W, Mukherjee S, Scapicchio P. Cigarette smoking and neuroleptic-induced parkinsonism. Biol Psychiatry. 1990;28:502–8.

    Article  PubMed  CAS  Google Scholar 

  40. El Ela AA, Hartter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of p-glycoprotein substrates and inhibitors among psychoactive compounds--implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56:967–75.

    Article  PubMed  CAS  Google Scholar 

  41. Spina E, de Leon J. Metabolic drug interactions with newer antipsychotics: a comparative review. Basic Clin Pharmacol Toxicol. 2007;100:4–22.

    Article  PubMed  CAS  Google Scholar 

  42. Prior TI, Chue PS, Tibbo P, Baker GB. Drug metabolism and atypical antipsychotics. Eur Neuropsychopharmacol. 1999;9:301–9.

    Article  PubMed  CAS  Google Scholar 

  43. Olesen OV, Linnet K. Contributions of five human cytochrome p450 isoforms to the n-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001;41:823–32.

    Article  PubMed  CAS  Google Scholar 

  44. Gex-Fabry M, Balant-Gorgia AE, Balant LP. Therapeutic drug monitoring databases for postmarketing surveillance of drug-drug interactions. Drug Saf. 2001;24:947–59.

    Article  PubMed  CAS  Google Scholar 

  45. DuMortier G, Lochu A, Colen de Melo P, Ghribi O, Roche-Rabreau D, DeGrassat K, Desce JM. Elevated clozapine plasma concentrations after fluvoxamine initiation. Am J Psychiatry. 1996;153:738–9.

    PubMed  CAS  Google Scholar 

  46. Skogh E, Bengtsson F, Nordin C. Could discontinuing smoking be hazardous for patients administered clozapine medication? A case report. Ther Drug Monit. 1999;21:580–2.

    Article  PubMed  CAS  Google Scholar 

  47. Spina E, Avenoso A, Facciola G, Scordo MG, Ancione M, Madia A. Plasma concentrations of risperidone and 9-hydroxyrisperidone during combined treatment with paroxetine. Ther Drug Monit. 2001;23:223–7.

    Article  PubMed  CAS  Google Scholar 

  48. Kubo M, Koue T, Inaba A, Takeda H, Maune H, Fukuda T, Azuma J. Influence of itraconazole co-administration and cyp2d6 genotype on the pharmacokinetics of the new antipsychotic aripiprazole. Drug Metab Pharmacokinet. 2005;20:55–64.

    Article  PubMed  CAS  Google Scholar 

  49. Markowitz JS, DeVane CL. Suspected ciprofloxacin inhibition of olanzapine resulting in increased plasma concentration. J Clin Psychopharmacol. 1999;19:289–91.

    Article  PubMed  CAS  Google Scholar 

  50. Letsas KP, Sideris A, Kounas SP, Efremidis M, Korantzopoulos P, Kardaras F. Drug-induced qt interval prolongation after ciprofloxacin administration in a patient receiving olanzapine. Int J Cardiol. 2006;109:273–4.

    Article  PubMed  Google Scholar 

  51. Spina E, D’Arrigo C, Santoro V, Muscatello MR, Pandolfo G, Zoccali R, Diaz FJ, de Leon J. Effect of valproate on olanzapine plasma concentrations in patients with bipolar or schizoaffective disorder. Ther Drug Monit. 2009;31:758–63.

    PubMed  CAS  Google Scholar 

  52. de Leon J, Diaz FJ, Spina E. Pharmacokinetic drug-drug interactions between olanzapine and valproate need to be better studied. J Clin Psychiatry. 2011;71:957–8. author reply 958–959.

    Article  Google Scholar 

  53. Chiu CC, Lu ML, Huang MC, Chen KP. Heavy smoking, reduced olanzapine levels, and treatment effects: a case report. Ther Drug Monit. 2004;26:579–81.

    Article  PubMed  Google Scholar 

  54. Arnoldi J, Repking N. Olanzapine-induced parkinsonism associated with smoking cessation. Am J Health Syst Pharm. 2011;68:399–401.

