Skip to main content

Advertisement

Log in

Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy

  • Muscle and Bone (L Bonewald and M Hamrick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD.

Recent Findings

The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD.

Summary

This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ActRIIA:

activin IIA receptor

ActRIIB-Fc:

soluble myostatin decoy receptor

AR:

androgen receptor

BMD:

bone mineral density

CK:

creatine kinase

DMD:

Duchenne muscular dystrophy

EDL:

extensor digitorum longus

FGF-23:

fibroblast growth factor 23

FL-OPG-Fc:

full-length osteoprotegerin linked to a Fc fragment

GC (s):

glucocorticoid (s)

IGF-1:

insulin growth factor 1

IL-1:

interleukin-1

IL-6:

interleukin-6

IL-6R:

interleukin-6 receptor

IL-10:

interleukin-10

IL-10 −/− mdx :

ablation of IL-10 expression in mdx mice

IL-15:

interleukin-15

IL-17:

interleukin-17

MSCs:

mesenchymal stem cells

NO:

nitric oxide

NO-cGMP:

nitric oxide-cyclic guanosine monophosphate

OPG:

osteoprotegerin

OPN:

osteopontin

PDE-5:

phosphodiesterase type 5

RANK:

receptor activator of NF-κB

RANKL:

receptor activator of NF-κB ligand

SERCA:

sarco(endo)plasmic reticulum Ca2+-ATPase

Sol:

soleus

TGF-β:

transforming growth factor β

TNF-α:

tumor necrosis factor α

TRAF:

TNF receptor-associated factor

TRAIL:

tumor necrosis factor-related apoptosis-inducing ligand

VBP15:

vamorolone

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015;96:183–95. https://doi.org/10.1007/s00223-014-9915-y.

    Article  CAS  PubMed  Google Scholar 

  2. Florencio-Silva R, Sasso da Silva GR, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int. 2015;2015:421746. https://doi.org/10.1155/2015/421746.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Hamrick MW, Ding K-H, Pennington C, Chao YJ, Wu Y-D, Howard B, et al. Age-related loss of muscle mass and bone strength in mice is associated with a decline in physical activity and serum leptin. Bone. 2006;39:845–53. https://doi.org/10.1016/j.bone.2006.04.011.

    Article  CAS  PubMed  Google Scholar 

  4. Owen HC, Vanhees I, Gunst J, Van Cromphaut S, Van den Berghe G. Critical illness-induced bone loss is related to deficient autophagy and histone hypomethylation. Intensive Care Med Exp. 2015;3:52. https://doi.org/10.1186/s40635-015-0052-3.

    Article  PubMed  Google Scholar 

  5. Ness K, Apkon SD. Bone health in children with neuromuscular disorders. J Pediatr Rehabil Med. 2014;7:133–42. https://doi.org/10.3233/PRM-140282.

    Article  PubMed  Google Scholar 

  6. Russo CR. The effects of exercise on bone. Basic concepts and implications for the prevention of fractures. Clin Cases Miner Bone Metab Off J Ital Soc Osteoporos Miner Metab Skelet Dis. 2009;6:223–8.

    Google Scholar 

  7. McKay H, Smith E. Winning the battle against childhood physical inactivity: the key to bone strength? J Bone Miner Res Off J Am Soc Bone Miner Res. 2008;23:980–5. https://doi.org/10.1359/jbmr.080306.

    Article  Google Scholar 

  8. McDonald DGM, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44:695–8.

    Article  PubMed  Google Scholar 

  9. Joyce NC, Hache LP, Clemens PR. Bone health and associated metabolic complications in neuromuscular diseases. Phys Med Rehabil Clin N Am. 2012;23:773–99. https://doi.org/10.1016/j.pmr.2012.08.005.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Maurel DB, Jähn K, Lara-Castillo N. Muscle-bone crosstalk: emerging opportunities for novel therapeutic approaches to treat musculoskeletal pathologies. Biomedicine. 2017;5 https://doi.org/10.3390/biomedicines5040062.

    Article  PubMed Central  Google Scholar 

  11. Brotto M, Johnson ML. Endocrine crosstalk between muscle and bone. Curr Osteoporos Rep. 2014;12:135–41. https://doi.org/10.1007/s11914-014-0209-0.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Karsenty G, Mera P. Molecular bases of the crosstalk between bone and muscle. Bone 2017; https://doi.org/10.1016/j.bone.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  13. Brotto M, Bonewald L. Bone and muscle: interactions beyond mechanical. Bone. 2015;80:109–14. https://doi.org/10.1016/j.bone.2015.02.010.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Emery AE. Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord NMD. 1991;1:19–29.

    Article  CAS  PubMed  Google Scholar 

  15. Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51:919–28.

    Article  CAS  PubMed  Google Scholar 

  16. Deconinck N, Dan B. Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol. 2007;36:1–7. https://doi.org/10.1016/j.pediatrneurol.2006.09.016.

    Article  PubMed  Google Scholar 

  17. Ciafaloni E, Fox DJ, Pandya S, Westfield CP, Puzhankara S, Romitti PA, et al. Delayed diagnosis in duchenne muscular dystrophy: data from the muscular dystrophy surveillance, tracking, and research network (MD STARnet). J Pediatr. 2009;155:380–5. https://doi.org/10.1016/j.jpeds.2009.02.007.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9:77–93. https://doi.org/10.1016/S1474-4422(09)70271-6.

    Article  PubMed  Google Scholar 

  19. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: implementation of multidisciplinary care. Lancet Neurol. 2010;9:177–89. https://doi.org/10.1016/S1474-4422(09)70272-8.

    Article  CAS  PubMed  Google Scholar 

  20. Connolly AM, Florence JM, Cradock MM, Malkus EC, Schierbecker JR, Siener CA, et al. Motor and cognitive assessment of infants and young boys with Duchenne muscular dystrophy: results from the Muscular Dystrophy Association DMD Clinical Research Network. Neuromuscul Disord NMD. 2013;23:529–39. https://doi.org/10.1016/j.nmd.2013.04.005.

