Skip to main content

Advertisement

Log in

Bone Health in Pediatric Patients with IBD: What Is New?

  • Rare Bone Disease (C Langman and E Shore, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Patients with inflammatory bowel disease (IBD) have increased bone fragility, demonstrated by increased fracture risk, and often have low bone density and altered bone geometry, but the underlying pathophysiology remains poorly understood.

Recent Findings

Children and adolescents with IBD appear to have decreased bone formation, at diagnosis, which frequently improves with treatment of their underlying IBD. There is a growing body of evidence regarding how the immune system interacts with bone metabolism. There are likely multi-factorial etiologies that contribute to suboptimal bone accrual and subsequent lack of peak bone mass attainment in growing patients with IBD. There appears to be differential effects dependent upon IBD sub-type and bone compartment.

Summary

Pediatric patients with IBD require recognition of several risk factors that may adversely impact their bone accrual. Future studies are necessary to further delineate the effects of IBD on pediatric bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Bernstein CN, Benchimol EI, Bitton A, Murthy SK, Nguyen GC, Lee K, et al. The impact of inflammatory bowel disease in Canada 2018: extra-intestinal diseases in IBD. J Can Assoc Gastroenterol. 2019;2(Suppl 1):S73–s80.

    Article  PubMed  Google Scholar 

  2. Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. Bmj. 1991;303(6808):961–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Laakso S, et al. Compromised peak bone mass in patients with inflammatory bowel disease-a prospective study. J Pediatr. 2014;164(6):1436–43.e1.

    Article  PubMed  Google Scholar 

  4. Ferreira P, Cavalcanti AS, Silva G. Linear growth and bone metabolism in pediatric patients with inflammatory bowel disease. J Pediatr. 2019;95(Suppl 1):59–65. Reviews our current understanding of the pathophysiology underlying impaired linear growth and bone accrual in pediatric patients with IBD.

  5. Werkstetter KJ, Pozza SBD, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106(5):988–98.

    Article  PubMed  Google Scholar 

  6. Levy-Shraga Y, et al. Trabecular bone score in children and adolescents with inflammatory bowel diseases. J Clin Densitom. 2020.

  7. Ricciuto A, et al. Predicting outcomes in pediatric Crohn's disease for management optimization: systematic review and consensus statements from the pediatric inflammatory bowel disease-ahead program. Gastroenterology. 2021;160(1):403–436.e26.

    Article  CAS  PubMed  Google Scholar 

  8. Levy-Shraga Y, Shenkar A, Modan-Moses D, Assa A, Haberman Y, Shouval D, et al. Longitudinal changes in bone mineral density in children with inflammatory bowel diseases. Acta Paediatr. 2020;109(5):1026–32.

    Article  CAS  PubMed  Google Scholar 

  9. Sigurdsson GV, Schmidt S, Mellström D, Ohlsson C, Kindblom JM, Lorentzon M, et al. Bone mass development from childhood into young adulthood in patients with childhood-onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23(12):2215–26.

    Article  PubMed  Google Scholar 

  10. Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114(5):902–11.

    Article  CAS  PubMed  Google Scholar 

  11. Burnham JM, Shults J, Semeao E, Foster B, Zemel BS, Stallings VA, et al. Whole body BMC in pediatric Crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res. 2004;19(12):1961–8.

    Article  PubMed  Google Scholar 

  12. Paganelli M, Albanese C, Borrelli O, Civitelli F, Canitano N, Viola F, et al. Inflammation is the main determinant of low bone mineral density in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(4):416–23.

    Article  PubMed  Google Scholar 

  13. Levin AD, Wildenberg ME, van den Brink GR. Mechanism of action of anti-TNF therapy in inflammatory bowel disease. J Crohns Colitis. 2016;10(8):989–97.

    Article  PubMed  Google Scholar 

  14. Thayu M, Leonard MB, Hyams JS, Crandall WV, Kugathasan S, Otley AR, et al. Improvement in biomarkers of bone formation during infliximab therapy in pediatric Crohn’s disease: results of the REACH study. Clin Gastroenterol Hepatol. 2008;6(12):1378–84.

