Skip to main content

Advertisement

Log in

Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances

  • Regenerative Biology and Medicine in Osteoporosis (T Webster, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Lack of vascularity in the human knee meniscus often leads to surgical removal (total or partial meniscectomy) in the case of severe meniscal damage. However, complete recovery is in question after such removal as the meniscus plays an important role in knee stability. Thus, meniscus tissue regeneration strategies are of intense research interest in recent years.

Recent Findings

The structural complexity and inhomogeneity of the meniscus have been addressed with processing technologies for precisely controlled three dimensional (3D) complex porous scaffold architectures, the use of biomolecules and nanomaterials.

Summary

The regeneration and replacement of the total meniscus have been studied by the orthopedic and scientific communities via successful pre-clinical trials towards mimicking the biomechanical properties of the human knee meniscus. Researchers have attempted different regeneration strategies which contribute to in vitro regeneration and are capable of repairing meniscal tears to some extent. This review discusses the present state of the art of these meniscus tissue engineering aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fairbank TJ. Knee joint changes after meniscectomy. Bone & Joint Journal. 1948;30(4):664–70.

    Google Scholar 

  2. Gillquist J, Hamberg P, Lysholm J. Endoscopic partial and total meniscectomy: a comparative study with a short term follow up. Acta Orthop Scand. 1982;53(6):975–9.

    Article  CAS  PubMed  Google Scholar 

  3. Milachowski KA, Weismeier K, Wirth CJ. Homologous meniscus transplantation. Int Orthop. 1989;13(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  4. Turman KA, Diduch DR. Meniscal repair–indications and techniques. J Knee Surg. 2008;21(02):154–62.

    Article  PubMed  Google Scholar 

  5. Chambers MC, El-Amin SF. Tissue engineering of the meniscus: scaffolds for meniscus repair and replacement. Musculoskelet Regen 2015; 1.

  6. Ghadially FN, Thomas I, Yong N, Lalonde JM. Ultrastructure of rabbit semilunar cartilages. J Anat. 1978;125(Pt 3):499–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shemesh M, Asher R, Zylberberg E, Guilak F, Linder-Ganz E, Elsner JJ. Viscoelastic properties of a synthetic meniscus implant. J Mech Behav Biomed Mater. 2014;29:42–55.

    Article  CAS  PubMed  Google Scholar 

  8. McAlinden A, Dudhia J, Bolton MC, Lorenzo P, Heinegård D, Bayliss MT. Age-related changes in the synthesis and mRNA expression of decorin and aggrecan in human meniscus and articular cartilage. Osteoarthr Cartil. 2001;9(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  9. Mueller SM, Shortkroff S, Schneider TO, Breinan HA, Yannas IV, Spector M. Meniscus cells seeded in type I and type II collagen–GAG matrices in vitro. Biomaterials. 1999;20(8):701–9.

    Article  CAS  PubMed  Google Scholar 

  10. Matzat SJ, van Tiel J, Gold GE, Oei EH. Quantitative MRI techniques of cartilage composition. Quantitative imaging in medicine and surgery. 2013;3(3):162–74.

    PubMed  PubMed Central  Google Scholar 

  11. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    Article  CAS  PubMed  Google Scholar 

  12. Niu W, Guo W, Han S, Zhu Y, Liu S, Guo Q. Cell-based strategies for meniscus tissue engineering. Stem Cells Int. 2016;2016:1–10.

    CAS  Google Scholar 

  13. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  14. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86(7):1541–58.

    Article  PubMed  Google Scholar 

  15. Spina J, Warnock J, Duesterdieck-Zellmer K, Baltzer W, Ott J, Bay B. Comparison of growth factor treatments on the fibrochondrogenic potential of canine fibroblast-like synoviocytes for meniscal tissue engineering. Vet Surg. 2014;43(6):750–60.

    PubMed  Google Scholar 

  16. Fox DB, Warnock JJ, Stoker AM, Luther JK, Cockrell M. Effects of growth factors on equine synovial fibroblasts seeded on synthetic scaffolds for avascular meniscal tissue engineering. Res Vet Sci. 2010;88(2):326–32.

    Article  CAS  PubMed  Google Scholar 

  17. De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis & Rheumatism. 2001;44(8):1928–42.

    Article  Google Scholar 

  18. Yoo JJ, Bichara DA, Zhao X, Randolph MA, Gill TJ. Implant-assisted meniscal repair in vivo using a chondrocyte-seeded flexible PLGA scaffold. J Biomed Mater Res A. 2011;99((1):102–8.

