Clinical Management of Osteoporotic Fractures

  • Adam Z. Khan
  • Richard D. Rames
  • Anna N. Miller
Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Orthopedic Management of Fractures

Abstract

Purpose of Review

This review examines recent literature regarding the clinical management of fragility fractures, provides insight into new practice patterns, and discusses controversies in current management.

Recent Findings

There are declining rates of osteoporosis management following initial fragility fracture. Management of osteoporotic fractures via a multidisciplinary team reduces secondary fracture incidence and improves overall osteoporotic care. Anabolic agents (abaloparatide and teriparatide) are effective adjuvants to fracture repair, and have shown positive results in cases of re-fracture in spite of medical management (i.e., bisphosphonates). For AO 31-A1 and A2 intertrochanteric hip fractures (non-reverse obliquity), no clinical advantage of intramedullary fixation over the sliding hip screw (SHS) has been proven; SHS is more cost-effective.

Summary

As fragility fracture incidence continues to rise, orthopedic surgeons must play a more central role in the care of osteoporotic patients. Initiation of pharmacologic intervention is key to preventing subsequent fragility fractures, and may play a supportive role in initial fracture healing. While the media bombards patients with complications of medical therapy (atypical femur fractures, osteonecrosis of jaw, myocardial infarction), providers need to understand and communicate the low incidence of these complications compared with consequences of not initiating medical therapy.

Keywords

Osteoporosis Fragility Fracture management Bisphosphonates Hip fracture Bone mineral density 