    Article  CAS  PubMed  Google Scholar 

  15. Veerappan SG, Healy M, Walsh B, O’Morain CA, Daly JS, Ryan BM. A 1-year prospective study of the effect of infliximab on bone metabolism in inflammatory bowel disease patients. Eur J Gastroenterol Hepatol. 2016;28(11):1335–44.

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–349. Reviews the underlying biology and physiology that connects the bone and the immune system.

  17. Franchimont N, et al. Increased expression of receptor activator of NF-kappaB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn's disease patients. Clin Exp Immunol. 2004;138(3):491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Alkhouri RH, Hashmi H, Baker RD, Gelfond D, Baker SS. Vitamin and mineral status in patients with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2013;56(1):89–92.

    Article  CAS  PubMed  Google Scholar 

  19. Levin AD, Wadhera V, Leach ST, Woodhead HJ, Lemberg DA, Czarina Mendoza-Cruz A, et al. Vitamin D deficiency in children with inflammatory bowel disease. Dig Dis Sci. 2011;56(3):830–6.

    Article  CAS  PubMed  Google Scholar 

  20. Kabbani TA, Koutroubakis IE, Schoen RE, Ramos-Rivers C, Shah N, Swoger J, et al. Association of vitamin D level with clinical status in inflammatory bowel disease: a 5-year longitudinal study. Am J Gastroenterol. 2016;111(5):712–9.

    Article  CAS  PubMed  Google Scholar 

  21. Pappa HM, Gordon CM, Saslowsky TM, Zholudev A, Horr B, Shih MC, et al. Vitamin D status in children and young adults with inflammatory bowel disease. Pediatrics. 2006;118(5):1950–61.

    Article  PubMed  Google Scholar 

  22. Ma NS, Gordon CM. Pediatric osteoporosis: where are we now? J Pediatr. 2012;161(6):983–90.

    Article  PubMed  Google Scholar 

  23. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Guidelines for preventing and treating vitamin D deficiency and insufficiency revisited. J Clin Endocrinol Metab. 2012;97(4):1153–8.

    Article  CAS  PubMed  Google Scholar 

  24. Rigterink T, Appleton L, Day AS. Vitamin D therapy in children with inflammatory bowel disease: a systematic review. World J Clin Pediatr. 2019;8(1):1–14. Diverse treatment regimens for pediatric patients with IBD were inadequate at achieving and maintaining vitamin D sufficiency, but were safe and well tolerated.

  25. Spedding S, Vanlint S, Morris H, Scragg R. Does vitamin D sufficiency equate to a single serum 25-hydroxyvitamin D level or are different levels required for non-skeletal diseases? Nutrients. 2013;5(12):5127–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gubatan J, Moss AC. Vitamin D in inflammatory bowel disease: more than just a supplement. Curr Opin Gastroenterol. 2018;34(4):217–25. Highlights the different roles of vitamin D on modulating the immune system and protective role of vitamin D for the gut. Discusses the prevalence and associated poor outcomes with vitamin D deficiency and IBD, and the benefits of supplementation remain unclear.

  27. Talathi S, Nagaraj P, Jester T, Maclin J, Knight T, Barnes MJ. Relations between disease status and body composition in pediatric inflammatory bowel disease. Eur J Pediatr. 2020;179(10):1499–505.

    Article  PubMed  Google Scholar 

  28. Barnes MJ, Lynch MK, Lisenby MD, Jester T, Maclin J, Knight T, et al. Conceptual model of lean body mass in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2019;68(3):301–5.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nobile S, Grand RJ, Pappa HM. Risk factors for low bone mineral density in pediatric inflammatory bowel disease: the positive role of physical activity. Eur J Gastroenterol Hepatol. 2018;30(4):471–6.

    Article  PubMed  Google Scholar 

  30. Vanhelst J, Vidal F, Turck D, Drumez E, Djeddi D, Devouge E, et al. Physical activity is associated with improved bone health in children with inflammatory bowel disease. Clin Nutr. 2020;39(6):1793–8.

