Skip to main content

Advertisement

Log in

Cranial Neural Crest Cells Contribution to Craniofacial Bone Development and Regeneration

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize (i) the latest evidence on cranial neural crest cells (CNCC) contribution to craniofacial development and ossification; (ii) the recent discoveries on the mechanisms responsible for their plasticity; and (iii) the newest procedures to ameliorate maxillofacial tissue repair.

Recent Findings

CNCC display a remarkable differentiation potential that exceeds the capacity of their germ layer of origin. The mechanisms by which they expand their plasticity was recently described. Their ability to participate to craniofacial bone development and regeneration open new perspectives for treatments of traumatic craniofacial injuries or congenital syndromes.

Summary

These conditions can be life-threatening, require invasive maxillofacial surgery and can leave deep sequels on our health or quality of life. With accumulating evidence showing how CNCC-derived stem cells potential can ameliorate craniofacial reconstruction and tissue repair, we believe a deeper understanding of the mechanisms regulating CNCC plasticity is essential to ameliorate endogenous regeneration and improve tissue repair therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gilbert-Barness E. Teratogenic causes of malformations. Ann Clin Lab Sci. 2010. Spring;40(2):99–114. https://pubmed.ncbi.nlm.nih.gov/20421621/.

  2. Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–62. https://doi.org/10.1016/j.biomaterials.2018.07.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthetic Surg JPRAS. 2010;63(10):1615–23. https://doi.org/10.1016/j.bjps.2009.06.003.

    Article  Google Scholar 

  4. Aghali AM. Poly(ethylene glycol) and Co-polymer Based-Hydrogels for Craniofacial Bone Tissue Engineering. In: Li B, Webster T, editors. Orthopedic Biomaterials: Advances and Applications. Cham: Springer International Publishing; 2017. p. 225–46. https://doi.org/10.1007/978-3-319-73664-8_9.

    Chapter  Google Scholar 

  5. Dang M, Saunders L, Niu X, Fan Y, Ma PX. Biomimetic delivery of signals for bone tissue engineering. Bone Res. 2018;6:25. https://doi.org/10.1038/s41413-018-0025-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. McCarthy JG, Stelnicki EJ, Mehrara BJ, Longaker MT. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001;107(7):1812–27. https://doi.org/10.1097/00006534-200106000-00029.

    Article  PubMed  CAS  Google Scholar 

  7. Dupont KM, Sharma K, Stevens HY, Boerckel JD, García AJ, Guldberg RE. Human stem cell delivery for treatment of large segmental bone defects. Proc Natl Acad Sci U S A. 2010;107(8):3305–10. https://doi.org/10.1073/pnas.0905444107.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jeon OH, Panicker LM, Lu Q, Chae JJ, Feldman RA, Elisseeff JH. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci Rep. 2016;6:26761. https://doi.org/10.1038/srep26761.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. •• Glaeser JD, et al. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration. Stem Cells Transl Med. 2021;10(5):797–809. https://doi.org/10.1002/sctm.20-0364. This study shows that using neural crest-derived mesenchymal cells enhances allograft efficiency by ameliorating the integration of the bone transplant. It also shows how to harness neural crest-derived cells potential during cranial bone regeneration.

  10. Luo J, et al. Infiltrating bone marrow mesenchymal stem cells increase prostate cancer stem cell population and metastatic ability via secreting cytokines to suppress androgen receptor signaling. Oncogene. 2014;33(21):2768–78. https://doi.org/10.1038/onc.2013.233.

    Article  PubMed  CAS  Google Scholar 

  11. Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 2013;4(3):70. https://doi.org/10.1186/scrt221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Gerber T, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362(6413):eaaq0681. https://doi.org/10.1126/science.aaq0681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. McCusker CD, Athippozhy A, Diaz-Castillo C, Fowlkes C, Gardiner DM, Voss SR. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Dev Biol. 2015;15:45. https://doi.org/10.1186/s12861-015-0095-4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vieira WA, McCusker CD. Regenerative models for the integration and regeneration of head skeletal tissues. Int J Mol Sci. 2018;19(12):3752. https://doi.org/10.3390/ijms19123752.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Le Douarin N, Kalcheim C. The Neural Crest, 2nd ed. In Developmental and Cell Biology Series. Cambridge: Cambridge University Press; 1999. https://doi.org/10.1017/CBO9780511897948.