Notes

Compliance with Ethical Standards

Conflict of Interest

Anna Miller reports teaching educational courses for AO North America and sitting on an expert panel for Radius Health. Adam Khan and Richard Rames declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Friedman SM, Mendelson DA. Epidemiology of fragility fractures. Clin Geriatr Med. 2014;30(2):175–81.  https://doi.org/10.1016/j.cger.2014.01.001.PubMedCrossRefGoogle Scholar
  2. 2.
    Cooper C, Campion G, Melton LJ 3rd. Hip fractures in the elderly: a world-wide projection. Osteoporos Int. 1992;2(6):285–9.PubMedCrossRefGoogle Scholar
  3. 3.
    • Balasubramanian A, Tosi LL, Lane JM, Dirschl DR, Ho PR, O'Malley CD. Declining rates of osteoporosis management following fragility fractures in the U.S., 2000 through 2009. J Bone Joint Surg Am. 2014;96(7):e52–1-8.  https://doi.org/10.2106/JBJS.L.01781. Retrospective review of 130,555 patients idenitifying declining rates of osteoporosis phamacologic treatment initiation following fragility fracture over a 9 year period. Less than one sixth of men and one third of women met clinical guidelines for medical evaluation and management after intial osteporotic fracture. PubMedCrossRefGoogle Scholar
  4. 4.
    Rothberg DL, Lee MA. Internal fixation of osteoporotic fractures. Curr Osteoporos Reports. 2015;13(1):16–21.  https://doi.org/10.1007/s11914-014-0245-9.CrossRefGoogle Scholar
  5. 5.
    Hasselman CT, Vogt MT, Stone KL, Cauley JA, Conti SF. Foot and ankle fractures in elderly white women. Incidence and risk factors. J Bone Joint Surg Am. 2003;85-A(5):820–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Olsen JR, Hunter J, Baumhauer JF. Osteoporotic ankle fractures. Orthop Clin North Am. 2013;44(2):225–41.  https://doi.org/10.1016/j.ocl.2013.01.010.PubMedCrossRefGoogle Scholar
  7. 7.
    Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, et al. Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One. 2016;11(4):e0153120.  https://doi.org/10.1371/journal.pone.0153120.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pesce V, Speciale D, Sammarco G, Patella S, Spinarelli A, Patella V. Surgical approach to bone healing in osteoporosis. Clin Cases Miner Bone Metab. 2009;6(2):131–5.PubMedGoogle Scholar
  9. 9.
    van Wunnik BP, Weijers PH, van Helden SH, Brink PR, Poeze M. Osteoporosis is not a risk factor for the development of nonunion: a cohort nested case-control study. Injury. 2011;42(12):1491–4.  https://doi.org/10.1016/j.injury.2011.08.019.PubMedCrossRefGoogle Scholar
  10. 10.
    Cummings SR, Bates D, Black DM. Clinical use of bone densitometry: scientific review. JAMA. 2002;288(15):1889–97.PubMedCrossRefGoogle Scholar
  11. 11.
    Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.  https://doi.org/10.1001/archinte.164.10.1108.PubMedCrossRefGoogle Scholar
  12. 12.
    Rebolledo BJ, Unnanuntana A, Lane JM. A comprehensive approach to fragility fractures. J Orthop Trauma. 2011;25(9):566–73.  https://doi.org/10.1097/BOT.0b013e3181f9b389.PubMedCrossRefGoogle Scholar
  13. 13.
    Felsenberg D, Boonen S. The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther. 2005;27(1):1–11.  https://doi.org/10.1016/j.clinthera.2004.12.020.PubMedCrossRefGoogle Scholar
  14. 14.
    Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R. Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int. 2005;16(12):2031–8.  https://doi.org/10.1007/s00198-005-1992-3.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43.  https://doi.org/10.1016/j.bone.2009.01.373.PubMedCrossRefGoogle Scholar
  16. 16.
    • Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.  https://doi.org/10.1007/s00198-014-2794-2. Clinician’s Guide is a useful multi-disciplinary tool developed by an expert committee of the National Osteoporosis Foundation along with medical experts. Thorough and inclusive information regarding risk assessment, diagnosis, pharmacologic treatment guidelines of osteoporosis. Also includes concise list of guidelines helpful as a quick reference. PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bird ML, Pittaway JK, Cuisick I, Rattray M, Ahuja KD. Age-related changes in physical fall risk factors: results from a 3 year follow-up of community dwelling older adults in Tasmania, Australia. Int J Environ Res Public Health. 2013;10(11):5989–97.  https://doi.org/10.3390/ijerph10115989.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    • Miller AN, Lake AF, Emory CL. Establishing a fracture liaison service: an orthopaedic approach. J Bone Joint Surg Am. 2015;97(8):675–81.  https://doi.org/10.2106/JBJS.N.00957. A current concepts review outlining the important role of the fracture liason service in managing the underlying disease of osteoporosis rather than only treating the fracture. Highlights the importance of the comprehensive approach to patients with fragility fractures to prevent secondary fractures. Also provides helpul implementation strategies for healthcare administrators. PubMedCrossRefGoogle Scholar
  19. 19.
    Hollis BW. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: implications for establishing a new effective dietary intake recommendation for vitamin D. J Nutr. 2005;135(2):317–22.PubMedCrossRefGoogle Scholar
  20. 20.
    Hollis BW, Wagner CL. Normal serum vitamin D levels. N Engl J Med. 2005;352(5):515–6; author reply -6.  https://doi.org/10.1056/NEJM200502033520521.PubMedGoogle Scholar