    Article  Google Scholar 

  19. Zhang S, Matsushita T, Kuroda R, Nishida K, Matsuzaki T, Matsumoto T, et al. Local Administration of Simvastatin Stimulates Healing of an avascular meniscus in a rabbit model of a meniscal defect. Am J Sports Med. 2016;0363546516638342

  20. •• Pillai MM, Elakkiya V, Gopinathan J, Sabarinath C, Shanthakumari S, Sahanand KS, et al. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study. Cytotechnology. 2016;68(5):1747–61. This study highlights the development of an affordable biomocule combination for the enhancement for primary human knee meniscus cellular proliferation and ECM synthesis.

    Article  CAS  PubMed  Google Scholar 

  21. •• Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med. 2014;6(266):266ra171. In this study, knee meniscus cartilage was regenerated with zonal matrix phenotype by using functionalized anatomically correct 3D-printed PCL scaffold in a sheep model.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baker BM, Nathan AS, Huffman GR, Mauck RL. Tissue engineering with meniscus cells derived from surgical debris. Osteoarthr Cartil. 2009;17(3):336–45.

    Article  CAS  PubMed  Google Scholar 

  23. Van Der Bracht HA, Verdonk R, Verbruggen A, Elewaut D, Verdonk P. Cell-based meniscus tissue engineering. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in tissue engineering, vol 3, vol. 3. Oulu: Biomaterials and tissue engineering group; 2007. p. ch2_1–3.

    Google Scholar 

  24. Heidari M, Tahmasebi MN, Etemad S, Salehkhou S, Heidari-Vala H, Akhondi MM. In vitro human chondrocyte culture; a modified protocol. Middle-East J Sci Res. 2011;9(1):102–9.

    CAS  Google Scholar 

  25. Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, et al. Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop Relat Res. 2001;391:S208–18.

    Article  Google Scholar 

  26. Kreuz PC, Gentili C, Samans B, Martinelli D, Krüger JP, Mittelmeier W, et al. Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage. Osteoarthr Cartil. 2013;21(12):1997–2005.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Leng P, He T, Wang Y. Comparison of hIGF-1 gene transfection to the hBMSCs and human meniscal fibrochondrocytes. Med Sci Monit: Int Med J Exp Clin Res. 2015;21:681.

    Article  CAS  Google Scholar 

  28. Freymann U, Endres M, Neumann K, Scholman HJ, Morawietz L, Kaps C. Expanded human meniscus-derived cells in 3-D polymer–hyaluronan scaffolds for meniscus repair. Acta Biomater. 2012;8(2):677–85.

    Article  CAS  PubMed  Google Scholar 

  29. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17(4):467–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang X, Sui X, Lu Y, Yan Y, Zhou C, Li L, et al. In vitro and in vivo evaluation of a photosensitive polyimide thin-film microelectrode array suitable for epiretinal stimulation. J Neuroeng Rehabil. 2013;10(1):1.

    Article  CAS  Google Scholar 

  31. Valonen PK, Moutos FT, Kusanagi A, Moretti MG, Diekman BO, Welter JF, et al. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly (ɛ-caprolactone) scaffolds. Biomaterials. 2010;31(8):2193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riedel K, Riedel F, Goessler UR, Holle G, Germann G, Sauerbier M. Current status of genetic modulation of growth factors in wound repair. Int J Mol Med. 2006;17:183e93.

    Google Scholar 

  33. Demoor M, Ollitrault D, Gomez-Leduc T, Bouyoucef M, Hervieu M, Fabre H, et al. Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta (BBA)-Gen Subj. 2014;1840(8):2414–40.

    Article  CAS  Google Scholar 

  34. Perrier-Groult E, Pasdeloup M, Malbouyres M, Galéra P, Mallein-Gerin F. Control of collagen production in mouse chondrocytes by using a combination of bone morphogenetic protein-2 and small interfering RNA targeting Col1a1 for hydrogel-based tissue-engineered cartilage. Tissue Eng Part C: Methods. 2013;19(8):652–64.

    Article  CAS  Google Scholar 

  35. Matsiko A, Levingstone TJ, O'Brien FJ. Advanced strategies for articular cartilage defect repair. Materials. 2013;6(2):637–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cucchiarini M, McNulty AL, Mauck RL, Setton LA, Guilak F, Madry H. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus. Osteoarthr Cartil. 2016;24(8):1330–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinert AF, Palmer GD, Capito R, Hofstaetter JG, Pilapil C, Ghivizzani SC, et al. Genetically enhanced engineering of meniscus tissue using ex vivo delivery of transforming growth factor-beta 1 complementary deoxyribonucleic acid. Tissue Eng. 2007;13:2227–37.