    Article  PubMed  CAS  Google Scholar 

  55. Conley RR, Kelly DL. Drug-drug interactions associated with second-generation antipsychotics: considerations for clinicians and patients. Psychopharmacol Bull. 2007;40:77–97.

    PubMed  Google Scholar 

  56. Gerrits MG, de Greef R, Dogterom P, Peeters PA. Valproate reduces the glucuronidation of asenapine without affecting asenapine plasma concentrations. J Clin Pharmacol. 2011

  57. Caccia S, Pasina L, Nobili A. New atypical antipsychotics for schizophrenia: iloperidone. Drug Des Devel Ther. 2010;4:33–48.

    Article  PubMed  CAS  Google Scholar 

  58. Meyer JM, Loebel AD, Schweizer E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009;18:1715–26.

    Article  PubMed  CAS  Google Scholar 

  59. Kane JM. Lurasidone: a clinical overview. J Clin Psychiatry. 2011;72 Suppl 1:24–8.

    PubMed  CAS  Google Scholar 

  60. Zhu HJ, Wang JS, Markowitz JS, Donovan JL, Gibson BB, DeVane CL. Risperidone and paliperidone inhibit p-glycoprotein activity in vitro. Neuropsychopharmacology. 2007;32:757–64.

    Article  PubMed  CAS  Google Scholar 

  61. Wang JS, Zhu HJ, Markowitz JS, Donovan JL, DeVane CL. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter p-glycoprotein. Psychopharmacology (Berl). 2006;187:415–23.

    Article  CAS  Google Scholar 

  62. Pacchioni AM, Gabriele A, Donovan JL, DeVane CL, See RE. P-glycoprotein inhibition potentiates the behavioural and neurochemical actions of risperidone in rats. Int J Neuropsychopharmacol. 2010;13:1067–77.

    Article  PubMed  CAS  Google Scholar 

  63. • Moons T, de Roo M, Claes S, Dom G. Relationship between p-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 2011;12:1193–211. Good review of basic and clinical data on genetic polymorphisms of P-glycoprotein and second generation antipsychotics.

    Article  PubMed  CAS  Google Scholar 

  64. Shin JG, Park JY, Kim MJ, Shon JH, Yoon YR, Cha IJ, Lee SS, Oh SW, Kim SW, Flockhart DA. Inhibitory effects of tricyclic antidepressants (tcas) on human cytochrome p450 enzymes in vitro: mechanism of drug interaction between tcas and phenytoin. Drug Metab Dispos. 2002;30:1102–7.

    Article  PubMed  CAS  Google Scholar 

  65. Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151:737–48.

    Article  PubMed  CAS  Google Scholar 

  66. Preskorn SH, Baker B. Fatality associated with combined fluoxetine-amitriptyline therapy. JAMA. 1997;277:1682.

    Article  PubMed  CAS  Google Scholar 

  67. Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. Drug interactions with newer antidepressants: role of human cytochromes p450. J Clin Psychiatry. 1998;59 Suppl 15:19–27.

    PubMed  CAS  Google Scholar 

  68. Baumann P, Hiemke C, Ulrich S, Eckermann G, Gaertner I, Gerlach M, Kuss HJ, Laux G, Muller-Oerlinghausen B, Rao ML, Riederer P, Zernig G. The agnp-tdm expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry. 2004;37:243–65.

    Article  PubMed  CAS  Google Scholar 

  69. Ereshefsky L, Riesenman C, Lam YW. Antidepressant drug interactions and the cytochrome p450 system. The role of cytochrome p450 2d6. Clin Pharmacokinet. 1995;29 Suppl 1:10–8. discussion 18–19.

    Article  PubMed  CAS  Google Scholar 

  70. Sindrup SH, Arendt-Nielsen L, Brosen K, Bjerring P, Angelo HR, Eriksen B, Gram LF. The effect of quinidine on the analgesic effect of codeine. Eur J Clin Pharmacol. 1992;42:587–91.

    Article  PubMed  CAS  Google Scholar 

  71. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brosen K, Nielsen F, Ingwersen SH, Broen Christensen C. Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake. Eur J Clin Pharmacol. 1996;49:503–9.

