Skip to main content

Advertisement

Log in

Breast Cancer Dormancy in Bone

  • Cancer-induced Musculoskeletal Diseases (E Keller and J Sterling, Section editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to summarize recent experimental and clinical evidence for metastatic latency and the molecular mechanisms that regulate tumor dormancy in the bone.

Recent Findings

Tumor dormancy contributes to the progression of metastasis and thus has significant clinical implications for prognosis and treatment. Tumor-intrinsic signaling and specialized bone marrow niches play a pivotal role in determining the dormancy status of bone disseminated tumor cells. Experimental models have provided significant insight into the effects of the bone microenvironment on tumor cells; however, these models remain limited in their ability to study dormancy.

Summary

Despite recent advances in the mechanistic understanding of how tumor cells remain dormant in the bone for prolonged periods of time, the signals that trigger spontaneous dormancy escape remain unclear. This review highlights the need for further investigation of mechanisms underlying tumor dormancy using clinically relevant models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ward E, Sherman RL, Henley SJ, Jemal A, Siegel DA, Feuer EJ, et al. Annual Report to the Nation on the Status of Cancer, 1999–2015, featuring cancer in men and women ages 20–49. J Natl Cancer Inst. 2019. https://doi.org/10.1093/jnci/djz106.

  2. Berman AT, Thukral AD, Hwang W-T, Solin LJ, Vapiwala N. Incidence and patterns of distant metastases for patients with early-stage breast cancer after breast conservation treatment. Clinical Breast Cancer. 2013;13(2):88–94.

    PubMed  Google Scholar 

  3. Brockton NT, Gill SJ, Laborge SL, Paterson AHG, Cook LS, Vogel HJ, et al. The Breast Cancer to Bone (B2B) Metastases Research Program: a multi-disciplinary investigation of bone metastases from breast cancer. BMC Cancer. 2015;15:512.

    PubMed  PubMed Central  Google Scholar 

  4. Mariotto AB, Etzioni R, Hurlbert M, Penberthy L, Mayer M. Estimation of the number of women living with metastatic breast cancer in the United States. Cancer Epidemiol Biomark Prev. 2017;26:809–815.

    Google Scholar 

  5. Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat Rev Cancer. 2016;16(6):373–86.

    CAS  PubMed  Google Scholar 

  6. •• Gomis RR, Gawrzak S. Tumor cell dormancy. Mol Oncol. 2017;11(1):62–78. A recent review of tumor dormancy across multiple tumor types and tissues.

    PubMed  PubMed Central  Google Scholar 

  7. Han HH, Lee SH, Kim BG, Lee JH, Kang S, Cho NH. Estrogen receptor status predicts late-onset skeletal recurrence in breast cancer patients. Medicine (Baltimore). 2016;95(8):e2909.

    CAS  Google Scholar 

  8. Savci-Heijink CD, Halfwerk H, Hooijer GK, Horlings HM, Wesseling J, van de Vijver MJ. Retrospective analysis of metastatic behaviour of breast cancer subtypes. Breast Cancer Res Treat. 2015;150(3):547–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, et al. Bone metastases: an overview. Oncol Rev. 2017;11(1):321.

    PubMed  PubMed Central  Google Scholar 

  10. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–46.

    PubMed  PubMed Central  Google Scholar 

  11. Johnson RW, Schipani E, Giaccia AJ. HIF targets in bone remodeling and metastatic disease. Pharmacol Ther. 2015;150:169–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27(3):165–76.

    CAS  PubMed  Google Scholar 

  13. Klein D. The tumor vascular endothelium as decision maker in cancer therapy. Front Oncol. 2018;8:367.

  14. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med. 1972;136(2):261–76.

    PubMed  PubMed Central  Google Scholar 

  15. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Straume O, Shimamura T, Lampa MJG, Carretero J, Øyan AM, Jia D, et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. Proc Natl Acad Sci U S A. 2012;109(22):8699–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Baxevanis CN, Perez SA. Cancer dormancy: a regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines (Basel). 2015;3(3):597–619.

    CAS  Google Scholar 

  18. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012;18(8):1224–31.

    CAS  PubMed  Google Scholar 

  19. Malladi S, Macalinao DG, Jin X, He L, Basnet H, Zou Y, et al. Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell. 2016;165(1):45–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Krall JA, Reinhardt F, Mercury OA, Pattabiraman DR, Brooks MW, Dougan M, et al. The systemic response to surgery triggers the outgrowth of distant immune-controlled tumors in mouse models of dormancy. Science Translational Medicine. 2018;10(436):eaan3464.