    Article  CAS  PubMed  Google Scholar 

  38. Adesida AB, Grady LM, Khan WS, Millward-Sadler SJ, Salter DM, Hardingham TE. Human meniscus cells express hypoxia inducible factor-1alpha and increased SOX9 in response to low oxygen tension in cell aggregate culture. Arthritis Res Ther. 2007;9:R69.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Garg T, Singh O, Arora S, Murthy RS. Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst. 2012;29(1):1–63.

    Article  CAS  PubMed  Google Scholar 

  41. Liu X, Ma L, Mao Z, Gao C. Chitosan-based biomaterials for tissue repair and regeneration. Adv Polym Sci. 2011;244:81–128.

    Article  CAS  Google Scholar 

  42. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8):762–98.

    Article  CAS  Google Scholar 

  43. Halperin D, Heydt-Benjamin TS, Fu K, Kohno T, Maisel WH. Security and privacy for implantable medical devices. IEEE Pervasive Comput. 2008;7(1):30–9.

    Article  Google Scholar 

  44. Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    Article  CAS  PubMed  Google Scholar 

  45. •• Gopinathan J, Mano S, Elakkiya V, Pillai MM, Sahanand KS, Rai BD, et al. Biomolecule incorporated poly-ε-caprolactone nanofibrous scaffolds for enhanced human meniscal cell attachment and proliferation. RSC Adv. 2015;5(90):73552–61. This study demonstrates the mode of delivery of biomolecules for the regenerative purpose. It was confirmed that both through medium and scaffolds will be a better approach for the supplementation of biomolecules.

    Article  CAS  Google Scholar 

  46. Abbadessa A, Mouser VH, Blokzijl MM, Gawlitta D, Dhert WJ, Hennink WE, et al. A synthetic thermo-sensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromolecules. 2016;17(6):2137–47.

  47. Mi HY, Jing X, Salick MR, Cordie TM, Turng LS. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater. 2016;62:417–27.

    Article  CAS  PubMed  Google Scholar 

  48. Heo J, Koh RH, Shim W, Kim HD, Yim HG, Hwang NS. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Transl Res. 2016;6(2):148–58.

    Article  CAS  PubMed  Google Scholar 

  49. Bhattacharjee P, Kundu B, Naskar D, Maiti TK, Bhattacharya D, Kundu SC. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration. Biopolymers. 2015;103(5):271–84.

    Article  CAS  PubMed  Google Scholar 

  50. Sridhar BV, Brock JL, Silver JS, Leight JL, Randolph MA, Anseth KS. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition. Adv Healthc Mater. 2015;4(5):702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Esposito AR, Moda M, Cattani SM, de Santana GM, Barbieri JA, Munhoz MM, et al. PLDLA/PCL-T scaffold for meniscus tissue engineering. Biores Open Access. 2013;2(2):138–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baker BM, Shah RP, Silverstein AM, Esterhai JL, Burdick JA, Mauck RL. Sacrificial nanofibrous composites provide instruction without impediment and enable functional tissue formation. Proc Natl Acad Sci. 2012;109(35):14176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hua-ding LU, Dao-zhang CA, Kun W, De-hai SH, Gang W, Gui-e L. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes. Chin J Traumatol. 2011;14(4):195–204.

    Google Scholar 

  54. Mandal BB, Park SH, Gil ES, Kaplan DL. Multilayered silk scaffolds for meniscus tissue engineering. Biomaterials. 2011;32(2):639–51.

    Article  CAS  PubMed  Google Scholar 

  55. Verdonk R, Verdonk P, Huysse W, Forsyth R, Heinrichs EL. Tissue ingrowth after implantation of a novel, biodegradable polyurethane scaffold for treatment of partial meniscal lesions. Am J Sports Med. 2011;39(4):774–82.

    Article  PubMed  Google Scholar 

  56. Maher SA, Rodeo SA, Doty SB, Brophy R, Potter H, Foo LF, et al. Evaluation of a porous polyurethane scaffold in a partial meniscal defect ovine model. Arthroscopy: J Arthrosc Relat Surg. 2010;26(11):1510–9.