    Article  PubMed  CAS  Google Scholar 

  72. Spina E, Santoro V, D’Arrigo C. Clinically relevant pharmacokinetic drug interactions with second-generation antidepressants: an update. Clin Ther. 2008;30:1206–27.

    Article  PubMed  CAS  Google Scholar 

  73. McCollum DL, Greene JL, McGuire DK. Severe sinus bradycardia after initiation of bupropion therapy: a probable drug-drug interaction with metoprolol. Cardiovasc Drugs Ther. 2004;18:329–30.

    Article  PubMed  CAS  Google Scholar 

  74. Weintraub D. Nortriptyline toxicity secondary to interaction with bupropion sustained-release. Depress Anxiety. 2001;13:50–2.

    Article  PubMed  CAS  Google Scholar 

  75. Kennedy SH, McCann SM, Masellis M, McIntyre RS, Raskin J, McKay G, Baker GB. Combining bupropion sr with venlafaxine, paroxetine, or fluoxetine: a preliminary report on pharmacokinetic, therapeutic, and sexual dysfunction effects. J Clin Psychiatry. 2002;63:181–6.

    Article  PubMed  CAS  Google Scholar 

  76. Baldwin DS, Carabal E. Reboxetine, a selective noradrenaline reuptake inhibitor for the treatment of depression. Drugs Today (Barc). 1999;35:719–24.

    Article  CAS  Google Scholar 

  77. Schmider J, Greenblatt DJ, von Moltke LL, Harmatz JS, Shader RI. Inhibition of cytochrome p450 by nefazodone in vitro: studies of dextromethorphan o- and n-demethylation. Br J Clin Pharmacol. 1996;41:339–43.

    Article  PubMed  CAS  Google Scholar 

  78. Lam YW, Alfaro CL, Ereshefsky L, Miller M. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol. 2003;43:1274–82.

    Article  PubMed  CAS  Google Scholar 

  79. Abernethy DR, Barbey JT, Franc J, Brown KS, Feirrera I, Ford N, Salazar DE. Loratadine and terfenadine interaction with nefazodone: both antihistamines are associated with qtc prolongation. Clin Pharmacol Ther. 2001;69:96–103.

    Article  PubMed  CAS  Google Scholar 

  80. Garton T. Nefazodone and cyp450 3a4 interactions with cyclosporine and tacrolimus1. Transplantation. 2002;74:745.

    Article  PubMed  Google Scholar 

  81. Thompson M, Samuels S. Rhabdomyolysis with simvastatin and nefazodone. Am J Psychiatry. 2002;159:1607.

    Article  PubMed  Google Scholar 

  82. Paul KL, Bhatara VS. Anticholinergic delirium possibly associated with protriptyline and fluoxetine. Ann Pharmacother. 1997;31:1260–1.

    PubMed  CAS  Google Scholar 

  83. Duggal HS. Delirium associated with amitriptyline/fluconazole drug. Gen Hosp Psychiatry. 2003;25:297–8.

    Article  PubMed  CAS  Google Scholar 

  84. Schalekamp T, Klungel OH, Souverein PC, de Boer A. Increased bleeding risk with concurrent use of selective serotonin reuptake inhibitors and coumarins. Arch Intern Med. 2008;168:180–5.

    Article  PubMed  Google Scholar 

  85. Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005;352:1112–20.

    Article  PubMed  CAS  Google Scholar 

  86. Evans RW, Tepper SJ, Shapiro RE, Sun-Edelstein C, Tietjen GE. The fda alert on serotonin syndrome with use of triptans combined with selective serotonin reuptake inhibitors or selective serotonin-norepinephrine reuptake inhibitors: American headache society position paper. Headache. 2010;50:1089–99.

    Article  PubMed  Google Scholar 

  87. Gardner DM, Shulman KI, Walker SE, Tailor SA. The making of a user friendly maoi diet. J Clin Psychiatry. 1996;57:99–104.

    PubMed  CAS  Google Scholar 

  88. Wimbiscus M, Kostenko O, Malone D. Mao inhibitors: risks, benefits, and lore. Cleve Clin J Med;77:859–82.

  89. Tanaka E. Clinically significant pharmacokinetic drug interactions with benzodiazepines. J Clin Pharm Ther. 1999;24:347–55.