    Article  PubMed  Google Scholar 

  21. Bello L, Gordish-Dressman H, Morgenroth LP, Henricson EK, Duong T, Hoffman EP, et al. Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne natural history study. Neurology. 2015;85:1048–55. https://doi.org/10.1212/WNL.0000000000001950.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McDonald CM, Abresch RT, Carter GT, Fowler WM, Johnson ER, Kilmer DD, et al. Profiles of neuromuscular diseases. Duchenne muscular dystrophy. Am J Phys Med Rehabil. 1995;74:S70–92.

    Article  CAS  PubMed  Google Scholar 

  23. Biggar WD, Politano L, Harris VA, Passamano L, Vajsar J, Alman B, et al. Deflazacort in Duchenne muscular dystrophy: a comparison of two different protocols. Neuromuscul Disord NMD. 2004;14:476–82. https://doi.org/10.1016/j.nmd.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  24. Biggar WD, Harris VA, Eliasoph L, Alman B. Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul Disord NMD. 2006;16:249–55. https://doi.org/10.1016/j.nmd.2006.01.010.

    Article  CAS  PubMed  Google Scholar 

  25. Biggar WD, Gingras M, Fehlings DL, Harris VA, Steele CA. Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr. 2001;138:45–50. https://doi.org/10.1067/mpd.2001.109601.

    Article  CAS  PubMed  Google Scholar 

  26. Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord NMD. 2016;26:760–7. https://doi.org/10.1016/j.nmd.2016.08.011.

    Article  PubMed  Google Scholar 

  27. Ma J, McMillan HJ, Karagüzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2017;28:597–608. https://doi.org/10.1007/s00198-016-3774-5.

    Article  CAS  Google Scholar 

  28. LeBlanc CMA, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015;30:1667–75. https://doi.org/10.1002/jbmr.2511.

    Article  CAS  Google Scholar 

  29. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. 2016; CD003725. https://doi.org/10.1002/14651858.CD003725.pub4

  30. van Staa TP, Leufkens HGM, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2002;13:777–87. https://doi.org/10.1007/s001980200108.

    Article  Google Scholar 

  31. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68:1607–13. https://doi.org/10.1212/01.wnl.0000260974.41514.83.

    Article  CAS  PubMed  Google Scholar 

  32. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.

    CAS  PubMed  Google Scholar 

  33. Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30:2760–7. https://doi.org/10.1200/JCO.2011.40.4830.

    Article  CAS  Google Scholar 

  34. Cummings EA, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015;100:3408–17. https://doi.org/10.1210/JC.2015-2176.

    Article  CAS  PubMed  Google Scholar 

  35. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31. https://doi.org/10.1002/acr.20589.

    Article  Google Scholar 

  36. Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2016;27:2147–79. https://doi.org/10.1007/s00198-016-3515-9.

    Article  CAS  Google Scholar 

  37. • Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17:347–61. https://doi.org/10.1016/S1474-4422(18)30025-5. The current standard of care is to identify and treat early, rather than late, signs of bone fragility with the use of intravenous bisphosphonate therapy, which is preferred over oral agents. Given the high frequency of low-trauma fractures in DMD, clinical trials designed to prevent first-ever fractures in DMD are now warranted.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2012;23:2703–11. https://doi.org/10.1007/s00198-012-1911-3.

    Article  CAS  Google Scholar 

  39. Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8:198–204. https://doi.org/10.1007/s11914-010-0031-2.

    Article  PubMed  Google Scholar 

  40. Gordon KE, Dooley JM, Sheppard KM, MacSween J, Esser MJ. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011;127:e353–8. https://doi.org/10.1542/peds.2010-1666.

    Article  PubMed  Google Scholar 

  41. Ward LM, Hadjiyannakis S, McMillan HJ, Weber DR. Diagnosis and management of osteoporosis in glucocorticoid-treated duchenne Muscular dystrophy. Pediatrics. 2018.

  42. Novotny SA, Warren GL, Lin AS, Guldberg RE, Baltgalvis KA, Lowe DA. Bone is functionally impaired in dystrophic mice but less so than skeletal muscle. Neuromuscul Disord NMD. 2011;21:183–93. https://doi.org/10.1016/j.nmd.2010.12.002.

    Article  PubMed  Google Scholar 

  43. Reed P, Bloch RJ. Postnatal changes in sarcolemmal organization in the mdx mouse. Neuromuscul Disord NMD. 2005;15:552–61. https://doi.org/10.1016/j.nmd.2005.03.007.

    Article  PubMed  Google Scholar 

  44. Isaac C, Wright A, Usas A, Li H, Tang Y, Mu X, et al. Dystrophin and utrophin “double knockout” dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities. J Orthop Res Off Publ Orthop Res Soc. 2013;31:343–9. https://doi.org/10.1002/jor.22236.

    Article  Google Scholar 

  45. Nakagaki WR, Bertran CA, Matsumura CY, Santo-Neto H, Camilli JA. Mechanical, biochemical and morphometric alterations in the femur of mdx mice. Bone. 2011;48:372–9. https://doi.org/10.1016/j.bone.2010.09.011.

    Article  CAS  PubMed  Google Scholar 

  46. Rufo A, Del Fattore A, Capulli M, Carvello F, De Pasquale L, Ferrari S, et al. Mechanisms inducing low bone density in Duchenne muscular dystrophy in mice and humans. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26:1891–903. https://doi.org/10.1002/jbmr.410.

    Article  CAS  Google Scholar 

  47. Blanchard F, Duplomb L, Baud’huin M, Brounais B. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009;20:19–28. https://doi.org/10.1016/j.cytogfr.2008.11.004.

    Article  CAS  PubMed  Google Scholar 

  48. Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Muñoz-Cánoves P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 2008;7:33–44. https://doi.org/10.1016/j.cmet.2007.11.011.

    Article  CAS  PubMed  Google Scholar 

  49. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol Baltim Md. 1950–1990;145:3297–303.