    PubMed  PubMed Central  Google Scholar 

  21. Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61.

    PubMed  PubMed Central  Google Scholar 

  22. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68.

    PubMed  Google Scholar 

  23. Sanger N, Effenberger KE, Riethdorf S, Van Haasteren V, Gauwerky J, Wiegratz I, et al. Disseminated tumor cells in the bone marrow of patients with ductal carcinoma in situ. Int J Cancer. 2011;129(10):2522–6.

    PubMed  Google Scholar 

  24. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med. 2005;353(8):793–802.

    CAS  PubMed  Google Scholar 

  25. Gruber IV, Hartkopf AD, Hahn M, Taran F-A, Staebler A, Wallwiener D, et al. Relationship between hematogenous tumor cell dissemination and cellular immunity in DCIS patients. Anticancer Res. 2016;36(5):2345–51.

    CAS  PubMed  Google Scholar 

  26. Janni W, Vogl FD, Wiedswang G, Synnestvedt M, Fehm T, Jückstock J, et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—a European pooled analysis. Clin Cancer Res. 2011;17(9):2967–76.

    PubMed  Google Scholar 

  27. Magbanua MJM, Yau C, Wolf DM, Lee JS, Chattopadhyay A, Scott JH, et al. Synchronous detection of circulating tumor cells in blood and disseminated tumor cells in bone marrow predict adverse outcome in early breast cancer. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-18-3888.

    PubMed  PubMed Central  Google Scholar 

  28. Lee SH, Park SA, Zou Y, Seo S-U, Jun C-D, Lee WJ, et al. Real-time monitoring of cancer cells in live mouse bone marrow. Front Immunol. 2018;9:1681.

    PubMed  PubMed Central  Google Scholar 

  29. Jung Y, Wang J, Schneider A, Sun YX, Koh-Paige AJ, Osman NI, et al. Regulation of SDF-1 (CXCL12) production by osteoblasts; a possible mechanism for stem cell homing. Bone. 2006;38(4):497–508.

    CAS  PubMed  Google Scholar 

  30. Wang J, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25(4):573–87.

    CAS  PubMed  Google Scholar 

  31. Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res. 2014;124:31–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang XH, Jin X, Malladi S, Zou Y, Wen YH, Brogi E, et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell. 2013;154(5):1060–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017;19(2):120–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lan Q, Peyvandi S, Duffey N, Huang Y-T, Barras D, Held W, et al. Type I interferon/IRF7 axis instigates chemotherapy-induced immunological dormancy in breast cancer. Oncogene. 2019;38(15):2814–29.

    CAS  PubMed  Google Scholar 

  35. Sowder ME, Johnson RW. Bone as a preferential site for metastasis. JBMR Plus. 2019;3(3):e10126.

    PubMed  PubMed Central  Google Scholar 

  36. Crane GM, Jeffery E, Morrison SJ. Adult haematopoietic stem cell niches. Nat Rev Immunol. 2017;17(9):573–90.

    CAS  PubMed  Google Scholar 

  37. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121(4):1298–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH, et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016;8(340):340ra73.

    PubMed  PubMed Central  Google Scholar 

  39. Bliss SA, Sinha G, Sandiford OA, Williams LM, Engelberth DJ, Guiro K, et al. Mesenchymal stem cell–derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Res. 2016;76(19):5832–44.

    CAS  PubMed  Google Scholar 

  40. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015;27(2):193–210.

    PubMed  PubMed Central  Google Scholar 

  41. • Tulotta C, Lefley DV, Freeman K, Gregory WM, Hanby AM, Heath PR, et al. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clinical Cancer Research. 2019;25(9):2769–82 Found that interaction of breast cancer cells with osteoblasts within the endosteal niche results in the enhanced secretion of IL-1B, expansion of the metastatic niche, and proliferation of tumor cells.

    PubMed  Google Scholar 

  42. Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, et al. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 2009;69(14):5664–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu-Lee LY, Yu G, Lee YC, Lin SC, Pan J, Pan T, et al. Osteoblast-secreted factors mediate dormancy of metastatic prostate cancer in the bone via activation of the TGFbetaRIII-p38MAPK-pS249/T252RB pathway. Cancer Res. 2018;78(11):2911–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol. 2013;15(11):1351–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L, Hunter T. Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kobayashi A, Okuda H, Xing F, Pandey PR, Watabe M, Hirota S, et al. Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med. 2011;208(13):2641–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14(9):611–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. •• Gawrzak S, Rinaldi L, Gregorio S, Arenas EJ, Salvador F, Urosevic J, et al. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat Cell Biol. 2018;20(2):211–21 Identified MSK1 as a critical regulator of luminal cell differentiation and ER+ tumor dormancy.