  21. 21.
    Gaugris S, Heaney RP, Boonen S, Kurth H, Bentkover JD, Sen SS. Vitamin D inadequacy among post-menopausal women: a systematic review. QJM : Mon J Assoc Phys. 2005;98(9):667–76.  https://doi.org/10.1093/qjmed/hci096.CrossRefGoogle Scholar
  22. 22.
    Holick MF. High prevalence of vitamin D inadequacy and implications for health. Mayo Clin Proc. 2006;81(3):353–73.  https://doi.org/10.4065/81.3.353.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Reports. 2007;5(3):105–11.CrossRefGoogle Scholar
  24. 24.
    Moseley KF. Type 2 diabetes and bone fractures. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):128–35.  https://doi.org/10.1097/MED.0b013e328350a6e1.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43.  https://doi.org/10.1067/mlc.2001.113504.PubMedCrossRefGoogle Scholar
  26. 26.
    • Tarantino U, Piccirilli E, Fantini M, Baldi J, Gasbarra E, Bei R. Sarcopenia and fragility fractures: molecular and clinical evidence of the bone-muscle interaction. J Bone Joint Surg Am. 2015;97(5):429–37.  https://doi.org/10.2106/JBJS.N.00648. A current concepts review that details the the relationship between sarcopenia and osteoporosis. Describes the bone-muscle unit and cites recent clinical evidence to show the intimate relationship between the two disease processes. PubMedCrossRefGoogle Scholar
  27. 27.
    Lang T, Streeper T, Cawthon P, Baldwin K, Taaffe DR, Harris TB. Sarcopenia: etiology, clinical consequences, intervention, and assessment. Osteoporos Int. 2010;21(4):543–59.  https://doi.org/10.1007/s00198-009-1059-y.PubMedCrossRefGoogle Scholar
  28. 28.
    McLean RR, Shardell MD, Alley DE, Cawthon PM, Fragala MS, Harris TB, et al. Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol A Biol Sci Med Sci. 2014;69(5):576–83.  https://doi.org/10.1093/gerona/glu012.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    • Boutin RD, Yao L, Canter RJ, Lenchik L. Sarcopenia: current concepts and imaging implications. AJR Am J Roentgenol. 2015;205(3):W255–66.  https://doi.org/10.2214/AJR.15.14635. A review article outlining the current imaging strategies and specific diagnostic criteria for sarcopenia. Useful sections for each imaging modality utilized that includes the best use for each and association clinical implications. PubMedCrossRefGoogle Scholar
  30. 30.
    Crepaldi G, Maggi S. Sarcopenia and osteoporosis: a hazardous duet. J Endocrinol Investig. 2005;28(10 Suppl):66–8.Google Scholar
  31. 31.
    Chen CW, Huang TL, Su LT, Kuo YC, Wu SC, Li CY, et al. Incidence of subsequent hip fractures is significantly increased within the first month after distal radius fracture in patients older than 60 years. J Trauma Acute Care Surg. 2013;74(1):317–21.PubMedCrossRefGoogle Scholar
  32. 32.
    Freeman AL, Tornetta P 3rd, Schmidt A, Bechtold J, Ricci W, Fleming M. How much do locked screws add to the fixation of "hybrid" plate constructs in osteoporotic bone? J Orthop Trauma. 2010;24(3):163–9.  https://doi.org/10.1097/BOT.0b013e3181d35c29.PubMedCrossRefGoogle Scholar
  33. 33.
    Turner IG, Rice GN. Comparison of bone screw holding strength in healthy bovine and osteoporotic human cancellous bone. Clin Mater. 1992;9(2):105–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91(8):1985–94.  https://doi.org/10.2106/JBJS.H.01038.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Doornink J, Fitzpatrick DC, Madey SM, Bottlang M. Far cortical locking enables flexible fixation with periarticular locking plates. J Orthop Trauma. 2011;25(Suppl 1):S29–34.  https://doi.org/10.1097/BOT.0b013e3182070cda.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    • Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.  https://doi.org/10.1097/BOT.0b013e31829e6dd0. This paper identified risk factors for nonunion in distal femur fractures such as shorter plate length, smoking, increase BMI, diabetes, open fracture, with plate length being one risk factor that can be modified by the surgeon. PubMedCrossRefGoogle Scholar
  37. 37.
    Gardner MJ, Nork SE, Huber P, Krieg JC. Stiffness modulation of locking plate constructs using near cortical slotted holes: a preliminary study. J Orthop Trauma. 2009;23(4):281–7.  https://doi.org/10.1097/BOT.0b013e31819df775.PubMedCrossRefGoogle Scholar
  38. 38.
    Bottlang M, Fitzpatrick DC, Sheerin D, Kubiak E, Gellman R, Vande Zandschulp C, et al. Dynamic fixation of distal femur fractures using far cortical locking screws: a prospective observational study. J Orthop Trauma. 2014;28(4):181–8.  https://doi.org/10.1097/01.bot.0000438368.44077.04.PubMedCrossRefGoogle Scholar
  39. 39.
    Bogunovic L, Cherney SM, Rothermich MA, Gardner MJ. Biomechanical considerations for surgical stabilization of osteoporotic fractures. Orthop Clin North Am. 2013;44(2):183–200.  https://doi.org/10.1016/j.ocl.2013.01.006.PubMedCrossRefGoogle Scholar
  40. 40.
    Kammerlander C, Erhart S, Doshi H, Gosch M, Blauth M. Principles of osteoporotic fracture treatment. Best Pract Res Clin Rheumatol. 2013;27(6):757–69.  https://doi.org/10.1016/j.berh.2014.02.005.PubMedCrossRefGoogle Scholar
  41. 41.
    Wahnert D, Hoffmeier KL, von Oldenburg G, Frober R, Hofmann GO, Muckley T. Internal fixation of type-C distal femoral fractures in osteoporotic bone. J Bone Joint Surg Am. 2010;92(6):1442–52.  https://doi.org/10.2106/JBJS.H.01722.PubMedCrossRefGoogle Scholar
  42. 42.