    Article  PubMed  CAS  Google Scholar 

  90. Chouinard G, Lefko-Singh K, Teboul E. Metabolism of anxiolytics and hypnotics: benzodiazepines, buspirone, zoplicone, and zolpidem. Cell Mol Neurobiol. 1999;19:533–52.

    Article  PubMed  CAS  Google Scholar 

  91. Wright CE, Lasher-Sisson TA, Steenwyk RC, Swanson CN. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy. 1992;12:103–6.

    PubMed  CAS  Google Scholar 

  92. Moskowitz H, Burns M. The effects on performance of two antidepressants, alone and in combination with diazepam. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12:783–92.

    Article  PubMed  CAS  Google Scholar 

  93. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol. 1994;46:35–9.

    Article  PubMed  CAS  Google Scholar 

  94. Oda Y, Mizutani K, Hase I, Nakamoto T, Hamaoka N, Asada A. Fentanyl inhibits metabolism of midazolam: competitive inhibition of cyp3a4 in vitro. Br J Anaesth. 1999;82:900–3.

    Article  PubMed  CAS  Google Scholar 

  95. Hamaoka N, Oda Y, Hase I, Mizutani K, Nakamoto T, Ishizaki T, Asada A. Propofol decreases the clearance of midazolam by inhibiting cyp3a4: an in vivo and in vitro study. Clin Pharmacol Ther. 1999;66:110–7.

    Article  PubMed  CAS  Google Scholar 

  96. Pandharipande P, Ely EW. Sedative and analgesic medications: risk factors for delirium and sleep disturbances in the critically ill. Crit Care Clin. 2006;22:313–27. vii.

    Article  PubMed  Google Scholar 

  97. Wynn GH, Cozza KL, Zapor MJ, Wortmann GW, Armstrong SC. Med-psych drug-drug interactions update. Antiretrovirals, part iii: antiretrovirals and drugs of abuse. Psychosomatics. 2005;46:79–87.

    Article  PubMed  CAS  Google Scholar 

  98. Greene DS, Salazar DE, Dockens RC, Kroboth P, Barbhaiya RH. Coadministration of nefazodone and benzodiazepines: Iii. A pharmacokinetic interaction study with alprazolam. J Clin Psychopharmacol. 1995;15:399–408.

    Article  PubMed  CAS  Google Scholar 

  99. Riss J, Cloyd J, Gates J, Collins S. Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurol Scand. 2008;118:69–86.

    Article  PubMed  CAS  Google Scholar 

  100. Anderson GD, Gidal BE, Kantor ED, Wilensky AJ. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia. 1994;35:221–5.

    Article  PubMed  CAS  Google Scholar 

  101. Drover DR. Comparative pharmacokinetics and pharmacodynamics of short-acting hypnosedatives: zaleplon, zolpidem and zopiclone. Clin Pharmacokinet. 2004;43:227–38.

    Article  PubMed  CAS  Google Scholar 

  102. Greenblatt DJ, von Moltke LL, Harmatz JS, Mertzanis P, Graf JA, Durol AL, Counihan M, Roth-Schechter B, Shader RI. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther. 1998;64:661–71.

    Article  PubMed  CAS  Google Scholar 

  103. Villikka K, Kivisto KT, Luurila H, Neuvonen PJ. Rifampin reduces plasma concentrations and effects of zolpidem. Clin Pharmacol Ther. 1997;62:629–34.

    Article  PubMed  CAS  Google Scholar 

  104. Jalava KM, Olkkola KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zopiclone. Eur J Clin Pharmacol. 1996;51:331–4.

    Article  PubMed  CAS  Google Scholar 

  105. Dunner DL. Drug interactions of lithium and other antimanic/mood-stabilizing medications. J Clin Psychiatry. 2003;64 Suppl 5:38–43.

    PubMed  CAS  Google Scholar 

  106. Patsalos PN, Perucca E. Clinically important drug interactions in epilepsy: interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2003;2:473–81.

    Article  PubMed  CAS  Google Scholar 

  107. (Gabapentin) N. Montvale, NJ, Medical Economics; 2010.