    Google Scholar 

  50. Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL. Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J. 2013;280:4131–48. https://doi.org/10.1111/febs.12338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pelosi L, Berardinelli MG, Forcina L, Spelta E, Rizzuto E, Nicoletti C, et al. Increased levels of interleukin-6 exacerbate the dystrophic phenotype in mdx mice. Hum Mol Genet. 2015;24:6041–53. https://doi.org/10.1093/hmg/ddv323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Li X, Zhou Z-Y, Zhang Y-Y, Yang H-L. IL-6 contributes to the defective osteogenesis of bone marrow stromal cells from the vertebral body of the glucocorticoid-induced osteoporotic mouse. PLoS One. 2016;11:e0154677. https://doi.org/10.1371/journal.pone.0154677.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Edwards CJ, Williams E. The role of interleukin-6 in rheumatoid arthritis-associated osteoporosis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2010;21:1287–93. https://doi.org/10.1007/s00198-010-1192-7.

    Article  CAS  Google Scholar 

  54. • Wada E, Tanihata J, Iwamura A, Takeda S, Hayashi YK, Matsuda R. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet Muscle. 2017;7:23. https://doi.org/10.1186/s13395-017-0140-z. Treatment with an anti-IL-6 receptor antibody attenuates muscular dystrophy and promotes skeletal muscle regeneration in dystrophin/utrophin-deficient mice.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab. 2003;285:E433–7. https://doi.org/10.1152/ajpendo.00074.2003.

    Article  CAS  PubMed  Google Scholar 

  56. Przybyla B, Gurley C, Harvey JF, Bearden E, Kortebein P, Evans WJ, et al. Aging alters macrophage properties in human skeletal muscle both at rest and in response to acute resistance exercise. Exp Gerontol. 2006;41:320–7. https://doi.org/10.1016/j.exger.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  57. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol Bethesda Md. 1985.2005;98:1154–62. https://doi.org/10.1152/japplphysiol.00164.2004.

    Article  Google Scholar 

  58. Deng B, Wehling-Henricks M, Villalta SA, Wang Y, Tidball JG. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol Baltim Md. 1950.2012;189:3669–80. https://doi.org/10.4049/jimmunol.1103180.

    Article  CAS  Google Scholar 

  59. Villalta SA, Rinaldi C, Deng B, Liu G, Fedor B, Tidball JG. Interleukin-10 reduces the pathology of mdx muscular dystrophy by deactivating M1 macrophages and modulating macrophage phenotype. Hum Mol Genet. 2011;20:790–805. https://doi.org/10.1093/hmg/ddq523.

    Article  CAS  PubMed  Google Scholar 

  60. Nitahara-Kasahara Y, Hayashita-Kinoh H, Chiyo T, Nishiyama A, Okada H, Takeda S, et al. Dystrophic mdx mice develop severe cardiac and respiratory dysfunction following genetic ablation of the anti-inflammatory cytokine IL-10. Hum Mol Genet. 2014;23:3990–4000. https://doi.org/10.1093/hmg/ddu113.

    Article  CAS  PubMed  Google Scholar 

  61. Al-Rasheed A, Scheerens H, Srivastava AK, Rennick DM, Tatakis DN. Accelerated alveolar bone loss in mice lacking interleukin-10: late onset. J Periodontal Res. 2004;39:194–8. https://doi.org/10.1111/j.1600-0765.2004.00724.x.

    Article  CAS  PubMed  Google Scholar 

  62. Dresner-Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M. Interleukin 10-deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology. 2004;127:792–801.

    Article  CAS  PubMed  Google Scholar 

  63. Claudino M, Garlet TP, Cardoso CRB, de Assis GF, Taga R, Cunha FQ, et al. Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice. Eur J Oral Sci. 2010;118:19–28. https://doi.org/10.1111/j.1600-0722.2009.00706.x.

    Article  CAS  PubMed  Google Scholar 

  64. Liu D, Yao S, Wise GE. Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. Eur J Oral Sci. 2006;114:42–9. https://doi.org/10.1111/j.1600-0722.2006.00283.x.

    Article  CAS  PubMed  Google Scholar 

  65. Huang P-L, Hou M-S, Wang S-W, Chang C-L, Liou Y-H, Liao N-S. Skeletal muscle interleukin 15 promotes CD8(+) T-cell function and autoimmune myositis. Skelet Muscle. 2015;5:33. https://doi.org/10.1186/s13395-015-0058-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Kim HC, Cho H-Y, Hah Y-S. Role of IL-15 in Sepsis-induced skeletal muscle atrophy and proteolysis. Tuberc Respir Dis. 2012;73:312–9. https://doi.org/10.4046/trd.2012.73.6.312.

    Article  CAS  Google Scholar 

  67. Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argilés JM. Overexpression of interleukin-15 induces skeletal muscle hypertrophy in vitro: implications for treatment of muscle wasting disorders. Exp Cell Res. 2002;280:55–63.

    Article  CAS  PubMed  Google Scholar 

  68. Carbó N, López-Soriano J, Costelli P, Busquets S, Alvarez B, Baccino FM, et al. Interleukin-15 antagonizes muscle protein waste in tumour-bearing rats. Br J Cancer. 2000;83:526–31. https://doi.org/10.1054/bjoc.2000.1299.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Takeda H, Kikuchi T, Soboku K, Okabe I, Mizutani H, Mitani A, et al. Effect of IL-15 and natural killer cells on osteoclasts and osteoblasts in a mouse coculture. Inflammation. 2014;37:657–69. https://doi.org/10.1007/s10753-013-9782-0.

    Article  CAS  PubMed  Google Scholar 

  70. Iseme RA, Mcevoy M, Kelly B, Agnew L, Walker FR, Attia J. Is osteoporosis an autoimmune mediated disorder? Bone Rep. 2017;7:121–31. https://doi.org/10.1016/j.bonr.2017.10.003.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ogata Y, Kukita A, Kukita T, Komine M, Miyahara A, Miyazaki S, et al. A novel role of IL-15 in the development of osteoclasts: inability to replace its activity with IL-2. J Immunol Baltim Md. 1950.1999;162:2754–60.