    Wahnert D, Stolarczyk Y, Hoffmeier KL, Raschke MJ, Hofmann GO, Muckley T. Long-term stability of angle-stable versus conventional locked intramedullary nails in distal tibia fractures. BMC Musculoskelet Disord. 2013;14:66.  https://doi.org/10.1186/1471-2474-14-66.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Fliri L, Lenz M, Boger A, Windolf M. Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg. 2012;72(4):1098–101.  https://doi.org/10.1097/TA.0b013e318248bfa7.PubMedCrossRefGoogle Scholar
  44. 44.
    Cummings SR, Black DM, Rubin SM. Lifetime risks of hip, Colles', or vertebral fracture and coronary heart disease among white postmenopausal women. Arch Intern Med. 1989;149(11):2445–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Levin LS, Rozell JC, Pulos N. Distal radius fractures in the elderly. J Am Acad Orthop Surg. 2017;25(3):179–87.  https://doi.org/10.5435/JAAOS-D-15-00676.PubMedCrossRefGoogle Scholar
  46. 46.
    Clayton RA, Gaston MS, Ralston SH, Court-Brown CM, McQueen MM. Association between decreased bone mineral density and severity of distal radial fractures. J Bone Joint Surg Am. 2009;91(3):613–9.  https://doi.org/10.2106/JBJS.H.00486.PubMedCrossRefGoogle Scholar
  47. 47.
    Fitzpatrick SK, Casemyr NE, Zurakowski D, Day CS, Rozental TD. The effect of osteoporosis on outcomes of operatively treated distal radius fractures. J Hand Surg. 2012;37(10):2027–34.  https://doi.org/10.1016/j.jhsa.2012.06.025.CrossRefGoogle Scholar
  48. 48.
    Oyen J, Brudvik C, Gjesdal CG, Tell GS, Lie SA, Hove LM. Osteoporosis as a risk factor for distal radial fractures: a case-control study. J Bone Joint Surg Am. 2011;93(4):348–56.  https://doi.org/10.2106/JBJS.J.00303.PubMedCrossRefGoogle Scholar
  49. 49.
    Robin BN, Ellington MD, Jupiter DC, Brennan ML. Relationship of bone mineral density of spine and femoral neck to distal radius fracture stability in patients over 65. J Hand Surg. 2014;39(5):861–6 e3.  https://doi.org/10.1016/j.jhsa.2014.01.043.CrossRefGoogle Scholar
  50. 50.
    Arora R, Lutz M, Deml C, Krappinger D, Haug L, Gabl M. A prospective randomized trial comparing nonoperative treatment with volar locking plate fixation for displaced and unstable distal radial fractures in patients sixty-five years of age and older. J Bone Joint Surg Am. 2011;93(23):2146–53.  https://doi.org/10.2106/JBJS.J.01597.PubMedCrossRefGoogle Scholar
  51. 51.
    Barton T, Chambers C, Bannister G. A comparison between subjective outcome score and moderate radial shortening following a fractured distal radius in patients of mean age 69 years. J Hand Surg Eur Vol. 2007;32(2):165–9.  https://doi.org/10.1016/J.JHSB.2006.11.010.PubMedCrossRefGoogle Scholar
  52. 52.
    Beumer A, McQueen MM. Fractures of the distal radius in low-demand elderly patients: closed reduction of no value in 53 of 60 wrists. Acta Orthop Scand. 2003;74(1):98–100.  https://doi.org/10.1080/00016470310013743.PubMedCrossRefGoogle Scholar
  53. 53.
    Leung F, Tu YK, Chew WY, Chow SP. Comparison of external and percutaneous pin fixation with plate fixation for intra-articular distal radial fractures. A randomized study. J Bone Joint Surg Am. 2008;90(1):16–22.  https://doi.org/10.2106/JBJS.F.01581.PubMedCrossRefGoogle Scholar
  54. 54.
    Pietri M, Lucarini S. The orthopaedic treatment of fragility fractures. Clin Cases Miner Bone Metab. 2007;4(2):108–16.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Falk SS, Mittlmeier T, Gradl G. Results of geriatric distal radius fractures treated by intramedullary fixation. Injury. 2016;47(Suppl 7):S31–S5.  https://doi.org/10.1016/S0020-1383(16)30851-8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kannus P, Palvanen M, Niemi S, Sievanen H, Parkkari J. Rate of proximal humeral fractures in older Finnish women between 1970 and 2007. Bone. 2009;44(4):656–9.  https://doi.org/10.1016/j.bone.2008.12.007.PubMedCrossRefGoogle Scholar
  57. 57.
    Kancherla VK, Singh A, Anakwenze OA. Management of Acute Proximal Humeral Fractures. J Am Acad Orthop Surg. 2017;25(1):42–52.  https://doi.org/10.5435/JAAOS-D-15-00240.PubMedCrossRefGoogle Scholar
  58. 58.
    Kralinger F, Blauth M, Goldhahn J, Kach K, Voigt C, Platz A, et al. The influence of local bone density on the outcome of one hundred and fifty proximal humeral fractures treated with a locking plate. J Bone Joint Surg Am. 2014;96(12):1026–32.  https://doi.org/10.2106/JBJS.M.00028.PubMedCrossRefGoogle Scholar
  59. 59.
    Hinds RM, Garner MR, Tran WH, Lazaro LE, Dines JS, Lorich DG. Geriatric proximal humeral fracture patients show similar clinical outcomes to non-geriatric patients after osteosynthesis with endosteal fibular strut allograft augmentation. J Shoulder Elb Surg. 2015;24(6):889–96.  https://doi.org/10.1016/j.jse.2014.10.019.CrossRefGoogle Scholar
  60. 60.
    Matassi F, Angeloni R, Carulli C, Civinini R, Di Bella L, Redl B, et al. Locking plate and fibular allograft augmentation in unstable fractures of proximal humerus. Injury. 2012;43(11):1939–42.  https://doi.org/10.1016/j.injury.2012.08.004.PubMedCrossRefGoogle Scholar
  61. 61.
    Konrad G, Audige L, Lambert S, Hertel R, Sudkamp NP. Similar outcomes for nail versus plate fixation of three-part proximal humeral fractures. Clin Orthop Relat Res. 2012;470(2):602–9.  https://doi.org/10.1007/s11999-011-2056-y.PubMedCrossRefGoogle Scholar
  62. 62.