  108. Bialer M, Doose DR, Murthy B, Curtin C, Wang SS, Twyman RE, Schwabe S. Pharmacokinetic interactions of topiramate. Clin Pharmacokinet. 2004;43:763–80.

    Article  PubMed  CAS  Google Scholar 

  109. Mimrod D, Specchio LM, Britzi M, Perucca E, Specchio N, La Neve A, Soback S, Levy RH, Gatti G, Doose DR, Maryanoff BE, Bialer M. A comparative study of the effect of carbamazepine and valproic acid on the pharmacokinetics and metabolic profile of topiramate at steady state in patients with epilepsy. Epilepsia. 2005;46:1046–54.

    Article  PubMed  CAS  Google Scholar 

  110. PDR: Physician’s desk reference. Montvale, NJ, Medical Economics; 2010.

  111. Andersson ML, Bjorkhem-Bergman L, Lindh JD. Possible drug-drug interaction between quetiapine and lamotrigine–evidence from a swedish tdm database. Br J Clin Pharmacol. 2010;72:153–6.

    Article  CAS  Google Scholar 

  112. Kiang TK, Ensom MH, Chang TK. Udp-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol Ther. 2005;106:97–132.

    Article  PubMed  CAS  Google Scholar 

  113. Hachad H, Ragueneau-Majlessi I, Levy RH. New antiepileptic drugs: review on drug interactions. Ther Drug Monit. 2002;24:91–103.

    Article  PubMed  CAS  Google Scholar 

  114. Bernus I, Dickinson RG, Hooper WD, Eadie MJ. The mechanism of the carbamazepine-valproate interaction in humans. Br J Clin Pharmacol. 1997;44:21–7.

    Article  PubMed  CAS  Google Scholar 

  115. Mancl EE, Gidal BE. The effect of carbapenem antibiotics on plasma concentrations of valproic acid. Ann Pharmacother. 2009;43:2082–7.

    Article  PubMed  CAS  Google Scholar 

  116. •• Diaz RA, Sancho J, Serratosa J. Antiepileptic drug interactions. Neurologist. 2008;14:S55–65. Review on the pharmacokinetics of CYP450 and non-CYP450 mediated drug-drug interactions invovling anti-epileptic drugs.

    Article  PubMed  Google Scholar 

  117. Ward ME, Musa MN, Bailey L. Clinical pharmacokinetics of lithium. J Clin Pharmacol. 1994;34:280–5.

    PubMed  CAS  Google Scholar 

  118. Jefferson JW, Greist JH, Baudhuin M. Lithium: interactions with other drugs. J Clin Psychopharmacol. 1981;1:124–34.

    Article  PubMed  CAS  Google Scholar 

  119. Chaudhry RP, Waters BG. Lithium and carbamazepine interaction: possible neurotoxicity. J Clin Psychiatry. 1983;44:30–1.

    PubMed  CAS  Google Scholar 

  120. Dunner DL. Optimizing lithium treatment. J Clin Psychiatry. 2000;61 Suppl 9:76–81.

    PubMed  CAS  Google Scholar 

  121. Ho RH, Kim RB. Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther. 2005;78:260–77.

    Article  PubMed  CAS  Google Scholar 

  122. Pal D, Kwatra D, Minocha M, Paturi DK, Budda B, Mitra AK. Efflux transporters- and cytochrome p-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci. 2011;88:959–71.

    Article  PubMed  CAS  Google Scholar 

  123. Pal D, Mitra AK. Mdr- and cyp3a4-mediated drug-drug interactions. J Neuroimmune Pharmacol. 2006;1:323–39.

    Article  PubMed  Google Scholar 

  124. Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of p-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305:197–204.

    Article  PubMed  CAS  Google Scholar 

  125. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by p-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68:231–7.

    Article  PubMed  CAS  Google Scholar 

  126. Ejsing TB, Linnet K. Influence of p-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood–brain barrier. Hum Psychopharmacol. 2005;20:149–53.

    Article  PubMed  CAS  Google Scholar 

  127. Ejsing TB, Pedersen AD, Linnet K. P-glycoprotein interaction with risperidone and 9-oh-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments. Hum Psychopharmacol. 2005;20:493–500.