    Article  Google Scholar 

  57. Zhang H, Leng P, Zhang J. Enhanced meniscal repair by overexpression of hIGF-1 in a full-thickness model. Clin Orthop Relat Res. 2009;467(12):3165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weinand C, Xu JW, Peretti GM, Bonassar LJ, Gill TJ. Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. J Biomed Mater Res B Appl Biomater. 2009;91(1):80–7.

    Article  PubMed  Google Scholar 

  59. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 2005;26(25):5158–66.

    Article  CAS  PubMed  Google Scholar 

  60. O’Driscoll SW. Current concepts review-the healing and regeneration of articular cartilage. J Bone Joint Surg Am. 1998;80(12):1795–812.

    Article  PubMed  Google Scholar 

  61. Cengiz IF, Silva-Correia J, Pereira H, Espregueira-Mendes J, Oliveira JM, Reis RL. Advanced regenerative strategies for human knee meniscus. In Regenerative Strategies for the Treatment of Knee Joint Disabilities 2017; 271–285. Springer International Publishing

  62. Forriol F. Growth factors in cartilage and meniscus repair. Injury. 2009;40:S12–6.

    Article  PubMed  Google Scholar 

  63. Molloy T, Wang Y, Murrell GA. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33(5):381–94.

    Article  PubMed  Google Scholar 

  64. •• Mamatha PM, Elakkiya V, Gopinathan J, Amitava Bhattacharyya R, Selvakumar C. Sabarinath, K Santosh Sahanand , B.K Dinakar Rai, High density pellet culture for human knee meniscus tissue formation using a unique combination of medium. Regen Med. 2015;10–7s:S12–95. In this study, in a scaffold-free system, meniscus cartilage was regenerated by using affordable biomolecule combination.

    Google Scholar 

  65. Makris EA, MacBarb RF, Paschos NK, Hu JC, Athanasiou KA. Combined use of chondroitinase-ABC, TGF-β1, and collagen crosslinking agent lysyl oxidase to engineer functional neotissues for fibrocartilage repair. Biomaterials. 2014;35(25):6787–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yuan Z, Liu S, Hao C, Guo W, Gao S, Wang M, et al. AMECM/DCB scaffold prompts successful total meniscus reconstruction in a rabbit total meniscectomy model. Biomaterials. 2016;111:13–26.

    Article  CAS  PubMed  Google Scholar 

  67. • Pillai MM, Gopinathan J, Indumathi B, Manjoosha YR, Sahanand KS, Rai BD, et al. Silk–PVA Hybrid Nanofibrous Scaffolds for Enhanced Primary Human Meniscal Cell Proliferation. The Journal of membrane biology. 2016;249(6):813–22. In this study, Silk rich PVA scaffolds were fabricated to minimize the limitations of both the polymers for meniscus tissue engineering

    Article  CAS  PubMed  Google Scholar 

  68. •• Gopinathan J, Pillai MM, Sahanand KS, Rai BD, Selvakumar R, Bhattacharyya A. Synergistic effect of electrical conductivity and biomolecules on human meniscal cell attachment, growth, and proliferation in poly-ε-caprolactone nanocomposite scaffolds. Biomedical Materials. 2017;12(6):065001. This study investigates the synergistic effect of nanofillers and biomolecule functionalization on to the PCL scaffolds on enhancement of cellular proliferation and ECM synthesis

    Article  CAS  PubMed  Google Scholar 

  69. • Pillai MM, Elakkiya Venugopal, Lakshmipriya H, Janarthanan Gopinathan, Selvakumar Rajendran, Amitava Bhattacharyya. A novel method to develop three dimensional (3D) silk-PVA microenvironments for bone tissue engineering – an in vitro study. Biomedical Physics & Engineering Express. 2017. http://iopscience.iop.org/article/10.1088/2057-1976/aaa0af. In this study, a 3D porous scaffold was developed using Silk-PVA blend for tissue engineering applications.

  70. Wang J, Fu W, Zhang D, Yu X, Li J, Wan C. Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydrate Polymers. 2010;79(3):705–10.

    Article  CAS  Google Scholar 

  71. Yang Y, Chen Z, Song X, Zhang Z, Zhang J, Shung KK, Zhou Q, Chen Y. Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing. Advanced Materials. 2017;29(11).

  72. Qu F, Lin JM, Esterhai JL, Fisher MB, Mauck RL. Biomaterial-mediated delivery of degradative enzymes to improve meniscus integration and repair. Acta Biomaterialia. 2013;9(5):6393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Szojka A, Lalh K, Andrews SH, Jomha NM, Osswald M, Adesida AB. Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting. 2017;8:1–7.

