Dietary Patterns and Pediatric Bone

Abstract

Purpose of Review

Much of what we know about dietary patterns (DPs) and bone is derived from cross-sectional studies in adults. Given, establishing healthy bones during childhood serves as a blueprint for adult bone, it is important to better understand the role of DPs on pediatric bone. The purpose of this review is to determine if DPs influence bone strength in children.

Recent Findings

The majority of studies investigating the role of DPs on pediatric bone are cross-sectional in design and examine data-derived “a posterori” DPs. Overall, the DPs characterized by high intakes of fruits and vegetables demonstrated positive effects on pediatric bone.

Summary

Results from both “a posteriori” and “a priori” DPs approaches in children suggests that DPs dominated by the intake of fruits and vegetables might be beneficial for pediatric bone. Future studies may consider “a priori” DPs interventions to better understand relationship between DPs and pediatric bone.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9. https://doi.org/10.1097/00041433-200202000-00002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Jacques PF, Tucker KL. Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr. 2001;73(1):1–2. https://doi.org/10.1093/ajcn/73.1.1.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Kant AK. Dietary patterns and health outcomes. J Am Diet Assoc. 2004;104(4):615–35. https://doi.org/10.1016/j.jada.2004.01.010.

    Article  PubMed  Google Scholar 

  4. 4.

    Hoffmann K, Schulze MB, Schienkiewitz A, Nothlings U, Boeing H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol. 2004;159(10):935–44. https://doi.org/10.1093/aje/kwh134.

    Article  PubMed  Google Scholar 

  5. 5.

    Newby PK, Tucker KL. Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev. 2004;62(5):177–203. https://doi.org/10.1301/nr.2004.may.177-203.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Denova-Gutierrez E, Clark P, Munoz-Aguirre P, Flores M, Talavera JO, Chico-Barba LG, et al. Dietary patterns are associated with calcium and vitamin D intake in an adult Mexican population. Nutricion Hospitalaria. 2016;33(3):663–70. https://doi.org/10.20960/nh.276.

    CAS  Article  Google Scholar 

  7. 7.

    Tucker KL. Dietary patterns, approaches, and multicultural perspective. Appl Physiol Nutr Metab. 2010;35(2):211–8. https://doi.org/10.1139/H10-010.

    Article  PubMed  Google Scholar 

  8. 8.

    Jacobs DR Jr, Steffen LM. Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr. 2003;78(3 Suppl):508S–13S. https://doi.org/10.1093/ajcn/78.3.508S.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Moeller SM, Reedy J, Millen AE, Dixon LB, Newby PK, Tucker KL, et al. Dietary patterns: challenges and opportunities in dietary patterns research an Experimental Biology workshop, April 1, 2006. J Am Diet Assoc. 2007;107(7):1233–9. https://doi.org/10.1016/j.jada.2007.03.014.

    Article  PubMed  Google Scholar 

  10. 10.

    Movassagh EZ, Vatanparast H. Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr. 2017;8(1):1–16. https://doi.org/10.3945/an.116.013326.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Lacatusu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The Mediterranean Diet: from an environment-driven food culture to an emerging medical prescription. Int J Environ Res Public Health. 2019;16:16(6). https://doi.org/10.3390/ijerph16060942.

    Article  Google Scholar 

  12. 12.

    Challa HJ, Tadi P, Uppaluri KR. DASH diet (dietary Approaches to Stop hypertension). Edtion ed. Treasure Island (FL): StatPearls; 2019.

    Google Scholar 

  13. 13.

    Kennedy ET, Ohls J, Carlson S, Fleming K. The healthy eating index: design and applications. J Am Diet Assoc. 1995;95(10):1103–8. https://doi.org/10.1016/S0002-8223(95)00300-2.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54. https://doi.org/10.1093/ajcn.81.2.341.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Statovci D, Aguilera M, MacSharry J, Melgar S. The impact of Western diet and nutrients on the microbiota and immune response at mucosal interfaces. Front Immunol. 2017;8:838. https://doi.org/10.3389/fimmu.2017.00838.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mikkila V, Rasanen L, Laaksonen MM, Juonala M, Viikari J, Pietinen P, et al. Long-term dietary patterns and carotid artery intima media thickness: the Cardiovascular Risk in Young Finns Study. Br J Nutr. 2009;102(10):1507–12. https://doi.org/10.1017/S000711450999064X.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Keys A, Menotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, et al. The diet and 15-year death rate in the seven countries study. Am J Epidemiol. 1986;124(6):903–15. https://doi.org/10.1093/oxfordjournals.aje.a114480.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Mitrou PN, Kipnis V, Thiebaut AC, Reedy J, Subar AF, Wirfalt E, et al. Mediterranean dietary pattern and prediction of all-cause mortality in a US population: results from the NIH-AARP Diet and Health Study. Arch Intern Med. 2007;167(22):2461–8. https://doi.org/10.1001/archinte.167.22.2461.