  16. Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat. 2005;207(5):575–601. https://doi.org/10.1111/j.1469-7580.2005.00473.x.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Simões-Costa M, Bronner ME. Establishing neural crest identity: a gene regulatory recipe. Development. 2015;142(2):242–57. https://doi.org/10.1242/dev.105445.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Theveneau E, Mayor R. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial-mesenchymal transition, and collective cell migration. Wiley Interdiscip Rev Dev Biol. 2012;1(3):435–45. https://doi.org/10.1002/wdev.28.

    Article  PubMed  CAS  Google Scholar 

  19. Soldatov R, et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science. 2019;364(6444). https://doi.org/10.1126/science.aas9536.

  20. Le Douarin NM, Creuzet S, Couly G, Dupin E. Neural crest cell plasticity and its limits. Development. 2004;131(19):4637–50. https://doi.org/10.1242/dev.01350.

    Article  PubMed  CAS  Google Scholar 

  21. Perera SN, Kerosuo L. On the road again: Establishment and maintenance of stemness in the neural crest from embryo to adulthood. Stem Cells. 2021;39(1):7–25. https://doi.org/10.1002/stem.3283.

    Article  PubMed  Google Scholar 

  22. Buitrago-Delgado E, Nordin K, Rao A, Geary L, LaBonne C. NEURODEVELOPMENT. Shared regulatory programs suggest retention of blastula-stage potential in neural crest cells. Science. 2015;348(6241):1332–5. https://doi.org/10.1126/science.aaa3655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lignell A, Kerosuo L, Streichan SJ, Cai L, Bronner ME. Identification of a neural crest stem cell niche by Spatial Genomic Analysis. Nat Commun. 2017;8(1):1830. https://doi.org/10.1038/s41467-017-01561-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. • Scerbo P, Monsoro-Burq AH. The vertebrate-specific VENTX/NANOG gene empowers neural crest with ectomesenchyme potential. Sci Adv. 2020;6(18):eaaz1469. https://doi.org/10.1126/sciadv.aaz1469. This study shows pluripotency factors are reactivated during neural crest formation in Xenopus.

  25. •• Zalc A, et al. Reactivation of the pluripotency program precedes formation of the cranial neural crest. Science. 2021; 371(6529). https://doi.org/10.1126/science.abb4776. This study demonstrates the re-expression of pluripotency programs is necessary for the expansion of cranial neural crest cells differentiation potential in mammals.

  26. Rodrigues-Da-Silva MA, de Espindola da Silveira G, Taufer CR, Calloni GW. The mesenchymal potential of trunk neural crest cells. Int J Dev Biol. 2022;66(4–5–6):317–31. https://doi.org/10.1387/ijdb.220032gc.

    Article  PubMed  CAS  Google Scholar 

  27. Bhatt S, Diaz R, Trainor PA. Signals and switches in mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol. 2013;5(2). https://doi.org/10.1101/cshperspect.a008326.

  28. Dash S, Trainor PA. The development, patterning and evolution of neural crest cell differentiation into cartilage and bone. Bone. 2020;137:115409. https://doi.org/10.1016/j.bone.2020.115409.

    Article  PubMed  CAS  Google Scholar 

  29. • Yang J, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14(665):eaaz9368. https://doi.org/10.1126/scisignal.aaz9368. This study shows how the coordinated action of BMP signaling and autophagy regulates cell fate decision during craniofacial development.

  30. Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol. 2020;464(1):24–34. https://doi.org/10.1016/j.ydbio.2020.05.006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Shpargel KB, Mangini CL, Xie G, Ge K, Magnuson T. The KMT2D Kabuki syndrome histone methylase controls neural crest cell differentiation and facial morphology. Development. 2020;147(21):dev187997. https://doi.org/10.1242/dev.187997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Smeriglio P, Grandi FC, Taylor SEB, Zalc A, Bhutani N. TET1 directs chondrogenic differentiation by regulating SOX9 dependent activation of Col2a1 and acan in vitro. JBMR Plus. 2020;4(8):e10383. https://doi.org/10.1002/jbm4.10383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kitami K, Kitami M, Kaku M, Wang B, Komatsu Y. BRCA1 and BRCA2 tumor suppressors in neural crest cells are essential for craniofacial bone development. PLoS Genet. 2018;14(5):1007340. https://doi.org/10.1371/journal.pgen.1007340.

    Article  CAS  Google Scholar 

  34. • Zhao X, et al. Yap and Taz promote osteogenesis and prevent chondrogenesis in neural crest cells in vitro and in vivo. Sci Signal. 2022;15(757):eabn9009. https://doi.org/10.1126/scisignal.abn9009. This study identifies a mechanism controlling the proper balance between osteogenesis and chondrogenesis during craniofacial bones development.

  35. Liao J, et al. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci. 2022;79(3):158. https://doi.org/10.1007/s00018-022-04208-2.