    Google Scholar 

  72. Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argilés JM. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab. 2009;296:E191–202. https://doi.org/10.1152/ajpendo.90506.2008.

    Article  CAS  PubMed  Google Scholar 

  73. Harcourt LJ, Holmes AG, Gregorevic P, Schertzer JD, Stupka N, Plant DR, et al. Interleukin-15 administration improves diaphragm muscle pathology and function in dystrophic mdx mice. Am J Pathol. 2005;166:1131–41. https://doi.org/10.1016/S0002-9440(10)62333-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. De Paepe B, De Bleecker JL. Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy. Mediat Inflamm. 2013;2013:540370. https://doi.org/10.1155/2013/540370.

    Article  CAS  Google Scholar 

  75. Lee Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep. 2013;46:479–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee Y-M, Fujikado N, Manaka H, Yasuda H, Iwakura Y. IL-1 plays an important role in the bone metabolism under physiological conditions. Int Immunol. 2010;22:805–16. https://doi.org/10.1093/intimm/dxq431.

    Article  CAS  PubMed  Google Scholar 

  77. De Pasquale L, D’Amico A, Verardo M, Petrini S, Bertini E, De Benedetti F. Increased muscle expression of interleukin-17 in Duchenne muscular dystrophy. Neurology. 2012;78:1309–14. https://doi.org/10.1212/WNL.0b013e3182518302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Cruz-Guzmán ODR, Rodríguez-Cruz M, Escobar Cedillo RE. Systemic inflammation in Duchenne muscular dystrophy: association with muscle function and nutritional status. Biomed Res Int. 2015;2015:891972. https://doi.org/10.1155/2015/891972.

    Article  CAS  PubMed Central  Google Scholar 

  79. Nelson CA, Hunter RB, Quigley LA, Girgenrath S, Weber WD, McCullough JA, et al. Inhibiting TGF-β activity improves respiratory function in mdx mice. Am J Pathol. 2011;178:2611–21. https://doi.org/10.1016/j.ajpath.2011.02.024.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Chen Y-W, Nagaraju K, Bakay M, McIntyre O, Rawat R, Shi R, et al. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology. 2005;65:826–34. https://doi.org/10.1212/01.wnl.0000173836.09176.c4.

    Article  CAS  PubMed  Google Scholar 

  81. Andreetta F, Bernasconi P, Baggi F, Ferro P, Oliva L, Arnoldi E, et al. Immunomodulation of TGF-beta 1 in mdx mouse inhibits connective tissue proliferation in diaphragm but increases inflammatory response: implications for antifibrotic therapy. J Neuroimmunol. 2006;175:77–86. https://doi.org/10.1016/j.jneuroim.2006.03.005.

    Article  CAS  PubMed  Google Scholar 

  82. Ceco E, McNally EM. Modifying muscular dystrophy through transforming growth factor-β. FEBS J. 2013;280:4198–209. https://doi.org/10.1111/febs.12266.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Wu M, Chen G, Li Y-P. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. https://doi.org/10.1038/boneres.2016.9.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat Med. 2015;21:1262–71. https://doi.org/10.1038/nm.3961.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Deselm CJ, Zou W, Teitelbaum SL. Halofuginone prevents estrogen-deficient osteoporosis in mice. J Cell Biochem. 2012;113:3086–92. https://doi.org/10.1002/jcb.24185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Halevy O, Genin O, Barzilai-Tutsch H, Pima Y, Levi O, Moshe I, et al. Inhibition of muscle fibrosis and improvement of muscle histopathology in dysferlin knock-out mice treated with halofuginone. Histol Histopathol. 2013;28:211–26. https://doi.org/10.14670/HH-28.211.

    Article  CAS  PubMed  Google Scholar 

  87. Turgeman T, Hagai Y, Huebner K, Jassal DS, Anderson JE, Genin O, et al. Prevention of muscle fibrosis and improvement in muscle performance in the mdx mouse by halofuginone. Neuromuscul Disord NMD. 2008;18:857–68. https://doi.org/10.1016/j.nmd.2008.06.386.

    Article  PubMed  Google Scholar 

  88. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:388–91. https://doi.org/10.1002/ar.a.10044.

    Article  CAS  PubMed  Google Scholar 

  89. DiGirolamo DJ, Singhal V, Chang X, Lee S-J, Germain-Lee EL. Administration of soluble activin receptor 2B increases bone and muscle mass in a mouse model of osteogenesis imperfecta. Bone Res. 2015;3:14042. https://doi.org/10.1038/boneres.2014.42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. • Puolakkainen T, Ma H, Kainulainen H, Pasternack A, Rantalainen T, Ritvos O, et al. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy. BMC Musculoskelet Disord. 2017;18:20. https://doi.org/10.1186/s12891-016-1366-3. Systemic inhibition of the activin/myostatin pathway with soluble activin type IIB-receptor in mdx mice positively affects muscle mass and increases bone volume.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Goh BC, Singhal V, Herrera AJ, Tomlinson RE, Kim S, Faugere M-C, et al. Activin receptor type 2A (ACVR2A) functions directly in osteoblasts as a negative regulator of bone mass. J Biol Chem. 2017;292:13809–22. https://doi.org/10.1074/jbc.M117.782128.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Lotinun S, Pearsall RS, Horne WC, Baron R. Activin receptor signaling: a potential therapeutic target for osteoporosis. Curr Mol Pharmacol. 2012;5:195–204.

    Article  CAS  PubMed  Google Scholar 

  93. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med. 2015;21:1085–90. https://doi.org/10.1038/nm.3917.

    Article  CAS  PubMed  Google Scholar 

  94. Kaji H. Effects of myokines on bone. BoneKEy Rep. 2016;5:826. https://doi.org/10.1038/bonekey.2016.48.

    Article  PubMed Central  PubMed  Google Scholar 

  95. Gajos-Michniewicz A, Piastowska AW, Russell JA, Ochedalski T. Follistatin as a potent regulator of bone metabolism. Biomark Biochem Indic Expo Response Susceptibility Chem. 2010;15:563–74. https://doi.org/10.3109/1354750X.2010.495786.