    Zhu Y, Lu Y, Shen J, Zhang J, Jiang C. Locking intramedullary nails and locking plates in the treatment of two-part proximal humeral surgical neck fractures: a prospective randomized trial with a minimum of three years of follow-up. J Bone Joint Surg Am. 2011;93(2):159–68.  https://doi.org/10.2106/JBJS.J.00155.PubMedCrossRefGoogle Scholar
  63. 63.
    Boileau P, Krishnan SG, Tinsi L, Walch G, Coste JS, Mole D. Tuberosity malposition and migration: reasons for poor outcomes after hemiarthroplasty for displaced fractures of the proximal humerus. J Shoulder Elb Surg. 2002;11(5):401–12.CrossRefGoogle Scholar
  64. 64.
    Abrahamsen B, van Staa T, Ariely R, Olson M, Cooper C. Excess mortality following hip fracture: a systematic epidemiological review. Osteoporos Int. 2009;20(10):1633–50.  https://doi.org/10.1007/s00198-009-0920-3.PubMedCrossRefGoogle Scholar
  65. 65.
    Dy CJ, Dossous PM, Ton QV, Hollenberg JP, Lorich DG, Lane JM. The medical orthopaedic trauma service: an innovative multidisciplinary team model that decreases in-hospital complications in patients with hip fractures. J Orthop Trauma. 2012;26(6):379–83.  https://doi.org/10.1097/BOT.0b013e3182242678.PubMedCrossRefGoogle Scholar
  66. 66.
    Friedman SM, Mendelson DA, Bingham KW, Kates SL. Impact of a comanaged geriatric fracture center on short-term hip fracture outcomes. Arch Intern Med. 2009;169(18):1712–7.  https://doi.org/10.1001/archinternmed.2009.321.PubMedCrossRefGoogle Scholar
  67. 67.
    Kammerlander C, Gosch M, Blauth M, Lechleitner M, Luger TJ, Roth T. The Tyrolean geriatric fracture center: an orthogeriatric co-management model. Zeitschrift fur Gerontologie und Geriatrie. 2011;44(6):363–7.  https://doi.org/10.1007/s00391-011-0253-7.PubMedCrossRefGoogle Scholar
  68. 68.
    Kammerlander C, Roth T, Friedman SM, Suhm N, Luger TJ, Kammerlander-Knauer U, et al. Ortho-geriatric service--a literature review comparing different models. Osteoporos Int. 2010;21(Suppl 4):S637–46.  https://doi.org/10.1007/s00198-010-1396-x.PubMedCrossRefGoogle Scholar
  69. 69.
    Grosso MG, Danoff JR, Padgett DE, Iorio R, Macaulay WB. The cemented unipolar prosthesis for the Management of Displaced Femoral Neck Fractures in the dependent Osteopenic elderly. J Arthroplast. 2016;31(5):1040–6.  https://doi.org/10.1016/j.arth.2015.11.029.CrossRefGoogle Scholar
  70. 70.
    Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Comparison of internal fixation with total hip replacement for displaced femoral neck fractures. Randomized, controlled trial performed at four years. J Bone Joint Surg Am. 2005;87(8):1680–8.  https://doi.org/10.2106/JBJS.D.02655.PubMedGoogle Scholar
  71. 71.
    Blomfeldt R, Tornkvist H, Ponzer S, Soderqvist A, Tidermark J. Internal fixation versus hemiarthroplasty for displaced fractures of the femoral neck in elderly patients with severe cognitive impairment. J Bone Joint Surg British vol. 2005;87(4):523–9.  https://doi.org/10.1302/0301-620X.87B4.15764.CrossRefGoogle Scholar
  72. 72.
    • Reindl R, Harvey EJ, Berry GK, Rahme E. Canadian Orthopaedic trauma S. Intramedullary versus extramedullary fixation for unstable intertrochanteric fractures: a prospective randomized controlled trial. J Bone Joint Surg Am. 2015;97(23):1905–12.  https://doi.org/10.2106/JBJS.N.01007. A prospective randomized control trial identyfying the intramedullary nail compared with sliding hip screw to be associated with less radiographic femoral neck shortening following fixation of AO 31-A2 intertrochanteric hip fractures. Yet, this finding was not coorelated with any significant difference in functional outcomes. PubMedCrossRefGoogle Scholar
  73. 73.
    Saudan M, Lubbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail?: a randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002;16(6):386–93.PubMedCrossRefGoogle Scholar
  74. 74.
    • Swart E, Makhni EC, Macaulay W, Rosenwasser MP, Bozic KJ. Cost-effectiveness analysis of fixation options for intertrochanteric hip fractures. J Bone Joint Surg Am. 2014;96(19):1612–20.  https://doi.org/10.2106/JBJS.M.00603. An expected-value decision-analysis model utilizing implant cost and fixation failure rates to compare the sliding hip screw (SHS) to intramedullary nail (IMN) for fixation of intertrochanteric fractures. Concluded that AO 31-A1 and A2 are most cost-effectively treated with SHS, whereas reverse obliquity fractures (A3) are more effectively treated with an IMN. PubMedCrossRefGoogle Scholar
  75. 75.
    Aros B, Tosteson AN, Gottlieb DJ, Koval KJ. Is a sliding hip screw or im nail the preferred implant for intertrochanteric fracture fixation? Clin Orthop Relat Res. 2008;466(11):2827–32.  https://doi.org/10.1007/s11999-008-0285-5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Parker MJ, Bowers TR, Pryor GA. Sliding hip screw versus the Targon PF nail in the treatment of trochanteric fractures of the hip: a randomised trial of 600 fractures. J Bone Joint Surg Br Vol. 2012;94(3):391–7.  https://doi.org/10.1302/0301-620X.94B3.28406.CrossRefGoogle Scholar
  77. 77.
    Aktselis I, Kokoroghiannis C, Fragkomichalos E, Koundis G, Deligeorgis A, Daskalakis E, et al. Prospective randomised controlled trial of an intramedullary nail versus a sliding hip screw for intertrochanteric fractures of the femur. Int Orthop. 2014;38(1):155–61.  https://doi.org/10.1007/s00264-013-2196-7.PubMedCrossRefGoogle Scholar
  78. 78.