    Article  Google Scholar 

  74. Kanani AG, Bahrami SH. Review on electrospun nanofibers scaffold and biomedical applications. Trends Biomater Artif Organs. 2010;24(2):93–115.

    Google Scholar 

  75. Rongen JJ, van Tienen TG, van Bochove B, Grijpma DW, Buma P. Biomaterials in search of a meniscus substitute. Biomaterials. 2014;35(11):3527–40.

    Article  CAS  PubMed  Google Scholar 

  76. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic Journal of Biotechnology. 2000;3(2):23–4.

    Article  Google Scholar 

  77. Oda S, Otsuki S, Kurokawa Y, Hoshiyama Y, Nakajima M, Neo M. A new method for meniscus repair using type I collagen scaffold and infrapatellar fat pad. Journal of biomaterials applications. 2015;29(10):1439–48.

    Article  CAS  PubMed  Google Scholar 

  78. Forriol F, Giuseppe Longo U, Duart J, Ripalda P, Vaquero J, Loppini M, et al. VEGF, BMP-7, MatrigelTM, hyaluronic acid, in vitro cultured chondrocytes and trephination for healing of the avascular portion of the meniscus. an experimental study in sheep. Current Stem Cell Research & Therapy. 2015;10(1):69–76.

    Article  CAS  Google Scholar 

  79. Gruchenberg K, Ignatius A, Friemert B, von Lübken F, Skaer N, Gellynck K, et al. In vivo performance of a novel silk fibroin scaffold for partial meniscal replacement in a sheep model. Knee Surgery, Sports Traumatology, Arthroscopy. 2015;23(8):2218–29.

    Article  PubMed  Google Scholar 

  80. Kwak HS, Nam J, Lee JH, Kim HJ, Yoo JJ. Meniscal repair in vivo using human chondrocyte-seeded PLGA mesh scaffold pretreated with platelet-rich plasma. Journal of tissue engineering and regenerative medicine. 2017; 1;11(2):471-480

  81. Halili AN, Hasirci N, Hasirci V. A multilayer tissue engineered meniscus substitute. Journal of Materials Science: Materials in Medicine. 2014;25(4):1195–209.

    CAS  PubMed  Google Scholar 

  82. Bean AC, Tuan RS. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly (ε-caprolactone) scaffolds. Biomedical Materials. 2015;10(1):015018.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Progress in Polymer Science. 2010;35(10):1217–56.

    Article  CAS  Google Scholar 

  84. Qiao B, Padilla SR, Benya PD. Transforming growth factor (TGF)-β-activated kinase 1 mimics and mediates TGF-β-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. Journal of Biological Chemistry. 2005;280(17):17562–71.

    Article  CAS  PubMed  Google Scholar 

  85. Schmidt MB, Chen EH, Lynch SE. A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and cartilage. 2006;14(5):403–12.

    Article  CAS  PubMed  Google Scholar 

  86. Dunworth WP, Cardona-Costa J, Bozkulak EC, Kim JD, Meadows S, Fischer JC, et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circulation research. 2014;114(1):56–66.

    Article  CAS  PubMed  Google Scholar 

  87. Santo VE, Popa EG, Mano JF, Gomes ME, Reis RL. Natural assembly of platelet lysate-loaded nanocarriers into enriched 3D hydrogels for cartilage regeneration. Acta biomaterialia. 2015;19:56–65.

    Article  CAS  PubMed  Google Scholar 

  88. Gropper SS, Smith LJ, Groff JL. Advanced nutrition and human metabolism. Wadsworth, USA: Cengage Learning; 2009.

    Google Scholar 

  89. Sriram D, Yogeeswari P. Medical chemistry. 2nd ed. New York: Dorling Kindersley; 2010.

    Google Scholar 

  90. Yoon JJ, Nam YS, Kim JH, Park TG. Surface immobilization of galactose onto aliphatic biodegradable polymers for hepatocyte culture. Biotechnology and bioengineering. 2002; 78(1):1-0.

  91. Blackburn CC, Schnaar RL. Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids. Journal of Biological Chemistry. 1983;258(2):1180–8.

    CAS  PubMed  Google Scholar 

  92. Selvakumar R, Mohaideen SN, Aravindh S, Sabarinath C, Ananthasubramanian M. Effect of Biotin and Galactose Functionalized Gelatin Nanofiber Membrane on HEp-2 Cell Attachment and Cytotoxicity. The Journal of membrane biology. 2014;247(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  93. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharmaceutical research. 2011;28(6):1259–72.