    Article  CAS  Google Scholar 

  96. Kawao N, Morita H, Obata K, Tatsumi K, Kaji H. Role of follistatin in muscle and bone alterations induced by gravity change in mice. J Cell Physiol. 2018;233:1191–201. https://doi.org/10.1002/jcp.25986.

    Article  CAS  PubMed  Google Scholar 

  97. Yaden BC, Croy JE, Wang Y, Wilson JM, Datta-Mannan A, Shetler P, et al. Follistatin: a novel therapeutic for the improvement of muscle regeneration. J Pharmacol Exp Ther. 2014;349:355–71. https://doi.org/10.1124/jpet.113.211169.

    Article  CAS  PubMed  Google Scholar 

  98. Zheng H, Qiao C, Tang R, Li J, Bulaklak K, Huang Z, et al. Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med. 2017;49:e377. https://doi.org/10.1038/emm.2017.135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Winbanks CE, Weeks KL, Thomson RE, Sepulveda PV, Beyer C, Qian H, et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J Cell Biol. 2012;197:997–1008. https://doi.org/10.1083/jcb.201109091.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Mendell JR, Sahenk Z, Malik V, Gomez AM, Flanigan KM, Lowes LP, et al. A phase 1/2a follistatin gene therapy trial for Becker muscular dystrophy. Mol Ther J Am Soc Gene Ther. 2015;23:192–201. https://doi.org/10.1038/mt.2014.200.

    Article  CAS  Google Scholar 

  101. Al-Zaidy SA, Sahenk Z, Rodino-Klapac LR, Kaspar B, Mendell JR. Follistatin gene therapy improves ambulation in Becker muscular dystrophy. J Neuromuscul Dis. 2015;2:185–92. https://doi.org/10.3233/JND-150083.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci U S A. 2008;105:4318–22. https://doi.org/10.1073/pnas.0709144105.

    Article  PubMed Central  PubMed  Google Scholar 

  103. Shapses SA, Cifuentes M, Spevak L, Chowdhury H, Brittingham J, Boskey AL, et al. Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. Calcif Tissue Int. 2003;73:86–92.

    Article  CAS  PubMed  Google Scholar 

  104. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009;3:311–22. https://doi.org/10.1007/s12079-009-0068-0.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Cho E-H, Cho K-H, Lee HA, Kim S-W. High serum osteopontin levels are associated with low bone mineral density in postmenopausal women. J Korean Med Sci. 2013;28:1496–9. https://doi.org/10.3346/jkms.2013.28.10.1496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Kuraoka M, Kimura E, Nagata T, Okada T, Aoki Y, Tachimori H, et al. Serum osteopontin as a novel biomarker for muscle regeneration in Duchenne muscular dystrophy. Am J Pathol. 2016;186:1302–12. https://doi.org/10.1016/j.ajpath.2016.01.002.

    Article  CAS  PubMed  Google Scholar 

  107. Vetrone SA, Montecino-Rodriguez E, Kudryashova E, Kramerova I, Hoffman EP, Liu SD, et al. Osteopontin promotes fibrosis in dystrophic mouse muscle by modulating immune cell subsets and intramuscular TGF-beta. J Clin Invest. 2009;119:1583–94. https://doi.org/10.1172/JCI37662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet. 2002;11:263–72.

    Article  CAS  PubMed  Google Scholar 

  109. • Capote J, Kramerova I, Martinez L, Vetrone S, Barton ER, Sweeney HL, et al. Osteopontin ablation ameliorates muscular dystrophy by shifting macrophages to a pro-regenerative phenotype. J Cell Biol. 2016;213:275–88. https://doi.org/10.1083/jcb.201510086. Ablation of osteopontin shifts macrophages from a pro-inflammatory to a pro-regenerative phenotype and improves the muscle strength and functional performance of dystrophic mice.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Rudnicki MA, Williams BO. Wnt signaling in bone and muscle. Bone. 2015;80:60–6. https://doi.org/10.1016/j.bone.2015.02.009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Zhong Z, Ethen NJ, Williams BO. WNT signaling in bone development and homeostasis. Wiley Interdiscip Rev Dev Biol. 2014;3:489–500. https://doi.org/10.1002/wdev.159.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Glass DA, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64. https://doi.org/10.1016/j.devcel.2005.02.017.

    Article  CAS  PubMed  Google Scholar 

  113. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604. https://doi.org/10.18632/oncotarget.21234.

    Article  PubMed Central  PubMed  Google Scholar 

  114. von Maltzahn J, Renaud J-M, Parise G, Rudnicki MA. Wnt7a treatment ameliorates muscular dystrophy. Proc Natl Acad Sci U S A. 2012;109:20614–9. https://doi.org/10.1073/pnas.1215765109.

    Article  Google Scholar 

  115. Shang Y-C, Wang S-H, Xiong F, Peng F-N, Liu Z-S, Geng J, et al. Activation of Wnt3a signaling promotes myogenic differentiation of mesenchymal stem cells in mdx mice. Acta Pharmacol Sin. 2016;37:873–81. https://doi.org/10.1038/aps.2016.38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. McClung MR. Sclerostin antibodies in osteoporosis: latest evidence and therapeutic potential. Ther Adv Musculoskelet Dis. 2017;9:263–70. https://doi.org/10.1177/1759720X17726744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Phillips EG, Beggs LA, Ye F, Conover CF, Beck DT, Otzel DM, et al. Effects of pharmacologic sclerostin inhibition or testosterone administration on soleus muscle atrophy in rodents after spinal cord injury. PLoS One. 2018;13:e0194440. https://doi.org/10.1371/journal.pone.0194440.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Spatz JM, Ellman R, Cloutier AM, Louis L, van Vliet M, Suva LJ, et al. Sclerostin antibody inhibits skeletal deterioration due to reduced mechanical loading. J Bone Miner Res Off J Am Soc Bone Miner Res. 2013;28:865–74. https://doi.org/10.1002/jbmr.1807.