    Article  PubMed  Google Scholar 

  31. Setty-Shah N, Maranda L, Nwosu BU. Adiposity is associated with early reduction in bone mass in pediatric inflammatory bowel disease. Nutrition. 2016;32(7-8):761–6.

    Article  PubMed  Google Scholar 

  32. Vanhelst J, Coopman S, Labreuche J, Dupont C, Bertrand V, Djeddi D, et al. Protocol of a randomised controlled trial assessing the impact of physical activity on bone health in children with inflammatory bowel disease. BMJ Open. 2020;10(5):e036400.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maratova K, Hradsky O, Matyskova J, Copova I, Soucek O, Sumnik Z, et al. Musculoskeletal system in children and adolescents with inflammatory bowel disease: normal muscle force, decreased trabecular bone mineral density and low prevalence of vertebral fractures. Eur J Pediatr. 2017;176(10):1355–63.

    Article  CAS  PubMed  Google Scholar 

  34. Sigurdsson GV, Schmidt S, Mellström D, Ohlsson C, Karlsson M, Lorentzon M, et al. Altered body composition profiles in young adults with childhood-onset inflammatory bowel disease. Scand J Gastroenterol. 2020;55(2):169–77.

    Article  CAS  PubMed  Google Scholar 

  35. Klaus J, Haenle MM, Schröter C, Adler G, von Boyen G, Reinshagen M, et al. A single dose of intravenous zoledronate prevents glucocorticoid therapy-associated bone loss in acute flare of Crohn's disease, a randomized controlled trial. Am J Gastroenterol. 2011;106(4):786–93.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao X, Zhou C, Chen H, Ma J, Zhu Y, Wang P, et al. Efficacy and safety of medical therapy for low bone mineral density in patients with Crohn disease: a systematic review with network meta-analysis. Medicine (Baltimore). 2017;96(11):e6378.

    Article  Google Scholar 

  37. Bachrach LK, Ward LM. Clinical review 1: bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab. 2009;94(2):400–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ludvigsson JF, Mahl M, Sachs MC, Björk J, Michaelsson K, Ekbom A, et al. Fracture risk in patients with inflammatory bowel disease: a nationwide population-based cohort study from 1964 to 2014. Am J Gastroenterol. 2019;114(2):291–304.

    Article  PubMed  Google Scholar 

  39. Chen YC, Greenbaum J, Shen H, Deng HW. Association between gut microbiota and bone health: potential mechanisms and prospective. J Clin Endocrinol Metab. 2017;102(10):3635–46.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wallace TC, Marzorati M, Spence L, Weaver CM, Williamson PS. New frontiers in fibers: innovative and emerging research on the gut microbiome and bone health. J Am Coll Nutr. 2017;36(3):218–22.

    Article  PubMed  Google Scholar 

  41. DeFilippis EM, Sockolow R, Barfield E. Health care maintenance for the pediatric patient with inflammatory bowel disease. Pediatrics. 2016:138(3).

  42. Pappa H, Thayu M, Sylvester F, Leonard M, Zemel B, Gordon C. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53(1):11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR, et al. Executive summary of the 2019 ISCD position development conference on monitoring treatment, DXA cross-calibration and least significant change, spinal cord injury, peri-prosthetic and orthopedic bone health, transgender medicine, and pediatrics. J Clin Densitom. 2019;22(4):453–71.

    Article  PubMed  Google Scholar 

  44. Weber DR, Boyce A, Gordon C, Högler W, Kecskemethy HH, Misra M, et al. The Utility of DXA Assessment at the forearm, proximal femur, and lateral distal femur, and vertebral fracture assessment in the pediatric population: 2019 ISCD official position. J Clin Densitom. 2019;22(4):567–89.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin N Am. 2002;49(1):143–73.

    Article  Google Scholar 

  46. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Heaney RP, Recker RR, Grote J, Horst RL, Armas LAG. Vitamin D(3) is more potent than vitamin D(2) in humans. J Clin Endocrinol Metab. 2011;96(3):E447–52.

    Article  CAS  PubMed  Google Scholar 

  49. Freedberg DE, Haynes K, Denburg MR, Zemel BS, Leonard MB, Abrams JA, et al. Use of proton pump inhibitors is associated with fractures in young adults: a population-based study. Osteoporos Int. 2015;26(10):2501–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malchodi L, et al. Pediatrics. 2019:144(1).