    Article  PubMed  CAS  Google Scholar 

  36. Kelsh RN, Camargo Sosa K, Farjami S, Makeev V, Dawes JHP, Rocco A. Cyclical fate restriction: a new view of neural crest cell fate specification. Development. 2021;148(22):dev176057. https://doi.org/10.1242/dev.176057.

    Article  PubMed  CAS  Google Scholar 

  37. Bronner-Fraser M, Fraser SE. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature. 1988;335(6186):161–4. https://doi.org/10.1038/335161a0.

    Article  PubMed  CAS  Google Scholar 

  38. Collazo A, Bronner-Fraser M, Fraser SE. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development. 1993;118(2):363–76. https://doi.org/10.1242/dev.118.2.363.

    Article  PubMed  CAS  Google Scholar 

  39. Serbedzija GN, Bronner-Fraser M, Fraser SE. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development. 1992;116(2):297–307. https://doi.org/10.1242/dev.116.2.297.

    Article  PubMed  CAS  Google Scholar 

  40. Serbedzija GN, Bronner-Fraser M, Fraser SE. Developmental potential of trunk neural crest cells in the mouse. Development. 1994;120(7):1709–18. https://doi.org/10.1242/dev.120.7.1709.

    Article  PubMed  CAS  Google Scholar 

  41. Briggs JA, et al. The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution. Science. 2018; 360(6392). https://doi.org/10.1126/science.aar5780.

  42. • Keuls RA, Oh YS, Patel I, Parchem RJ. Post-transcriptional regulation in cranial neural crest cells expands developmental potential. Proc Natl Acad Sci USA. 2023;120(6):e2212578120. https://doi.org/10.1073/pnas.2212578120. This study shows post-transcriptional are also regulating cranial neural crest cells differentiation potential.

  43. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470(7333):279–83. https://doi.org/10.1038/nature09692.

    Article  PubMed  CAS  Google Scholar 

  44. Minoux M, et al. Gene bivalency at Polycomb domains regulates cranial neural crest positional identity. Science. 2017;355(6332):31. https://doi.org/10.1126/science.aal2913.

    Article  CAS  Google Scholar 

  45. Williams RM, et al. Reconstruction of the global neural crest gene regulatory network in vivo. Dev Cell. 2019;51(2):255-276 e7. https://doi.org/10.1016/j.devcel.2019.10.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hovland AS, et al. Pluripotency factors are repurposed to shape the epigenomic landscape of neural crest cells. Dev Cell. 2022; S1534580722006360. https://doi.org/10.1016/j.devcel.2022.09.006.

  47. Kiernan C, Knuth C, Farrell E. Chapter 6 - Endochondral Ossification: Recapitulating Bone Development for Bone Defect Repair. In: Stoddart MJ, Craft AM, Pattappa G, Gardner OFW, editors. Developmental Biology and Musculoskeletal Tissue Engineering. Boston: Academic Press; 2018. p. 125–48. https://doi.org/10.1016/B978-0-12-811467-4.00006-1.

    Chapter  Google Scholar 

  48. Robey PG, Kuznetsov SA, Riminucci M, Bianco P. Skeletal (‘mesenchymal’) stem cells for tissue engineering. Methods Mol Med. 2007;140:83–99. https://doi.org/10.1007/978-1-59745-443-8_5.

    Article  PubMed  CAS  Google Scholar 

  49. Chan CKF, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015;160(1–2):285–98. https://doi.org/10.1016/j.cell.2014.12.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chan CKF, et al. Identification of the human skeletal stem cell. Cell. 2018;175(1):43-56.e21. https://doi.org/10.1016/j.cell.2018.07.029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Duchamp de Lageneste O, et al. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 2018;9(1):773. https://doi.org/10.1038/s41467-018-03124-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Julien A, et al. Skeletal stem/progenitor cells in periosteum and skeletal muscle share a common molecular response to bone injury. J Bone Miner Res Off J Am Soc Bone Miner Res. 2022;37(8):1545–61. https://doi.org/10.1002/jbmr.4616.

    Article  CAS  Google Scholar 

  53. Zhang X, et al. Msx1+ stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun. 2022;13(1):5211. https://doi.org/10.1038/s41467-022-32868-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Marecic O, et al. Identification and characterization of an injury-induced skeletal progenitor. Proc Natl Acad Sci. 2015;112(32):9920–5. https://doi.org/10.1073/pnas.1513066112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Fang TD, et al. Creation and characterization of a mouse model of mandibular distraction osteogenesis. Bone. 2004;34(6):1004–12. https://doi.org/10.1016/j.bone.2004.02.011.