    Article  CAS  Google Scholar 

  119. Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin J, et al. Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab Investig J Tech Methods Pathol. 2016;96:197–205. https://doi.org/10.1038/labinvest.2015.86.

    Article  CAS  Google Scholar 

  120. Wehling-Henricks M, Li Z, Lindsey C, Wang Y, Welc SS, Ramos JN, et al. Klotho gene silencing promotes pathology in the mdx mouse model of Duchenne muscular dystrophy. Hum Mol Genet. 2016;25:2465–82. https://doi.org/10.1093/hmg/ddw111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. • Wehling-Henricks M, Welc SS, Samengo G, Rinaldi C, Lindsey C, Wang Y, et al. Macrophages escape Klotho gene silencing in the mdx mouse model of Duchenne muscular dystrophy and promote muscle growth and increase satellite cell numbers through a Klotho-mediated pathway. Hum Mol Genet. 2018;27:14–29. https://doi.org/10.1093/hmg/ddx380. Macrophage-derived Klotho, a potent regulator of bone formation and bone mass, can promote muscle regeneration and the expansion of muscle stem cells, increasing muscle fiber growth in dystrophic muscle.

    Article  PubMed  Google Scholar 

  122. Komaba H, Kaludjerovic J, Hu DZ, Nagano K, Amano K, Ide N, et al. Klotho expression in osteocytes regulates bone metabolism and controls bone formation. Kidney Int. 2017;92:599–611. https://doi.org/10.1016/j.kint.2017.02.014.

    Article  CAS  PubMed  Google Scholar 

  123. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008;154:557–68. https://doi.org/10.1038/bjp.2008.153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Lindsey RC, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44–55. https://doi.org/10.1016/j.mce.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  125. Locatelli V, Bianchi VE. Effect of GH/IGF-1 on bone metabolism and Osteoporsosis. Int J Endocrinol. 2014;2014:235060. https://doi.org/10.1155/2014/235060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Patel K, Macharia R, Amthor H. Molecular mechanisms involving IGF-1 and myostatin to induce muscle hypertrophy as a therapeutic strategy for Duchenne muscular dystrophy. Acta Myol Myopathies Cardiomyopathies Off J Mediterr Soc Myol. 2005;24:230–41.

    CAS  Google Scholar 

  127. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002;157:137–48. https://doi.org/10.1083/jcb.200108071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Schertzer JD, van der Poel C, Shavlakadze T, Grounds MD, Lynch GS. Muscle-specific overexpression of IGF-I improves E-C coupling in skeletal muscle fibers from dystrophic mdx mice. Am J Phys Cell Phys. 2008;294:C161–8. https://doi.org/10.1152/ajpcell.00399.2007.

    Article  CAS  Google Scholar 

  129. Gregorevic P, Plant DR, Leeding KS, Bach LA, Lynch GS. Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin-like growth factor-I administration. Am J Pathol. 2002;161:2263–72. https://doi.org/10.1016/S0002-9440(10)64502-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Burks TN, Cohn RD. Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle. 2011;1:19. https://doi.org/10.1186/2044-5040-1-19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Guiraud S, Davies KE. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr Opin Pharmacol. 2017;34:36–48. https://doi.org/10.1016/j.coph.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  132. Accorsi A, Kumar A, Rhee Y, Miller A, Girgenrath M. IGF-1/GH axis enhances losartan treatment in Lama2-related muscular dystrophy. Hum Mol Genet. 2016;25:4624–34. https://doi.org/10.1093/hmg/ddw291.

    Article  CAS  PubMed  Google Scholar 

  133. Heatwole CR, Eichinger KJ, Friedman DI, Hilbert JE, Jackson CE, Logigian EL, et al. Open-label trial of recombinant human insulin-like growth factor 1/recombinant human insulin-like growth factor binding protein 3 in myotonic dystrophy type 1. Arch Neurol. 2011;68:37–44. https://doi.org/10.1001/archneurol.2010.227.

    Article  PubMed  Google Scholar 

  134. Scully MA, Pandya S, Moxley RT. Review of phase II and phase III clinical trials for Duchenne muscular dystrophy. Expert Opin Orphan Drugs. 2013;1:33–46. https://doi.org/10.1517/21678707.2013.746939.

    Article  CAS  Google Scholar 

  135. Rutter MM, Collins J, Backeljauw PF, Horn P, Taylor MD, Hu SY, et al. P.11.15 Recombinant human insulin-like growth factor-I (IGF-I) therapy in Duchenne muscular dystrophy (DMD): a 6-month prospective randomized controlled trial. Neuromuscul Disord. 2013;23:803. https://doi.org/10.1016/j.nmd.2013.06.576.

    Article  Google Scholar 

  136. Yoon S-H, Sugamori KS, Grynpas MD, Mitchell J. Positive effects of bisphosphonates on bone and muscle in a mouse model of Duchenne muscular dystrophy. Neuromuscul Disord NMD. 2016;26:73–84. https://doi.org/10.1016/j.nmd.2015.09.015.

    Article  PubMed  Google Scholar 

  137. Yoon S-H, Chen J, Grynpas MD, Mitchell J. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy. Bone. 2016;90:168–80. https://doi.org/10.1016/j.bone.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  138. Ponnusamy S, Sullivan RD, You D, Zafar N, He Yang C, Thiyagarajan T, et al. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy. Hum Mol Genet. 2017;26:2526–40. https://doi.org/10.1093/hmg/ddx150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kearbey JD, Gao W, Fisher SJ, Wu D, Miller DD, Dalton JT. Effects of selective androgen receptor modulator (SARM) treatment in osteopenic female rats. Pharm Res. 2009;26:2471–7. https://doi.org/10.1007/s11095-009-9962-7.

    Article  CAS  PubMed  Google Scholar 

  140. Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu D, Miller DD, et al. Selective Androgen Receptor Modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res. 2007;24:328–35. https://doi.org/10.1007/s11095-006-9152-9.