  51. Thong BKS, Ima-Nirwana S, Chin KY. Proton pump inhibitors and fracture risk: a review of current evidence and mechanisms involved. Int J Environ Res Public Health. 2019:16(9).

  52. Ross AC, Manson JAE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  CAS  PubMed  Google Scholar 

  53. Misof BM, Roschger P, Klaushofer K, Rauch F, Ma J, Mack DR, et al. Increased bone matrix mineralization in treatment-naïve children with inflammatory bowel disease. Bone. 2017;105:50–6.

    Article  CAS  PubMed  Google Scholar 

  54. Sylvester FA, Wyzga N, Hyams JS, Davis PM, Lerer T, Vance K, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.

    Article  PubMed  Google Scholar 

  55. Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153(4):484–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weber DR, Gordon RJ, Kelley JC, Leonard MB, Willi SM, Hatch-Stein J, et al. Poor glycemic control is associated with impaired bone accrual in the year following a diagnosis of type 1 diabetes. J Clin Endocrinol Metab. 2019;104(10):4511–20.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304.

    Article  PubMed  Google Scholar 

  58. Ecklund K, Vajapeyam S, Mulkern RV, Feldman HA, O’Donnell JM, DiVasta AD, et al. Bone marrow fat content in 70 adolescent girls with anorexia nervosa: magnetic resonance imaging and magnetic resonance spectroscopy assessment. Pediatr Radiol. 2017;47(8):952–62.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vajapeyam S, Ecklund K, Mulkern RV, Feldman HA, O'Donnell JM, DiVasta AD, et al. Magnetic resonance imaging and spectroscopy evidence of efficacy for adrenal and gonadal hormone replacement therapy in anorexia nervosa. Bone. 2018;110:335–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vihinen MK, Kolho KL, Ashorn M, Verkasalo M, Raivio T. Bone turnover and metabolism in paediatric patients with inflammatory bowel disease treated with systemic glucocorticoids. Eur J Endocrinol. 2008;159(6):693–8.

    Article  CAS  PubMed  Google Scholar 

  61. DeBoer MD, Lee AM, Herbert K, Long J, Thayu M, Griffin LM, et al. Increases in IGF-1 after anti-TNF-α therapy are associated with bone and muscle accrual in pediatric Crohn disease. J Clin Endocrinol Metab. 2018;103(3):936–45.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gupta N, Liu C, King E, Sylvester F, Lee D, Boyle B, et al. Continued statural growth in older adolescents and young adults with Crohn’s disease and ulcerative colitis beyond the time of expected growth plate closure. Inflamm Bowel Dis. 2020;26(12):1880–9.

    Article  PubMed  Google Scholar 

  63. Gordon CM, Goodman E, Emans SJ, Grace E, Becker KA, Rosen CJ, et al. Physiologic regulators of bone turnover in young women with anorexia nervosa. J Pediatr. 2002;141(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  64. Gordon CM, Binello E, LeBoff MS, Wohl ME, Rosen CJ, Colin AA. Relationship between insulin-like growth factor I, dehydroepiandrosterone sulfate and proresorptive cytokines and bone density in cystic fibrosis. Osteoporos Int. 2006;17(5):783–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sylvester FA. Inflammatory bowel disease: effects on bone and mechanisms. Adv Exp Med Biol. 2017;1033:133–50.

    Article  CAS  PubMed  Google Scholar 

  66. Wasserman H, Gordon CM. Bone mineralization and fracture risk assessment in the pediatric population. J Clin Densitom. 2017;20(3):389–96.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca J. Gordon.

Ethics declarations

Conflict of Interest

Drs. Rebecca Gordon and Catherine Gordon declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rare Bone Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordon, R.J., Gordon, C.M. Bone Health in Pediatric Patients with IBD: What Is New?. Curr Osteoporos Rep 19, 429–435 (2021). https://doi.org/10.1007/s11914-021-00691-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00691-x

Keywords

Navigation