    Article  PubMed  Google Scholar 

  19. 19.

    Saneei P, Salehi-Abargouei A, Esmaillzadeh A, Azadbakht L. Influence of Dietary Approaches to Stop Hypertension (DASH) diet on blood pressure: a systematic review and meta-analysis on randomized controlled trials. Nutr Metab Cardiovasc Dis. 2014;24(12):1253–61. https://doi.org/10.1016/j.numecd.2014.06.008.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Levitan EB, Wolk A, Mittleman MA. Consistency with the DASH diet and incidence of heart failure. Arch Intern Med. 2009;169(9):851–7. https://doi.org/10.1001/archinternmed.2009.56.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7–8):939–47. https://doi.org/10.1016/j.nut.2012.12.021.

    Article  PubMed  Google Scholar 

  22. 22.

    Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168(7):713–20. https://doi.org/10.1001/archinte.168.7.713.

    Article  PubMed  Google Scholar 

  23. 23.

    Rathod AD, Bharadwaj AS, Badheka AO, Kizilbash M, Afonso L. Healthy Eating Index and mortality in a nationally representative elderly cohort. Arch Intern Med. 2012;172(3):275–7. https://doi.org/10.1001/archinternmed.2011.1031.

    Article  PubMed  Google Scholar 

  24. 24.

    Rashidipour-Fard N, Karimi M, Saraf-Bank S, Baghaei MH, Haghighatdoost F, Azadbakht L. Healthy eating index and cardiovascular risk factors among Iranian elderly individuals. ARYA Atheroscler. 2017;13(2):56–65.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Arem H, Reedy J, Sampson J, Jiao L, Hollenbeck AR, Risch H, et al. The Healthy Eating Index 2005 and risk for pancreatic cancer in the NIH-AARP study. J Natl Cancer Inst. 2013;105(17):1298–305. https://doi.org/10.1093/jnci/djt185.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Sarmento RA, Antonio JP, de Miranda IL, Nicoletto BB, de Almeida JC. Eating patterns and health outcomes in patients with type 2 diabetes. J Endocr Soc. 2018;2(1):42–52. https://doi.org/10.1210/js.2017-00349.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med. 2001;161(15):1857–62. https://doi.org/10.1001/archinte.161.15.1857.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Steyn NP, Mann J, Bennett PH, Temple N, Zimmet P, Tuomilehto J, et al. Diet, nutrition and the prevention of type 2 diabetes. Public Health Nutr. 2004;7(1A):147–65. https://doi.org/10.1079/phn2003586.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350(23):2362–74. https://doi.org/10.1056/NEJMoa031049.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Rubin DA, McMurray RG, Harrell JS, Hackney AC, Thorpe DE, Haqq AM. The association between insulin resistance and cytokines in adolescents: the role of weight status and exercise. Metabolism. 2008;57(5):683–90. https://doi.org/10.1016/j.metabol.2008.01.005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Daniels SR, Pratt CA, Hayman LL. Reduction of risk for cardiovascular disease in children and adolescents. Circulation. 2011;124(15):1673–86. https://doi.org/10.1161/CIRCULATIONAHA.110.016170.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    van de Laar RJ, Stehouwer CD, van Bussel BC, Prins MH, Twisk JW, Ferreira I. Adherence to a Mediterranean dietary pattern in early life is associated with lower arterial stiffness in adulthood: the Amsterdam Growth and Health Longitudinal Study. J Intern Med. 2013;273(1):79–93. https://doi.org/10.1111/j.1365-2796.2012.02577.x.

    Article  PubMed  Google Scholar 

  33. 33.

    Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30. https://doi.org/10.1186/1749-799X-6-30.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Sawin EA, Stroup BM, Murali SG, O'Neill LM, Ntambi JM, Ney DM. Differental effects of dietary fat conetnt and protein source on bone phenotype and fatty acid oxidation in female C67BI/6 mice. PLoS One. 2016;11(10):e0163234. https://doi.org/10.1371/journal.pone.0163234.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sambrook P, Cooper C. Osteoporosis. Lancet. 2006;367(9527):2010–8. https://doi.org/10.1016/S0140-6736(06)68891-0.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Johnell O, Borgstrom F, Jonsson B, Kanis J. Latitude, socioeconomic prosperity, mobile phones and hip fracture risk. Osteoporos Int. 2007;18(3):333–7. https://doi.org/10.1007/s00198-006-0245-4.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM. Effect of calcium supplementation on bone mineral accretion in gambian children accustomed to a low-calcium diet. Am J Clin Nutr. 2000;71(2):544–9. https://doi.org/10.1093/ajcn/71.2.544.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Moyer-Mileur LJ, Xie B, Ball SD, Pratt T. Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact. 2003;3(1):63–70.