    Article  CAS  PubMed  Google Scholar 

  141. Wu B, Shah SN, Lu P, Bollinger LE, Blaeser A, Sparks S, et al. Long-term treatment of Tamoxifen and Raloxifene alleviates dystrophic phenotype and enhances muscle functions of FKRP dystroglycanopathy. Am J Pathol. 2018;188:1069–80. https://doi.org/10.1016/j.ajpath.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  142. Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell. 1995;82:743–52.

    Article  CAS  PubMed  Google Scholar 

  143. Kobzik L, Reid MB, Bredt DS, Stamler JS. Nitric oxide in skeletal muscle. Nature. 1994;372:546–8. https://doi.org/10.1038/372546a0.

    Article  CAS  PubMed  Google Scholar 

  144. Reid MB. Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand. 1998;162:401–9. https://doi.org/10.1046/j.1365-201X.1998.0303f.x.

    Article  CAS  PubMed  Google Scholar 

  145. Ennen JP, Verma M, Asakura A. Vascular-targeted therapies for Duchenne muscular dystrophy. Skelet Muscle. 2013;3:9. https://doi.org/10.1186/2044-5040-3-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Percival JM, Whitehead NP, Adams ME, Adamo CM, Beavo JA, Froehner SC. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy. J Pathol. 2012;228:77–87. https://doi.org/10.1002/path.4054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  147. Nelson MD, Rader F, Tang X, Tavyev J, Nelson SF, Miceli MC, et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology. 2014;82:2085–91. https://doi.org/10.1212/WNL.0000000000000498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Hammers DW, Sleeper MM, Forbes SC, Shima A, Walter GA, Sweeney HL. Tadalafil treatment delays the onset of cardiomyopathy in Dystrophin-deficient hearts. J Am Heart Assoc. 2016;5 https://doi.org/10.1161/JAHA.116.003911.

  149. Toğral G, Arıkan M, Korkusuz P, Hesar RH, Ekşioğlu MF. Positive effect of tadalafil, a phosphodiesterase-5 inhibitor, on fracture healing in rat femur. Eklem Hast Ve Cerrahisi Jt Dis Relat Surg. 2015;26:137–44.

    Article  Google Scholar 

  150. Histing T, Marciniak K, Scheuer C, Garcia P, Holstein JH, Klein M, et al. Sildenafil accelerates fracture healing in mice. J Orthop Res Off Publ Orthop Res Soc. 2011;29:867–73. https://doi.org/10.1002/jor.21324.

    Article  CAS  Google Scholar 

  151. Victor RG, Sweeney HL, Finkel R, McDonald CM, Byrne B, Eagle M, et al. A phase 3 randomized placebo-controlled trial of tadalafil for Duchenne muscular dystrophy. Neurology. 2017;89:1811–20. https://doi.org/10.1212/WNL.0000000000004570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Bereket C, Sener I, Cakir-Özkan N, Önger ME, Polat AV. Beneficial therapeutic effects of sildenafil on bone healing in animals treated with bisphosphonate. Niger J Clin Pract. 2018;21:217–24. https://doi.org/10.4103/njcp.njcp_172_16.

    Article  CAS  PubMed  Google Scholar 

  153. Abu-Amer Y. NF-κB signaling and bone resorption. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2013;24:2377–86. https://doi.org/10.1007/s00198-013-2313-x.

    Article  CAS  Google Scholar 

  154. Li H, Malhotra S, Kumar A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med Berl Ger. 2008;86:1113–26. https://doi.org/10.1007/s00109-008-0373-8.

    Article  CAS  Google Scholar 

  155. Jackman RW, Cornwell EW, Wu C-L, Kandarian SC. Nuclear factor-κB signalling and transcriptional regulation in skeletal muscle atrophy. Exp Physiol. 2013;98:19–24. https://doi.org/10.1113/expphysiol.2011.063321.

    Article  CAS  PubMed  Google Scholar 

  156. Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, et al. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med. 2013;5:1569–85. https://doi.org/10.1002/emmm.201302621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Hoffman EP, Riddle V, Siegler MA, Dickerson D, Backonja M, Kramer WG, et al. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids. 2018;134:43–52. https://doi.org/10.1016/j.steroids.2018.02.010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Hammers DW, Sleeper MM, Forbes SC, Coker CC, Jirousek MR, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341. https://doi.org/10.1172/jci.insight.90341.

    Article  PubMed Central  PubMed  Google Scholar 

  159. Donovan JM, Zimmer M, Offman E, Grant T, Jirousek M. A novel NF-κB inhibitor, edasalonexent (CAT-1004), in development as a disease-modifying treatment for patients with duchenne muscular dystrophy: phase 1 safety, pharmacokinetics, and pharmacodynamics in adult subjects. J Clin Pharmacol. 2017;57:627–39. https://doi.org/10.1002/jcph.842.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  160. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42. https://doi.org/10.1038/nature01658.

    Article  CAS  PubMed  Google Scholar 

  161. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.

    Article  CAS  PubMed  Google Scholar 

  162. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Lüthy R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 1997;89:309–19.

    Article  CAS  PubMed  Google Scholar 

  163. Bargman R, Posham R, Boskey A, Carter E, DiCarlo E, Verdelis K, et al. High- and low-dose OPG-Fc cause osteopetrosis-like changes in infant mice. Pediatr Res. 2012;72:495–501. https://doi.org/10.1038/pr.2012.118.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  164. Wu Y, Liu J, Guo H, Luo Q, Yu Z, Liao E, et al. Establishment of OPG transgenic mice and the effect of OPG on bone microarchitecture. Int J Endocrinol. 2013;2013:125932. https://doi.org/10.1155/2013/125932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  165. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Baud’huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C, Maillasson M, et al. Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev. 2013;24:401–9. https://doi.org/10.1016/j.cytogfr.2013.06.001.

    Article  CAS  PubMed  Google Scholar 

  167. Grimaud E, Soubigou L, Couillaud S, Coipeau P, Moreau A, Passuti N, et al. Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol. 2003;163:2021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Leibbrandt A, Penninger JM. RANK/RANKL: regulators of immune responses and bone physiology. Ann N Y Acad Sci. 2008;1143:123–50. https://doi.org/10.1196/annals.1443.016.