    Matre K, Vinje T, Havelin LI, Gjertsen JE, Furnes O, Espehaug B, et al. TRIGEN INTERTAN intramedullary nail versus sliding hip screw: a prospective, randomized multicenter study on pain, function, and complications in 684 patients with an intertrochanteric or subtrochanteric fracture and one year of follow-up. J Bone Joint Surg Am. 2013;95(3):200–8.  https://doi.org/10.2106/JBJS.K.01497.PubMedCrossRefGoogle Scholar
  79. 79.
    Parker MJ, Handoll HH. Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev. 2010;9:CD000093.  https://doi.org/10.1002/14651858.CD000093.pub5.Google Scholar
  80. 80.
    Bienkowski P, Reindl R, Berry GK, Iakoub E, Harvey EJ. A new intramedullary nail device for the treatment of intertrochanteric hip fractures: perioperative experience. J Trauma. 2006;61(6):1458–62.  https://doi.org/10.1097/01.ta.0000200937.12453.fb.PubMedCrossRefGoogle Scholar
  81. 81.
    Niu E, Yang A, Harris AH, Bishop J. Which fixation device is preferred for surgical treatment of intertrochanteric hip fractures in the United States? A survey of Orthopaedic surgeons. Clin Orthop Relat Res. 2015;473(11):3647–55.  https://doi.org/10.1007/s11999-015-4469-5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144–51.  https://doi.org/10.1097/01.brs.0000236893.65878.39.PubMedCrossRefGoogle Scholar
  83. 83.
    Yagi M, King AB, Boachie-Adjei O. Characterization of osteopenia/osteoporosis in adult scoliosis: does bone density affect surgical outcome? Spine. 2011;36(20):1652–7.  https://doi.org/10.1097/BRS.0b013e31820110b4.PubMedCrossRefGoogle Scholar
  84. 84.
    Okuda S, Oda T, Miyauchi A, Haku T, Yamamoto T, Iwasaki M. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am. 2006;88(12):2714–20.  https://doi.org/10.2106/JBJS.F.00186.PubMedCrossRefGoogle Scholar
  85. 85.
    Hirsch BP, Unnanuntana A, Cunningham ME, Lane JM. The effect of therapies for osteoporosis on spine fusion: a systematic review. Spine J: Off J North Am Spine Soc. 2013;13(2):190–9.  https://doi.org/10.1016/j.spinee.2012.03.035.CrossRefGoogle Scholar
  86. 86.
    Schneider JP. Bisphosphonates and low-impact femoral fractures: current evidence on alendronate-fracture risk. Geriatrics. 2009;64(1):18–23.PubMedGoogle Scholar
  87. 87.
    Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Teriparatide accelerates lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine. 2012;37(23):E1464–8.  https://doi.org/10.1097/BRS.0b013e31826ca2a8.PubMedCrossRefGoogle Scholar
  88. 88.
    Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine. 2013;38(8):E487–92.  https://doi.org/10.1097/BRS.0b013e31828826dd.PubMedCrossRefGoogle Scholar
  89. 89.
    Lehman RA Jr, Kang DG, Wagner SC. Management of osteoporosis in spine surgery. J Am Acad Orthop Surg. 2015;23(4):253–63.  https://doi.org/10.5435/JAAOS-D-14-00042.PubMedCrossRefGoogle Scholar
  90. 90.
    Anderson PA, Froyshteter AB, Tontz WL Jr. Meta-analysis of vertebral augmentation compared with conservative treatment for osteoporotic spinal fractures. J Bone Miner Res. 2013;28(2):372–82.  https://doi.org/10.1002/jbmr.1762.PubMedCrossRefGoogle Scholar
  91. 91.
    Mattie R, Laimi K, Yu S, Saltychev M. Comparing percutaneous Vertebroplasty and conservative therapy for treating osteoporotic compression fractures in the thoracic and lumbar spine: a systematic review and meta-analysis. J Bone Joint Surg Am. 2016;98(12):1041–51.  https://doi.org/10.2106/JBJS.15.00425.PubMedCrossRefGoogle Scholar
  92. 92.
    Savage JW, Schroeder GD, Anderson PA. Vertebroplasty and kyphoplasty for the treatment of osteoporotic vertebral compression fractures. J Am Acad Orthop Surg. 2014;22(10):653–64.  https://doi.org/10.5435/JAAOS-22-10-653.PubMedCrossRefGoogle Scholar
  93. 93.
    Goldstein CL, Brodke DS, Choma TJ. Surgical Management of Spinal Conditions in the elderly osteoporotic spine. Neurosurgery. 2015;77(Suppl 4):S98–107.  https://doi.org/10.1227/NEU.0000000000000948.PubMedCrossRefGoogle Scholar
  94. 94.
    Hostin R, McCarthy I, O'Brien M, Bess S, Line B, Boachie-Adjei O, et al. Incidence, mode, and location of acute proximal junctional failures after surgical treatment of adult spinal deformity. Spine. 2013;38(12):1008–15.  https://doi.org/10.1097/BRS.0b013e318271319c.PubMedCrossRefGoogle Scholar
  95. 95.
    Dodwad SM, Khan SN. Surgical stabilization of the spine in the osteoporotic patient. Orthop Clin North Am. 2013;44(2):243–9.  https://doi.org/10.1016/j.ocl.2013.01.008.PubMedCrossRefGoogle Scholar
  96. 96.
    Helgeson MD, Kang DG, Lehman RA Jr, Dmitriev AE, Luhmann SJ. Tapping insertional torque allows prediction for better pedicle screw fixation and optimal screw size selection. Spine J: Off J North Am Spine Soc. 2013;13(8):957–65.  https://doi.org/10.1016/j.spinee.2013.03.012.CrossRefGoogle Scholar
  97. 97.
    Paik H, Dmitriev AE, Lehman RA Jr, Gaume RE, Ambati DV, Kang DG, et al. The biomechanical effect of pedicle screw hubbing on pullout resistance in the thoracic spine. Spine J: Off J North Am Spine Soc. 2012;12(5):417–24.  https://doi.org/10.1016/j.spinee.2012.03.020.CrossRefGoogle Scholar
  98. 98.
    Wu ZX, Gong FT, Liu L, Ma ZS, Zhang Y, Zhao X, et al. A comparative study on screw loosening in osteoporotic lumbar spine fusion between expandable and conventional pedicle screws. Arch Orthop Trauma Surg. 2012;132(4):471–6.  https://doi.org/10.1007/s00402-011-1439-6.PubMedCrossRefGoogle Scholar
  99. 99.