    Article  PubMed  Google Scholar 

  56. Ransom RC, et al. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature. 2018;563(7732):514–21. https://doi.org/10.1038/s41586-018-0650-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Leucht P, Kim J-B, Amasha R, James AW, Girod S, Helms JA. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development. 2008;135(17):2845–54. https://doi.org/10.1242/dev.023788.

    Article  PubMed  CAS  Google Scholar 

  58. Wang KC, Helms JA, Chang HY. Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol. 2009;19(6):268–75. https://doi.org/10.1016/j.tcb.2009.03.007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Donneys A, et al. Deferoxamine expedites consolidation during mandibular distraction osteogenesis. Bone. 2013;55(2):384–90. https://doi.org/10.1016/j.bone.2013.04.005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci. 1995;92(12):5510–4. https://doi.org/10.1073/pnas.92.12.5510.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Iyer NV, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 1998;12(2):149–62. https://doi.org/10.1101/gad.12.2.149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Cao J, et al. Recruitment of exogenous mesenchymal stem cells in mandibular distraction osteogenesis by the stromal cell-derived factor-1/chemokine receptor-4 pathway in rats. Br J Oral Maxillofac Surg. 2013;51(8):937–41. https://doi.org/10.1016/j.bjoms.2013.05.003.

    Article  PubMed  Google Scholar 

  63. Theveneau E, et al. Collective chemotaxis requires contact-dependent cell polarity. Dev Cell. 2010;19(1):39–53. https://doi.org/10.1016/j.devcel.2010.06.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Smeriglio P, et al. Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation. Tissue Eng Part A. 2015;21(3–4):840–9. https://doi.org/10.1089/ten.TEA.2014.0375.

    Article  PubMed  CAS  Google Scholar 

  65. Smeriglio P, et al. Comparative potential of juvenile and adult human articular chondrocytes for cartilage tissue formation in three-dimensional biomimetic hydrogels. Tissue Eng Part A. 2015;21(1–2):147–55. https://doi.org/10.1089/ten.TEA.2014.0070.

    Article  PubMed  CAS  Google Scholar 

  66. Wong SA, et al. Chondrocyte-to-osteoblast transformation in mandibular fracture repair. J Orthop Res Off Publ Orthop Res Soc. 2021;39(8):1622–32. https://doi.org/10.1002/jor.24904.

    Article  CAS  Google Scholar 

  67. Lan MY, Park JP, Jang YJ. Donor site morbidities resulting from conchal cartilage harvesting in rhinoplasty. J Laryngol Otol. 2017;131(6):529–33. https://doi.org/10.1017/S0022215117000639.

    Article  PubMed  CAS  Google Scholar 

  68. Rotter N, et al. Age-related changes in the composition and mechanical properties of human nasal cartilage. Arch Biochem Biophys. 2002;403(1):132–40. https://doi.org/10.1016/S0003-9861(02)00263-1.

    Article  PubMed  CAS  Google Scholar 

  69. Wolf F, Haug M, Farhadi J, Candrian C, Martin I, Barbero A. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage. Eur Cell Mater. 2008;15:1–10. https://doi.org/10.22203/ecm.v015a01.

    Article  PubMed  CAS  Google Scholar 

  70. Li T, Chen S, Pei M. Contribution of neural crest-derived stem cells and nasal chondrocytes to articular cartilage regeneration. Cell Mol Life Sci CMLS. 2020;77(23):4847–59. https://doi.org/10.1007/s00018-020-03567-y.

    Article  PubMed  CAS  Google Scholar 

  71. Jiang X, Iseki S, Maxson RE, Sucov HM, Morriss-Kay GM. Tissue origins and interactions in the mammalian skull vault. Dev Biol. 2002;241(1):106–16. https://doi.org/10.1006/dbio.2001.0487.

    Article  PubMed  CAS  Google Scholar 

  72. Sheen JR, Garla VV. Fracture Healing Overview. In StatPearls. Treasure Island: StatPearls Publishing, 2022. Accessed: Feb. 28, 2023. [Online]. Available: http://www.ncbi.nlm.nih.gov/books/NBK551678/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piera Smeriglio or Antoine Zalc.

Ethics declarations

Conflict of Interest

Piera Smeriglio and Antoine Zalc declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smeriglio, P., Zalc, A. Cranial Neural Crest Cells Contribution to Craniofacial Bone Development and Regeneration. Curr Osteoporos Rep 21, 624–631 (2023). https://doi.org/10.1007/s11914-023-00804-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00804-8

Keywords

Navigation