    CAS  PubMed  Google Scholar 

  39. 39.

    Alexy U, Remer T, Manz F, Neu CM, Schoenau E. Long-term protein intake and dietary potential renal acid load are associated with bone modeling and remodeling at the proximal radius in healthy children. Am J Clin Nutr. 2005;82(5):1107–14. https://doi.org/10.1093/ajcn/82.5.1107.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    El-Hajj Fuleihan G, Nabulsi M, Tamim H, Maalouf J, Salamoun M, Khalife H, et al. Effect of vitamin D replacement on musculoskeletal parameters in school children: a randomized controlled trial. J Clin Endocrinol Metab. 2006;91(2):405–12. https://doi.org/10.1210/jc.2005-1436.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Viljakainen HT, Natri AM, Karkkainen M, Huttunen MM, Palssa A, Jakobsen J, et al. A positive dose-response effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J Bone Miner Res. 2006;21(6):836–44. https://doi.org/10.1359/jbmr.060302.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. https://doi.org/10.1007/s00198-015-3440-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Benetou V, Orfanos P, Feskanich D, Michaelsson K, Pettersson-Kymmer U, Byberg L, et al. Mediterranean diet and hip fracture incidence among older adults: the CHANCES project. Osteoporos Int. 2018;29(7):1591–9. https://doi.org/10.1007/s00198-018-4517-6.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Feart C, Lorrain S, Ginder Coupez V, Samieri C, Letenneur L, Paineau D, et al. Adherence to a Mediterranean diet and risk of fractures in French older persons. Osteoporos Int. 2013;24(12):3031–41. https://doi.org/10.1007/s00198-013-2421-7.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Lin PH, Ginty F, Appel LJ, Aickin M, Bohannon A, Garnero P, et al. The DASH diet and sodium reduction improve markers of bone turnover and calcium metabolism in adults. J Nutr. 2003;133(10):3130–6. https://doi.org/10.1093/jn/133.10.3130.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Zeng FF, Xue WQ, Cao WT, Wu BH, Xie HL, Fan F, et al. Diet-quality scores and risk of hip fractures in elderly urban Chinese in Guangdong, China: a case-control study. Osteoporos Int. 2014;25(8):2131–41. https://doi.org/10.1007/s00198-014-2741-2.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Dai Z, Butler LM, van Dam RM, Ang LW, Yuan JM, Koh WP. Adherence to a vegetable-fruit-soy dietary pattern or the Alternative Healthy Eating Index is associated with lower hip fracture risk among Singapore Chinese. J Nutr. 2014;144(4):511–8. https://doi.org/10.3945/jn.113.187955.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Ferrari S, Rizzoli R, Slosman D, Bonjour JP. Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab. 1998;83(2):358–61. https://doi.org/10.1210/jcem.83.2.4583.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Hansen MA, Overgaard K, Riis BJ, Christiansen C. Role of peak bone mass and bone loss in postmenopausal osteoporosis: 12 year study. BMJ. 1991;303(6808):961–4. https://doi.org/10.1136/bmj.303.6808.961.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Xu L, Nicholson P, Wang Q, Alen M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res. 2009;24(10):1693–8. https://doi.org/10.1359/jbmr.090405.

    Article  PubMed  Google Scholar 

  51. 51.

    Yang Y, Wu F, Winzenberg T, Jones G. Tracking of areal bone mineral density from age eight to young adulthood and factors associated with deviation from tracking: a 17-year prospective cohort study. J Bone Miner Res. 2018;33(5):832–9. https://doi.org/10.1002/jbmr.3361.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    van den Hooven EH, Heppe DH, Kiefte-de Jong JC, Medina-Gomez C, Moll HA, Hofman A, et al. Infant dietary patterns and bone mass in childhood: the Generation R Study. Osteoporos Int. 2015;26(5):1595–604. https://doi.org/10.1007/s00198-015-3033-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Mu M, Wang SF, Sheng J, Zhao Y, Wang GX, Liu KY, et al. Dietary patterns are associated with body mass index and bone mineral density in Chinese freshmen. J Am Coll Nutr. 2014;33(2):120–8. https://doi.org/10.1080/07315724.2013.874897.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Shin S, Hong K, Kang SW, Joung H. A milk and cereal dietary pattern is associated with a reduced likelihood of having a low bone mineral density of the lumbar spine in Korean adolescents. Nutr Res. 2013;33(1):59–66. https://doi.org/10.1016/j.nutres.2012.11.003.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yang Y, Hu XM, Chen TJ, Bai MJ. Rural-urban differences of dietary patterns, overweight, and bone mineral status in Chinese students. Nutrients. 2016:8(9). https://doi.org/10.3390/nu8090537.