    Cooper C, Atkinson EJ, Jacobsen SJ, O'Fallon WM, Melton LJ 3rd. Population-based study of survival after osteoporotic fractures. Am J Epidemiol. 1993;137(9):1001–5.PubMedCrossRefGoogle Scholar
  100. 100.
    Leibson CL, Tosteson AN, Gabriel SE, Ransom JE, Melton LJ. Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc. 2002;50(10):1644–50.PubMedCrossRefGoogle Scholar
  101. 101.
    Magaziner J, Lydick E, Hawkes W, Fox KM, Zimmerman SI, Epstein RS, et al. Excess mortality attributable to hip fracture in white women aged 70 years and older. Am J Public Health. 1997;87(10):1630–6.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    • Black DM, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of osteoporotic fractures research group. J Bone Miner Res. 1999;14(5):821–8.  https://doi.org/10.1359/jbmr.1999.14.5.821. Meta-analysis that supports the continued use of calcium in addition to vitamin D as supplements in osteoporosis management. PubMedCrossRefGoogle Scholar
  103. 103.
    Bai H, Jing D, Guo A, Yin S. Randomized controlled trial of zoledronic acid for treatment of osteoporosis in women. J Int Med Res. 2013;41(3):697–704.  https://doi.org/10.1177/0300060513480917.PubMedCrossRefGoogle Scholar
  104. 104.
    Byun JH, Jang S, Lee S, Park S, Yoon HK, Yoon BH, et al. The efficacy of bisphosphonates for prevention of osteoporotic fracture: an update meta-analysis. J Bone Metab. 2017;24(1):37–49.  https://doi.org/10.11005/jbm.2017.24.1.37.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Chao M, Hua Q, Yingfeng Z, Guang W, Shufeng S, Yuzhen D, et al. Study on the role of zoledronic acid in treatment of postmenopausal osteoporosis women. Pak J Med Sci. 2013;29(6):1381–4.PubMedPubMedCentralGoogle Scholar
  106. 106.
    van de Glind EM, Willems HC, Eslami S, Abu-Hanna A, Lems WF, Hooft L, et al. Estimating the time to benefit for preventive drugs with the statistical process control method: an example with alendronate. Drugs Aging. 2016;33(5):347–53.  https://doi.org/10.1007/s40266-016-0344-7.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cesareo R, Iozzino M, D'Onofrio L, Terrinoni I, Maddaloni E, Casini A, et al. Effectiveness and safety of calcium and vitamin D treatment for postmenopausal osteoporosis. Minerva Endocrinol. 2015;40(3):231–7.PubMedGoogle Scholar
  108. 108.
    Harvey NC, Biver E, Kaufman JM, Bauer J, Branco J, Brandi ML, et al. The role of calcium supplementation in healthy musculoskeletal ageing : an expert consensus meeting of the European Society for Clinical and Economic Aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO) and the International Foundation for Osteoporosis (IOF). Osteoporos Int. 2017;28(2):447–62.  https://doi.org/10.1007/s00198-016-3773-6.PubMedCrossRefGoogle Scholar
  109. 109.
    Reid IR. Should we prescribe calcium supplements for osteoporosis prevention? J Bone Metab. 2014;21(1):21–8.  https://doi.org/10.11005/jbm.2014.21.1.21.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Weaver CM, Alexander DD, Boushey CJ, Dawson-Hughes B, Lappe JM, LeBoff MS, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27(1):367–76.  https://doi.org/10.1007/s00198-015-3386-5.PubMedCrossRefGoogle Scholar
  111. 111.
    Kopecky SL, Bauer DC, Gulati M, Nieves JW, Singer AJ, Toth PP, et al. Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med. 2016;165(12):867–8.  https://doi.org/10.7326/M16-1743.PubMedCrossRefGoogle Scholar
  112. 112.
    Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.  https://doi.org/10.1056/NEJMra070553.PubMedCrossRefGoogle Scholar
  113. 113.
    Sozen T, Ozisik L, Basaran NC. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.  https://doi.org/10.5152/eurjrheum.2016.048.PubMedCrossRefGoogle Scholar
  114. 114.
    McClung M, Harris ST, Miller PD, Bauer DC, Davison KS, Dian L, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126(1):13–20.  https://doi.org/10.1016/j.amjmed.2012.06.023.PubMedCrossRefGoogle Scholar
  115. 115.
    Tandon VR, Sharma S, Mahajan A. Bisphosphonate drug holidays: can we recommend currently? J Mid-life Health. 2014;5(3):111–4.  https://doi.org/10.4103/0976-7800.141186.CrossRefGoogle Scholar
  116. 116.
    Abrahamsen B, Eiken P, Prieto-Alhambra D, Eastell R. Risk of hip, subtrochanteric, and femoral shaft fractures among mid and long term users of alendronate: nationwide cohort and nested case-control study. BMJ. 2016;353:i3365.  https://doi.org/10.1136/bmj.i3365.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    • Wang Z, Bhattacharyya T. Trends in incidence of subtrochanteric fragility fractures and bisphosphonate use among the US elderly, 1996-2007. J Bone Miner Res. 2011;26(3):553–60.  https://doi.org/10.1002/jbmr.233. Identifies abaloparatide as an alternative anabolic agent to teraparatide effective in preventing fragility fractures with an improved side effect profile. PubMedCrossRefGoogle Scholar
  118. 118.
    Balach T, Baldwin PC, Intravia J. Atypical femur fractures associated with diphosphonate use. J Am Acad Orthop Surg. 2015;23(9):550–7.  https://doi.org/10.5435/JAAOS-D-14-00024.PubMedCrossRefGoogle Scholar
  119. 119.