    Article  PubMed  CAS  Google Scholar 

  128. Zhang C, Kwan P, Zuo Z, Baum L. The transport of antiepileptic drugs by p-glycoprotein. Adv Drug Deliv Rev. 2011

  129. Loscher W, Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther. 2002;301:7–14.

    Article  PubMed  CAS  Google Scholar 

  130. Tishler DM, Weinberg KI, Hinton DR, Barbaro N, Annett GM, Raffel C. Mdr1 gene expression in brain of patients with medically intractable epilepsy. Epilepsia. 1995;36:1–6.

    Article  PubMed  CAS  Google Scholar 

  131. Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D’Giano C. Abc transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia. 2007;48 Suppl 5:140–9.

    Article  PubMed  CAS  Google Scholar 

  132. Lehmann DF, Medicis JJ, Franklin PD. Polymorphisms and the pocketbook: the cost-effectiveness of cytochrome p450 2c19 genotyping in the eradication of helicobacter pylori infection associated with duodenal ulcer. J Clin Pharmacol. 2003;43:1316–23.

    Article  PubMed  Google Scholar 

  133. Tomalik-Scharte D, Lazar A, Fuhr U, Kirchheiner J. The clinical role of genetic polymorphisms in drug-metabolizing enzymes. Pharmacogenomics J. 2008;8:4–15.

    Article  PubMed  CAS  Google Scholar 

  134. Rendic S, Di Carlo FJ. Human cytochrome p450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29:413–580.

    Article  PubMed  CAS  Google Scholar 

  135. Wojnowski L, Kamdem LK. Clinical implications of cyp3a polymorphisms. Expert Opin Drug Metab Toxicol. 2006;2:171–82.

    Article  PubMed  CAS  Google Scholar 

  136. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in cyp3a4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2010;11:274–86.

    Article  PubMed  CAS  Google Scholar 

  137. • Fleeman N, Dundar Y, Dickson R, Jorgensen A, Pushpakom S, McLeod C, Pirmohamed M, Walley T. Cytochrome p450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses. Pharmacogenomics J. 2011;11:1–14. Recent review and meta-analysis on pharmacogenetic CYP450 testing and clinical utility in patients taking antipsychotics.

    Article  PubMed  CAS  Google Scholar 

  138. Arranz MJ, Rivera M, Munro JC. Pharmacogenetics of response to antipsychotics in patients with schizophrenia. CNS Drugs. 2011;25:933–69.

    Article  PubMed  CAS  Google Scholar 

  139. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry. 2007;12:707–47.

    Article  PubMed  CAS  Google Scholar 

  140. Pirmohamed M, Park BK. Cytochrome p450 enzyme polymorphisms and adverse drug reactions. Toxicology. 2003;192:23–32.

    Article  PubMed  CAS  Google Scholar 

  141. Thuerauf N, Lunkenheimer J. The impact of the cyp2d6-polymorphism on dose recommendations for current antidepressants. Eur Arch Psychiatry Clin Neurosci. 2006;256:287–93.

    Article  PubMed  Google Scholar 

  142. Arthur H, Dahl ML, Siwers B, Sjoqvist F. Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol. 1995;15:211–6.

    Article  PubMed  CAS  Google Scholar 

  143. Pollock BG, Mulsant BH, Sweet RA, Rosen J, Altieri LP, Perel JM. Prospective cytochrome p450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull. 1995;31:327–31.

    PubMed  CAS  Google Scholar 

  144. Kapitany T, Meszaros K, Lenzinger E, Schindler SD, Barnas C, Fuchs K, Sieghart W, Aschauer HN, Kasper S. Genetic polymorphisms for drug metabolism (cyp2d6) and tardive dyskinesia in schizophrenia. Schizophr Res. 1998;32:101–6.

    Article  PubMed  CAS  Google Scholar 

  145. Basile VS, Ozdemir V, Masellis M, Walker ML, Meltzer HY, Lieberman JA, Potkin SG, Alva G, Kalow W, Macciardi FM, Kennedy JL. A functional polymorphism of the cytochrome p450 1a2 (cyp1a2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry. 2000;5:410–7.

