Skip to main content

Advertisement

Log in

Potential Importance of Immune System Response to Exercise on Aging Muscle and Bone

  • Nutrition, Exercise and Lifestyle (S Shapses and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The age-related loss of skeletal muscle and bone tissue decreases functionality and increases the risk for falls and injuries. One contributing factor of muscle and bone loss over time is chronic low-grade inflammation. Exercise training is an effective countermeasure for decreasing the loss of muscle and bone tissue, possibly by enhancing immune system response. Herein, we discuss key interactions between the immune system, muscle, and bone in relation to exercise perturbations, and we identify that there is substantial “cross-talk” between muscle and bone and the immune system in response to exercise.

Recent Findings

Recent advances in our understanding of the “cross-talk” between muscle and bone and the immune system indicate that exercise is likely to mediate many of the beneficial effects on muscle and bone via their interactions with the immune system.

Summary

The age-related loss of muscle and bone tissue may be partially explained by an impaired immune system via chronic low-grade inflammation. Exercise training has a beneficial effect on immune system function and aging muscle and bone. Theoretically, the “cross-talk” between the immune system, muscle, and bone in response to exercise enhances aging musculoskeletal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Marty E, Liu Y, Samuel A, Or O, Lane J. A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone. 2017;105:276–86.

    Article  PubMed  Google Scholar 

  2. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet. 2019;393:364–76.

    Article  CAS  PubMed  Google Scholar 

  3. Sellami M, Gasmi M, Denham J, Hayes LD, Stratton D, Padulo J, Bragazzi N Effects of acute and chronic exercise on immunological parameters in the elderly aged: can physical activity counteract the effects of aging? Front Immunol 2018;9:2187.

  4. Chen Y, Liu S, Leng SX. Chronic low-grade inflammatory phenotype (CLIP) and senescent immune dysregulation. Clin Ther. 2019;41:400–9.

    Article  PubMed  Google Scholar 

  5. Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol. 2017;17:165–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. • Nelke C, Dziewas R, Minnerup J, Meuth SG, Ruck T. Skeletal muscle as potential central link between sarcopenia and immune senescence. EBioMedicine. 2019;49:381–8. This review highlights some of the recent findings in relation to the cross-talk between muscle and immune system in aging and provides a context for further research that needs to be done in this area.

    Article  PubMed  PubMed Central  Google Scholar 

  7. • Lombardi G, Ziemann E, Banfi G. Physical activity and bone health: what is the role of immune system? A narrative review of the third way. Front Endocrinol (Lausanne). 2019;10:60. This narrative review highlights the cross-talk that occurs between bone and immune system particularly in response to physical activity and exercise. The review provides a complete contextual view of the effects that exercise may play in producing adaptations to bone via the immune system.

    Article  Google Scholar 

  8. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97:1351–402.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beck BR, Daly RM, Singh MAF, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport. 2017;20:438–45.

    Article  PubMed  Google Scholar 

  10. Cruz-Jentoft AJ, Landi F, Schneider SM, Zúñiga C, Arai H, Boirie Y, et al. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing. 2014;43:748–59.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Walsh NP, Gleeson M, Shephard RJ, Gleeson M, Woods JA, Bishop NC, et al. Position statement. Part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

  12. Szlezak AM, Szlezak SL, Keane J, Tajouri L, Minahan C. Establishing a dose-response relationship between acute resistance-exercise and the immune system: protocol for a systematic review. Immunol Lett. 2016;180:54–65.

    Article  CAS  PubMed  Google Scholar 

  13. Peake JM. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev. 2002;8:49–100.

    PubMed  Google Scholar 

  14. Robson PJ, Blannin AK, Walsh NP, Castell LM, Gleeson M. Effects of exercise intensity, duration and recovery on in vitro neutrophil function in male athletes. Int J Sports Med. 1999;20:128–35.

    CAS  PubMed  Google Scholar 

  15. Okutsu M, Suzuki K, Ishijima T, Peake J, Higuchi M. The effects of acute exercise-induced cortisol on CCR2 expression on human monocytes. Brain Behav Immun. 2008;22:1066–71.

    Article  CAS  PubMed  Google Scholar 

  16. McCarthy DA, Dale MM. The leucocytosis of exercise. A review and model. Sports Med. 1988;6:333–63.

    Article  CAS  PubMed  Google Scholar 

  17. Shek PN, Sabiston BH, Buguet A, Radomski MW. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio, immunoglobulin production and NK cell response. Int J Sports Med. 1995;16:466–74.