    Article  CAS  PubMed  Google Scholar 

  169. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390:175–9. https://doi.org/10.1038/36593.

    Article  CAS  PubMed  Google Scholar 

  170. Dufresne SS, Dumont NA, Boulanger-Piette A, Fajardo VA, Gamu D, Kake-Guena SA, et al. Muscle RANK is a key regulator of calcium storage, SERCA activity, and function of fast-twitch skeletal muscles. Am J Physiol Cell Physiol. 2016; ajpcell.00285.2015. https://doi.org/10.1152/ajpcell.00285.2015

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. Am J Pathol. 2015;185:920–6. https://doi.org/10.1016/j.ajpath.2015.01.006.

    Article  CAS  PubMed  Google Scholar 

  172. Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145:527–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hwang S-Y, Putney JW. Calcium signaling in osteoclasts. Biochim Biophys Acta. 1813;2011:979–83. https://doi.org/10.1016/j.bbamcr.2010.11.002.

    Article  CAS  Google Scholar 

  174. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PML, Carathers M, et al. Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest. 2007;117:889–901. https://doi.org/10.1172/JCI30556.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Hindi SM, Sato S, Choi Y, Kumar A. Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum Mol Genet. 2014;23:1492–505. https://doi.org/10.1093/hmg/ddt536.

    Article  CAS  PubMed  Google Scholar 

  176. Durham WJ, Arbogast S, Gerken E, Li Y-P, Reid MB. Progressive nuclear factor-kappaB activation resistant to inhibition by contraction and curcumin in mdx mice. Muscle Nerve. 2006;34:298–303. https://doi.org/10.1002/mus.20579.

    Article  CAS  PubMed  Google Scholar 

  177. Messina S, Bitto A, Aguennouz M, Minutoli L, Monici MC, Altavilla D, et al. Nuclear factor kappa-B blockade reduces skeletal muscle degeneration and enhances muscle function in Mdx mice. Exp Neurol. 2006;198:234–41. https://doi.org/10.1016/j.expneurol.2005.11.021.

    Article  CAS  PubMed  Google Scholar 

  178. Reay DP, Yang M, Watchko JF, Daood M, O’Day TL, Rehman KK, et al. Systemic delivery of NEMO binding domain/IKKγ inhibitory peptide to young mdx mice improves dystrophic skeletal muscle histopathology. Neurobiol Dis. 2011;43:598–608. https://doi.org/10.1016/j.nbd.2011.05.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. • Dufresne SS, Boulanger-Piette A, Bossé S, Argaw A, Hamoudi D, Marcadet L, et al. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full-length OPG-fc in mitigating muscular dystrophy. Acta Neuropathol Commun. 2018;6:31. https://doi.org/10.1186/s40478-018-0533-1. Osteoprotegerin, a protagonist of the RANK/RANKL/OPG bone triad, can mitigate muscular dystrophy in mdx mice more effectively than anti-RANKL or muscle-specific RANK deletion.

    Article  PubMed Central  PubMed  Google Scholar 

  180. Guiraud S, Edwards B, Squire SE, Babbs A, Shah N, Berg A, et al. Identification of serum protein biomarkers for utrophin based DMD therapy. Sci Rep. 2017;7:43697. https://doi.org/10.1038/srep43697.

    Article  PubMed Central  PubMed  Google Scholar 

  181. Marques MJ, Ferretti R, Vomero VU, Minatel E, Neto HS. Intrinsic laryngeal muscles are spared from myonecrosis in the mdx mouse model of Duchenne muscular dystrophy. Muscle Nerve. 2007;35:349–53. https://doi.org/10.1002/mus.20697.

    Article  PubMed  Google Scholar 

  182. Goonasekera SA, Lam CK, Millay DP, Sargent MA, Hajjar RJ, Kranias EG, et al. Mitigation of muscular dystrophy in mice by SERCA overexpression in skeletal muscle. J Clin Invest. 2011;121:1044–52. https://doi.org/10.1172/JCI43844.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  183. Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol. 2015;11:461–70. https://doi.org/10.1517/17425255.2015.1000860.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  184. Kumaki D, Nakamura Y, Sakai N, Kosho T, Nakamura A, Hirabayashi S, et al. Efficacy of denosumab for glucocorticoid-induced osteoporosis in an adolescent patient with Duchenne muscular dystrophy: a case report. JBJS Case Connect 2018; https://doi.org/10.2106/JBJS.CC.17.00190.

  185. Chagarlamudi H, Corbett A, Stoll M, Bibat G, Grosmann C, Matichak Stock C, et al. Bone health in facioscapulohumeral muscular dystrophy: a cross-sectional study. Muscle Nerve. 2017;56:1108–13. https://doi.org/10.1002/mus.25619.

    Article  CAS  PubMed  Google Scholar 

  186. Danckworth F, Karabul N, Posa A, Hanisch F. Risk factors for osteoporosis, falls and fractures in hereditary myopathies and sporadic inclusion body myositis - a cross sectional survey. Mol Genet Metab Rep. 2014;1:85–97. https://doi.org/10.1016/j.ymgmr.2013.12.005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Ryan’s Quest foundation, Jesse’s Journey, and Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Frenette.

Ethics declarations

Conflict of Interest

Leanne Ward reports participating in clinical trials with AMGEN.

Jérôme Frenette has a patent issued (20180064810).

Laetitia Marcadet, Anteneh Argaw, Antoine Boulanger, Françoise Morin Piette, and Dounia Hamoudi declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Muscle and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulanger Piette, A., Hamoudi, D., Marcadet, L. et al. Targeting the Muscle-Bone Unit: Filling Two Needs with One Deed in the Treatment of Duchenne Muscular Dystrophy. Curr Osteoporos Rep 16, 541–553 (2018). https://doi.org/10.1007/s11914-018-0468-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0468-2

Keywords

Navigation