    Article  PubMed  CAS  Google Scholar 

  146. Fukasawa T, Suzuki A, Otani K. Effects of genetic polymorphism of cytochrome p450 enzymes on the pharmacokinetics of benzodiazepines. J Clin Pharm Ther. 2007;32:333–41.

    Article  PubMed  CAS  Google Scholar 

  147. Bertilsson L, Henthorn TK, Sanz E, Tybring G, Sawe J, Villen T. Importance of genetic factors in the regulation of diazepam metabolism: relationship to s-mephenytoin, but not debrisoquin, hydroxylation phenotype. Clin Pharmacol Ther. 1989;45:348–55.

    Article  PubMed  CAS  Google Scholar 

  148. Nikisch G, Eap CB, Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of abcb1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008;58:344–7.

    Article  PubMed  CAS  Google Scholar 

  149. Mihaljevic Peles A, Bozina N, Sagud M, Rojnic Kuzman M, Lovric M. Mdr1 gene polymorphism: therapeutic response to paroxetine among patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1439–44.

    Article  PubMed  CAS  Google Scholar 

  150. Sarginson JE, Lazzeroni LC, Ryan HS, Ershoff BD, Schatzberg AF, Murphy Jr GM. Abcb1 (mdr1) polymorphisms and antidepressant response in geriatric depression. Pharmacogenet Genomics. 2010;20:467–75.

    Article  PubMed  CAS  Google Scholar 

  151. Jaquenoud Sirot E, Knezevic B, Morena GP, Harenberg S, Oneda B, Crettol S, Ansermot N, Baumann P, Eap CB. Abcb1 and cytochrome p450 polymorphisms: clinical pharmacogenetics of clozapine. J Clin Psychopharmacol. 2009;29:319–26.

    Article  PubMed  CAS  Google Scholar 

  152. Yasui-Furukori N, Mihara K, Takahata T, Suzuki A, Nakagami T, De Vries R, Tateishi T, Kondo T, Kaneko S. Effects of various factors on steady-state plasma concentrations of risperidone and 9-hydroxyrisperidone: lack of impact of mdr-1 genotypes. Br J Clin Pharmacol. 2004;57:569–75.

    Article  PubMed  CAS  Google Scholar 

  153. Kastelic M, Koprivsek J, Plesnicar BK, Serretti A, Mandelli L, Locatelli I, Grabnar I, Dolzan V. Mdr1 gene polymorphisms and response to acute risperidone treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:387–92.

    Article  PubMed  CAS  Google Scholar 

  154. Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the mdr1/abcb1 c3435t drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia. 2009;50:898–903.

    Article  PubMed  CAS  Google Scholar 

  155. Turgut G, Kurt E, Sengul C, Alatas G, Kursunluoglu R, Oral T, Turgut S, Herken H. Association of mdr1 c3435t polymorphism with bipolar disorder in patients treated with valproic acid. Mol Biol Rep. 2009;36:495–9.

    Article  PubMed  CAS  Google Scholar 

  156. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, Wood NW, Sisodiya SM. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene abcb1. N Engl J Med. 2003;348:1442–8.

    Article  PubMed  CAS  Google Scholar 

  157. Haerian BS, Roslan H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ, Mohamed EH, Tan HJ, Mohamed Z. Abcb1 c3435t polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure. 2010;19:339–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from National Institutes of Health (T32 HL087738).

Disclosure

Drs. English and Jhee reported no potential conflicts of interest relevant to this article.

Dr. Dortch has served as a consultant to Ortho McNeil, and has received honoraria for serving on an expert panel for Sanofi and American Society of Health-System Pharmacists.

Dr. Ereshefsky has served as a board member for International Society for CNS Clinical Trials and Methodology (ISCTM), has received compensation for development of educational presentations from CPAP and Merck & Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett A. English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

English, B.A., Dortch, M., Ereshefsky, L. et al. Clinically Significant Psychotropic Drug-Drug Interactions in the Primary Care Setting. Curr Psychiatry Rep 14, 376–390 (2012). https://doi.org/10.1007/s11920-012-0284-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-012-0284-9

Keywords

Navigation