    Article  CAS  PubMed  Google Scholar 

  18. Peake JM, Neubauer O, Walsh NP, Simpson RJ. Recovery of the immune system after exercise. J Appl Physiol. 2017;122:1077–87.

    Article  CAS  PubMed  Google Scholar 

  19. Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018;9:648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gleeson M, Bishop NC. The T cell and NK cell immune response to exercise. Ann Transplant. 2005;10:43–8.

    PubMed  Google Scholar 

  21. Nielsen HB, Secher NH, Christensen NJ, Pedersen BK. Lymphocytes and NK cell activity during repeated bouts of maximal exercise. Am J Phys. 1996;271:R222–7.

    CAS  Google Scholar 

  22. Suzuki K, Naganuma S, Totsuka M, Suzuki KJ, Mochizuki M, Shiraishi M, et al. Effects of exhaustive endurance exercise and its one-week daily repetition on neutrophil count and functional status in untrained men. Int J Sports Med. 1996;17:205–12.

  23. Suzuki K, Totsuka M, Nakaji S, Yamada M, Kudoh S, Liu Q, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;87:1360–7.

  24. Nieman DC, Henson DA, Gross SJ, Jenkins DP, Davis JM, Murphy EA, et al. Quercetin reduces illness but not immune perturbations after intensive exercise. Med Sci Sports Exerc. 2007;39:1561–9.

    Article  CAS  PubMed  Google Scholar 

  25. Zimmer P, Schenk A, Kieven M, Holthaus M, Lehmann J, Lövenich L, et al. Exercise induced alterations in NK-cell cytotoxicity - methodological issues and future perspectives. Exerc Immunol Rev. 2017;23:66–81.

  26. Male D, Brostoff J, Roth D, Roitt I. Immunology. Eighth edition: Elsevier Ltd.; 2013.

    Book  Google Scholar 

  27. Zanchi NE, Almeida FN, Lira FS, Rosa Neto JC, Nicastro H, da Luz CR, et al. Renewed avenues through exercise muscle contractility and inflammatory status. ScientificWorldJournal. 2012;2012:584205.

  28. Walsh NP, Gleeson M, Pyne DB, Nieman DC, Dhabhar FS, Shephard RJ, Oliver SJ, Bermon S, Kajeniene A Position statement. Part two: maintaining immune health. Exerc Immunol Rev 2011;17:64–103.

  29. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11:607–15.

    Article  CAS  PubMed  Google Scholar 

  30. Giudice J, Taylor JM. Muscle as a paracrine and endocrine organ. Curr Opin Pharmacol. 2017;34:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone. 2018;115:43–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ponzetti M, Rucci N. Updates on osteoimmunology: what’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 2019;10:236.

    Article  Google Scholar 

  33. Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Curr Opin Clin Nutr Metab Care. 2012;15:12–22.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng M, Nguyen M-H, Fantuzzi G, Koh TJ. Endogenous interferon-gamma is required for efficient skeletal muscle regeneration. Am J Phys Cell Phys. 2008;294:C1183–91.

    CAS  Google Scholar 

  35. Londhe P, Davie JK. Gamma interferon modulates myogenesis through the major histocompatibility complex class II transactivator. CIITA Mol Cell Biol. 2011;31:2854–66.

    Article  CAS  PubMed  Google Scholar 

  36. Londhe P, Davie JK. Interferon-γ resets muscle cell fate by stimulating the sequential recruitment of JARID2 and PRC2 to promoters to repress myogenesis. Sci Signal. 2013;6:ra107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Morris AC, Beresford GW, Mooney MR, Boss JM. Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol. 2002;22:4781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Palacios D, Mozzetta C, Consalvi S, Caretti G, Saccone V, Proserpio V, Marquez V.E., Valente S., Mai A., Forcales S.V., Sartorelli V., Puri P.L. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell 2010;7:455–469.

  39. Thoma A, Lightfoot AP. NF-kB and inflammatory cytokine signalling: role in skeletal muscle atrophy. Adv Exp Med Biol. 2018;1088:267–79.

    Article  CAS  PubMed  Google Scholar 

  40. Peake JM, Della Gatta P, Suzuki K, Nieman DC. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev. 2015;21:8–25.

    PubMed  Google Scholar 

  41. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol. 2012;189:3669–80.

    Article  CAS  PubMed  Google Scholar 

  42. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet. 2011;20:790–805.

    Article  CAS  PubMed  Google Scholar 

  43. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fadok VA, Bratton DL, Guthrie L, Henson PM. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: role of proteases. J Immunol. 2001;166:6847–54.

    Article  CAS  PubMed  Google Scholar 

  45. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204:1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int. 2013;24:2377–86.