    CAS  PubMed  Google Scholar 

  49. Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One. 2012;7(4):e35569.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun. 2015;6:6170.

    CAS  PubMed  Google Scholar 

  51. Borgen E, Rypdal MC, Sosa MS, Renolen A, Schlichting E, Lønning PE, et al. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res. 2018;20(1):120.

    PubMed  PubMed Central  Google Scholar 

  52. • Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW, Green JE. Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nature Communications. 2018;9(1):1944 Identified autophagy as a major pathway that drives the survival and dormancy of bone-disseminated breast cancer cells.

  53. Sosa MS, Bragado P, Debnath J, Aguirre-Ghiso JA. Regulation of tumor cell dormancy by tissue microenvironments and autophagy. Adv Exp Med Biol. 2013;734:73–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson RW, Sowder ME, Giaccia AJ. Hypoxia and bone metastatic disease. Curr Osteoporos Rep. 2017;15(4):231–8.

    PubMed  PubMed Central  Google Scholar 

  55. Msaki A, Pastò A, Curtarello M, Arigoni M, Barutello G, Calogero RA, et al. A hypoxic signature marks tumors formed by disseminated tumor cells in the BALB-neuT mammary cancer model. Oncotarget. 2016;7(22):33081–95.

    PubMed  PubMed Central  Google Scholar 

  56. Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18(10):1078–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, et al. LIFR is a breast cancer metastasis suppressor upstream of the hippo-YAP pathway and a prognostic marker. Nat Med. 2012;18(10):1511–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Laderoute KR, Alarcon RM, Brody MD, Calaoagan JM, Chen EY, Knapp AM, et al. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin 1 and the angiogenic inducer vascular endothelial growth factor. Clin Cancer Res. 2000;6(7):2941–50.

    CAS  PubMed  Google Scholar 

  59. Bienes-Martínez R, Ordóñez A, Feijoo-Cuaresma M, Corral-Escariz M, Mateo G, Stenina O, et al. Autocrine stimulation of clear-cell renal carcinoma cell migration in hypoxia via HIF-independent suppression of thrombospondin-1. Sci Rep. 2012;2:788.

    PubMed  PubMed Central  Google Scholar 

  60. Firlej V, Mathieu JRR, Gilbert C, Lemonnier L, Nakhlé J, Gallou-Kabani C, et al. Thrombospondin-1 triggers cell migration and development of advanced prostate tumors. Cancer Res. 2011;71(24):7649–58.

    CAS  PubMed  Google Scholar 

  61. Kumar R, Mickael C, Kassa B, Gebreab L, Robinson JC, Koyanagi DE, et al. TGF-β activation by bone marrow-derived thrombospondin-1 causes schistosoma- and hypoxia-induced pulmonary hypertension. Nat Commun. 2017;8:15494.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Labrousse-Arias D, Castillo-González R, Rogers NM, Torres-Capelli M, Barreira B, Aragonés J, et al. HIF-2α-mediated induction of pulmonary thrombospondin-1 contributes to hypoxia-driven vascular remodelling and vasoconstriction. Cardiovasc Res. 2016;109(1):115–30.

    CAS  PubMed  Google Scholar 

  63. Shimizu H, Takeishi S, Nakatsumi H, Nakayama KI. Prevention of cancer dormancy by Fbxw7 ablation eradicates disseminated tumor cells. JCI Insight. 2019;4(4):e125138.

  64. El-Shennawy L, Dubrovskyi O, Kastrati I, Danes JM, Zhang Y, Whiteley HE, et al. Coactivation of estrogen receptor and IKKβ induces a dormant metastatic phenotype in ER-positive breast cancer. Cancer Res. 2018;78(4):974–84.

    CAS  PubMed  Google Scholar 

  65. Johnson RW, Sun Y, Ho PWM, Chan ASM, Johnson JA, Pavlos NJ, et al. Parathyroid hormone-related protein negatively regulates tumor cell dormancy genes in a PTHR1/cyclic AMP-independent manner. Front Endocrinol. 2018;9:241.

    Google Scholar 

  66. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140(10):4451–8.