  56. 56.

    Wosje KS, Khoury PR, Claytor RP, Copeland KA, Hornung RW, Daniels SR, et al. Dietary patterns associated with fat and bone mass in young children. Am J Clin Nutr. 2010;92(2):294–303. https://doi.org/10.3945/ajcn.2009.28925.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Movassagh EZ, Baxter-Jones ADG, Kontulainen S, Whiting S, Szafron M, Vatanparast H. Vegetarian-style dietary pattern during adolescence has long-term positive impact on bone from adolescence to young adulthood: a longitudinal study. Nutr J. 2018;17(1):36. https://doi.org/10.1186/s12937-018-0324-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Shivappa N, Steck SE, Hurley TG, Hussey JR, Hebert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17(8):1689–96. https://doi.org/10.1017/S1368980013002115.

    Article  PubMed  Google Scholar 

  59. 59.

    Coheley LM, Shivappa N, Hebert JR, Lewis RD. Dietary inflammatory index(R) and cortical bone outcomes in healthy adolescent children. Osteoporos Int. 2019;30(8):1645–54. https://doi.org/10.1007/s00198-019-04946-3.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Fang Y, Zhu J, Fan J, Sun L, Cai S, Fan C, et al. Dietary inflammatory index in relation to bone mineral density, osteoporosis risk and fracture risk: a systematic review and meta-analysis. Osteoporos Int. 2020. https://doi.org/10.1007/s00198-020-05578-8.

  61. 61.

    Monjardino T, Lucas R, Ramos E, Barros H. Associations between a priori-defined dietary patterns and longitudinal changes in bone mineral density in adolescents. Public Health Nutr. 2014;17(1):195–205. https://doi.org/10.1017/S1368980012004879.

    Article  PubMed  Google Scholar 

  62. 62.

    Seiquer I, Mesias M, Hoyos AM, Galdo G, Navarro MP. A Mediterranean dietary style improves calcium utilization in healthy male adolescents. J Am Coll Nutr. 2008;27(4):454–62. https://doi.org/10.1080/07315724.2008.10719725.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Togo P, Osler M, Sorensen TI, Heitmann BL. Food intake patterns and body mass index in observational studies. Int J Obes Relat Metab Disord. 2001;25(12):1741–51. https://doi.org/10.1038/sj.ijo.0801819.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Livingstone MB, Black AE. Markers of the validity of reported energy intake. J Nutr. 2003;133(Suppl 3):895S–920S. https://doi.org/10.1093/jn/133.3.895S.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Newby PK. Are dietary intakes and eating behaviors related to childhood obesity? A comprehensive review of the evidence. J Law Med Ethics. 2007;35(1):35–60. https://doi.org/10.1111/j.1748-720X.2007.00112.x.

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Heitmann BL, Lissner L. Dietary underreporting by obese individuals--is it specific or non-specific? BMJ. 1995;311(7011):986–9. https://doi.org/10.1136/bmj.311.7011.986.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Movassagh EZ, Baxter-Jones ADG, Kontulainen S, Whiting SJ, Vatanparast H. Tracking dietary patterns over 20 years from childhood through adolescence into young adulthood: the Saskatchewan Pediatric Bone Mineral Accrual Study. Nutrients 2017;9(9). doi: https://doi.org/10.3390/nu9090990.

  68. 68.

    Michels KB, Schulze MB. Can dietary patterns help us detect diet-disease associations? Nutr Res Rev. 2005;18(2):241–8. https://doi.org/10.1079/NRR2005107.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lauren M. Coheley.

Ethics declarations

Conflict of Interest

I, Lauren Coheley, declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition, Exercise and Lifestyle

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coheley, L.M., Lewis, R.D. Dietary Patterns and Pediatric Bone. Curr Osteoporos Rep 19, 107–114 (2021). https://doi.org/10.1007/s11914-020-00654-8

Download citation

Keywords

  • Bone
  • Pediatric bone
  • Dietary patterns
  • Diet