    Article  CAS  PubMed  Google Scholar 

  48. Boyce BF, Li J, Xing L, Yao Z. Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Front Immunol. 2018;9:2263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Weitzmann MN. Bone and the immune system. Toxicol Pathol. 2017;45:911–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chang B, Quan Q, Li Y, Qiu H, Peng J, Gu Y. Treatment of osteoporosis, with a focus on 2 monoclonal antibodies. Med Sci Monit. 2018;24:8758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kish K, Mezil Y, Ward WE, Klentrou P, Falk B. Effects of plyometric exercise session on markers of bone turnover in boys and young men. Eur J Appl Physiol. 2015;115:2115–24.

    Article  CAS  PubMed  Google Scholar 

  52. Klentrou P, Angrish K, Awadia N, Kurgan N, Kouvelioti R, Falk B. Wnt signaling-related osteokines at rest and following plyometric exercise in prepubertal and early pubertal boys and girls. Pediatr Exerc Sci. 2018;30:457–65.

    Article  PubMed  Google Scholar 

  53. Dekker J, Nelson K, Kurgan N, Falk B, Josse A, Klentrou P. Wnt signaling-related osteokines and transforming growth factors before and after a single bout of plyometric exercise in child and adolescent females. Pediatr Exerc Sci. 2017;29:504–12.

    Article  PubMed  Google Scholar 

  54. Tibana RA, de Almeida LM, Frade de Sousa NM, Nascimento D daC , Neto IV de S, de Almeida JA, et al. Two consecutive days of crossfit training affects pro and anti-inflammatory cytokines and osteoprotegerin without impairments in muscle power Front Physiol 2016;7:260.

  55. Mezil YA, Allison D, Kish K, Ditor D, Ward WE, Tsiani E, et al. Response of bone turnover markers and cytokines to high-intensity low-impact exercise. Med Sci Sports Exerc. 2015;47:1495–502.

    Article  CAS  PubMed  Google Scholar 

  56. Hur S, Cho S-H, Song B-K, Cho B-J. Effect of resistance exercise on serum osteoprotegerin levels and insulin resistance in middle-aged women with metabolic syndrome. Med Sci Monit. 2018;24:9385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sponder M, Campean I-A, Emich M, Fritzer-Szekeres M, Litschauer B, Bergler-Klein J, et al. Endurance training significantly increases serum endocan but not osteoprotegerin levels: a prospective observational study. BMC Cardiovasc Disord. 2017;17:13.

  58. Marques EA, Mota J, Viana JL, Tuna D, Figueiredo P, Guimarães JT, et al. Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Arch Gerontol Geriatr. 2013;57:226–33.

  59. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas S Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science. 1992;257:88–91.

  60. Le Goff B, Blanchard F, Berthelot J-M, Heymann D, Maugars Y. Role for interleukin-6 in structural joint damage and systemic bone loss in rheumatoid arthritis. Joint Bone Spine. 2010;77:201–5.

    Article  PubMed  CAS  Google Scholar 

  61. Park JH, Park KH, Cho S, Choi YS, Seo SK, Lee BS, et al. Concomitant increase in muscle strength and bone mineral density with decreasing IL-6 levels after combination therapy with alendronate and calcitriol in postmenopausal women. Menopause. 2013;20:747–53.

  62. Harmer D, Falank C, Reagan MR. Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne). 2018;9:788.

    Article  Google Scholar 

  63. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62.

    Article  CAS  PubMed  Google Scholar 

  64. Lee S-K, Surh CD. Role of interleukin-7 in bone and T-cell homeostasis. Immunol Rev. 2005;208:169–80.

    Article  CAS  PubMed  Google Scholar 

  65. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, et al. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol. 2006;24:33–63.

  66. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med. 2015;21:1085–90.

  67. Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales CM, Fulzele S, Wenger KH Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone. 2007;40:1544–1553.

  68. Anastasilakis AD, Polyzos SA, Makras P, Gkiomisi A, Bisbinas I, Katsarou A, et al. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos Int. 2014;25:1633–42.

  69. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A. 2015;112:12157–62.

  70. Colaianni G, Mongelli T, Cuscito C, Pignataro P, Lippo L, Spiro G, et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci Rep. 2017;7:2811.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Cornish.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest with regards to this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nutrition, Exercise and Lifestyle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornish, S.M., Chilibeck, P.D. & Candow, D.G. Potential Importance of Immune System Response to Exercise on Aging Muscle and Bone. Curr Osteoporos Rep 18, 350–356 (2020). https://doi.org/10.1007/s11914-020-00596-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00596-1

Keywords

Navigation