    CAS  PubMed  Google Scholar 

  67. Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell. 2018;34(5):823–39.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Marlow R, Honeth G, Lombardi S, Cariati M, Hessey S, Pipili A, et al. A novel model of dormancy for bone metastatic breast cancer cells. Cancer Res. 2013;73(23):6886–99.

    CAS  PubMed  Google Scholar 

  69. McGrath J, Panzica L, Ransom R, Withers HG, Gelman IH. Identification of genes regulating breast cancer dormancy in 3D bone endosteal niche cultures. Mol Cancer Res. 2019;17(4):860–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Buschhaus JM, Luker KE, Luker GD. A facile, in vitro 384-well plate system to model disseminated tumor cells in the bone marrow microenvironment. Methods Mol Biol. 1686;2018:201–13.

    Google Scholar 

  71. • Sowder ME, Johnson RW. Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Scientific Reports. 2018;8(1):14299 Established highly sensitive methods to detect rare DTCs in the bone marrow in novel models of prolonged latency and low tumor burden.

  72. Capietto AH, Chan SR, Ricci B, Allen JA, Su X, Novack DV, et al. Novel ERalpha positive breast cancer model with estrogen independent growth in the bone microenvironment. Oncotarget. 2016;7(31):49751–64.

    PubMed  PubMed Central  Google Scholar 

  73. Lawson DA, Bhakta NR, Kessenbrock K, Prummel KD, Yu Y, Takai K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526(7571):131–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 2016;540:588–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hosseini H, Obradovic MM, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016;540(7634):552–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wright LE, Ottewell PD, Rucci N, Peyruchaud O, Pagnotti GM, Chiechi A, et al. Murine models of breast cancer bone metastasis. Bonekey Rep. 2016;5:804.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zheng H, Bae Y, Kasimir-Bauer S, Tang R, Chen J, Ren G, et al. Therapeutic antibody targeting tumor- and osteoblastic niche-derived Jagged1 sensitizes bone metastasis to chemotherapy. Cancer Cell. 2017;32(6):731–47.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu C, Wang H, Muscarella A, Goldstein A, Zeng H-C, Bae Y, et al. Intra-iliac artery injection for efficient and selective modeling of microscopic bone metastasis. J Vis Exp. 2016;115:53982.

    Google Scholar 

  79. Kuchimaru T, Kataoka N, Nakagawa K, Isozaki T, Miyabara H, Minegishi M, et al. A reliable murine model of bone metastasis by injecting cancer cells through caudal arteries. Nat Commun. 2018;9(1):2981.

    PubMed  PubMed Central  Google Scholar 

  80. Peyruchaud O, Winding B, Pécheur I, Serre C-M, Delmas P, Clézardin P. Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J Bone Miner Res. 2001;16(11):2027–34.

    CAS  PubMed  Google Scholar 

  81. Ottewell PD, Deux B, Mönkkönen H, Cross S, Coleman RE, Clezardin P, et al. Differential effect of doxorubicin and zoledronic acid on intraosseous versus extraosseous breast tumor growth in vivo. Clin Cancer Res. 2008;14(14):4658–66.

    CAS  PubMed  Google Scholar 

  82. Campbell JP, Merkel AR, Masood-Campbell SK, Elefteriou F, Sterling JA. Models of bone metastasis. J Vis Exp. 2012;67:e4260.

    Google Scholar 

  83. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ, et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res. 2008;68(15):6241–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dall G, Vieusseux J, Unsworth A, Anderson R, Britt K. Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms. J Cancer. 2015;6(12):1331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gakhar G, Wight-Carter M, Andrews G, Olson S, Nguyen TA. Hydronephrosis and urine retention in estrogen-implanted athymic nude mice. Vet Pathol. 2009;46(3):505–8.

    CAS  PubMed  Google Scholar 

  86. Holen I, Speirs V, Morrissey B, Blyth K. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech. 2017;10(4):359–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Eyre R, Alférez DG, Spence K, Kamal M, Shaw FL, Simões BM, et al. Patient-derived mammosphere and xenograft tumour initiation correlates with progression to metastasis. J Mammary Gland Biol Neoplasia. 2016;21(3–4):99–109.

    PubMed  PubMed Central  Google Scholar 

  88. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17(1):17.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

R.W.J. declares grants from the NIH and DOD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle W. Johnson.

Ethics declarations

Conflict of Interest

M.E.C. declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clements, M.E., Johnson, R.W. Breast Cancer Dormancy in Bone. Curr Osteoporos Rep 17, 353–361 (2019). https://doi.org/10.1007/s11914-019-00532-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-019-00532-y

Keywords

Navigation