    Edwards BJ, Bunta AD, Lane J, Odvina C, Rao DS, Raisch DW, et al. Bisphosphonates and nonhealing femoral fractures: analysis of the FDA adverse event reporting system (FAERS) and international safety efforts: a systematic review from the research on adverse drug events and reports (RADAR) project. J Bone Joint Surg Am. 2013;95(4):297–307.  https://doi.org/10.2106/JBJS.K.01181.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Eriksen EF, Keaveny TM, Gallagher ER, Krege JH. Literature review: the effects of teriparatide therapy at the hip in patients with osteoporosis. Bone. 2014;67:246–56.  https://doi.org/10.1016/j.bone.2014.07.014.PubMedCrossRefGoogle Scholar
  121. 121.
    Miller PD, Hattersley G, Riis BJ, Williams GC, Lau E, Russo LA, et al. Effect of Abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA. 2016;316(7):722–33.  https://doi.org/10.1001/jama.2016.11136.PubMedCrossRefGoogle Scholar
  122. 122.
    Cipriano CA, Issack PS, Shindle L, Werner CM, Helfet DL, Lane JM. Recent advances toward the clinical application of PTH (1-34) in fracture healing. HSS Journal : the musculoskeletal journal of Hospital for Special Surgery. 2009;5(2):149–53.  https://doi.org/10.1007/s11420-009-9109-8.PubMedCrossRefGoogle Scholar
  123. 123.
    Kim SM, Kang KC, Kim JW, Lim SJ, Hahn MH. Current role and application of Teriparatide in fracture healing of osteoporotic patients: a systematic review. J Bone Metab. 2017;24(1):65–73.  https://doi.org/10.11005/jbm.2017.24.1.65.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Schweser KM, Crist BD. Osteoporosis: a discussion on the past 5 years. Curr Rev Musculoskelet Med. 2017;10:265–74.  https://doi.org/10.1007/s12178-017-9410-y.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Miller PD, Pannacciulli N, Brown JP, Czerwinski E, Nedergaard BS, Bolognese MA, et al. Denosumab or Zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab. 2016;101(8):3163–70.  https://doi.org/10.1210/jc.2016-1801.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    • Tsai JN, Uihlein AV, Burnett-Bowie SM, Neer RM, Derrico NP, Lee H, et al. Effects of two years of Teriparatide, Denosumab, or both on bone microarchitecture and strength (DATA-HRpQCT study). J Clin Endocrinol Metab. 2016;101(5):2023–30.  https://doi.org/10.1210/jc.2016-1160. Outlines the results and implications of the quality improvement cohort study implemented by the American Orthopaedic Association’s secondary fracture prevention program. Study reports the growth of the Own the Bone intitiative and success of improving fragility fracture management. PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bone HG, Chapurlat R, Brandi ML, Brown JP, Czerwinski E, Krieg MA, et al. The effect of three or six years of denosumab exposure in women with postmenopausal osteoporosis: results from the FREEDOM extension. J Clin Endocrinol Metab. 2013;98(11):4483–92.  https://doi.org/10.1210/jc.2013-1597.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Farooki A, Fornier M, Boland P. Atypical femur fractures associated with use of bisphosphonates and denosumab. Ann Oncol. 2015;26(4):819–20.  https://doi.org/10.1093/annonc/mdv014.PubMedCrossRefGoogle Scholar
  129. 129.
    Zhou Z, Chen C, Zhang J, Ji X, Liu L, Zhang G, et al. Safety of denosumab in postmenopausal women with osteoporosis or low bone mineral density: a meta-analysis. Int J Clin Exp Pathol. 2014;7(5):2113–22.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Rosenwasser MP, Cuellar D. Medical management of osteoporosis and the surgeons' role. Injury. 2016;47(Suppl 1):S62–4.  https://doi.org/10.1016/S0020-1383(16)30014-6.PubMedCrossRefGoogle Scholar
  131. 131.
    Sorbi R, Aghamirsalim M. Osteoporotic fracture program management: who should be in charge? A comparative survey of knowledge in orthopaedic surgeons and internists. Orthop Traumatol Surg Res: OTSR. 2013;99(6):723–30.  https://doi.org/10.1016/j.otsr.2013.03.022.PubMedCrossRefGoogle Scholar
  132. 132.
    Ganda K, Puech M, Chen JS, Speerin R, Bleasel J, Center JR, et al. Models of care for the secondary prevention of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int. 2013;24(2):393–406.  https://doi.org/10.1007/s00198-012-2090-y.PubMedCrossRefGoogle Scholar
  133. 133.
    McLellan AR, Gallacher SJ, Fraser M, McQuillian C. The fracture liaison service: success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int. 2003;14(12):1028–34.  https://doi.org/10.1007/s00198-003-1507-z.PubMedCrossRefGoogle Scholar
  134. 134.
    Bunta AD, Edwards BJ, Macaulay WB Jr, Jeray KJ, Tosi LL, Jones CB, et al. Own the bone, a system-based intervention, improves osteoporosis care after fragility fractures. J Bone Joint Surg Am. 2016;98(24):e109.  https://doi.org/10.2106/JBJS.15.01494.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Benzvi L, Gershon A, Lavi I, Wollstein R. Secondary prevention of osteoporosis following fragility fractures of the distal radius in a large health maintenance organization. Arch Osteoporos. 2016;11:20.  https://doi.org/10.1007/s11657-016-0275-2.PubMedCrossRefGoogle Scholar
  136. 136.
    Viprey M, Caillet P, Canat G, Jaglal S, Haesebaert J, Chapurlat R, et al. Low osteoporosis treatment initiation rate in women after distal forearm or proximal Humerus fracture: a healthcare database nested cohort study. PLoS One. 2015;10(12):e0143842.  https://doi.org/10.1371/journal.pone.0143842.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Adam Z. Khan
    • 1
  • Richard D. Rames
    • 1
  • Anna N. Miller
    • 1
  1. 1.Department of Orthopaedic SurgeryWashington University School of MedicineSt. LouisUSA

Personalised recommendations