    Article  CAS  PubMed  Google Scholar 

  94. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. Journal of the Royal Society Interface. 2011;8(55):153–70.

    Article  CAS  Google Scholar 

  95. Nicolais L, Gloria A, Ambrosio L. The mechanics of biocomposites. In: Ambrosio L, editor. Biomedical composites. Cambridge, UK: Woodhead Publishing Limited, CRC Press; 2010. p. 411–40.

    Chapter  Google Scholar 

  96. Gleeson JP, O'Brien FJ. Composite scaffolds for orthopaedic regenerative medicine. INTECH Open Access Publisher; 2011.

  97. McCullen SD, Haslauer CM, Loboa EG. Fiber-reinforced scaffolds for tissue engineering and regenerative medicine: use of traditional textile substrates to nanofibrous arrays. Journal of Materials Chemistry. 2010;20(40):8776–88.

    Article  CAS  Google Scholar 

  98. • Pillai MM, Akshaya TR, Elakkiya V, Gopinathan J, Sahanand KS, Rai BD, et al. Egg shell membrane–a potential natural scaffold for human meniscal tissue engineering: an in vitro study. RSC Advances. 2015;5(93):76019–25. In this study process optimization of egg shell membrane was carried out and found that autoclaved eggshell membrane has the potential for meniscus tissue engineering

    Article  CAS  Google Scholar 

  99. Joshi M, Bhattacharyya A. Nanotechnology–a new route to high-performance functional textiles. Textile Progress. 2011;43(3):155–233.

    Article  Google Scholar 

  100. Maiti S, Shrivastava NK, Suin S, Khatua BB. A strategy for achieving low percolation and high electrical conductivity in melt-blended polycarbonate (PC)/multiwall carbon nanotube (MWCNT) nanocomposites: Electrical and thermo-mechanical properties. Express Polymer Letters. 2013; 7(6).

  101. Tibbetts GG, Lake ML, Strong KL, Rice BP. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology. 2007;67(7):1709–18.

    Article  CAS  Google Scholar 

  102. Al-Saleh MH, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon. 2009;47(1):2–2.

    Article  CAS  Google Scholar 

  103. Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y. The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon. 2015;95:1039–50.

    Article  CAS  Google Scholar 

  104. Yuan X, Arkonac DE, Chao PH, Vunjak-Novakovic G. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific reports. 2014; 4.

  105. Lee EJ, Choi EK, Kang SK, Kim GH, Park JY, Kang HJ, et al. N-cadherin determines individual variations in the therapeutic efficacy of human umbilical cord blood-derived mesenchymal stem cells in a rat model of myocardial infarction. Molecular Therapy. 2012;20(1):155–67.

    Article  CAS  PubMed  Google Scholar 

  106. Chang JC, Hsu SH, Su HL. The regulation of the gap junction of human mesenchymal stem cells through the internalization of quantum dots. Biomaterials. 2009;30(10):1937–46.

    Article  CAS  PubMed  Google Scholar 

  107. Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng LS. The surface grafting of graphene oxide with poly (ethylene glycol) as a reinforcement for poly (lactic acid) nanocomposite scaffolds for potential tissue engineering applications. Journal of the Mechanical Behavior of Biomedical Materials. 2016;53:403–13.

    Article  CAS  PubMed  Google Scholar 

  108. Petri M, Ufer K, Toma I, Becher C, Liodakis E, Brand S, et al. Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg Sports Traumatol Arthrosc. 2012;20:223–31.

    Article  CAS  PubMed  Google Scholar 

  109. Marsano A, Wendt D, Quinn TM, Sims TJ, Farhadi J, Jakob M, et al. Bi-zonal cartilaginous tissues engineered in a rotary cell culture system. Biorheology. 2006;43(3, 4):553–60.

    CAS  PubMed  Google Scholar 

  110. Neves AA, Medcalf N, Brindle KM. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials. 2005;26(23):4828–36.

    Article  CAS  PubMed  Google Scholar 

  111. Pereira H, Caridade SG, Frias AM, Silva-Correia J, Pereira DR, Cengiz IF, et al. Biomechanical and cellular segmental characterization of human meniscus: building the basis for tissue engineering therapies. Osteoarthr Cartil. 2014;22(9):1271–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express deep gratitude to the management of PSG Institutions and Dr. P. Radhakrishnan, Director, PSG Institute of Advanced Studies, India, for their support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Bhattacharyya.

Ethics declarations

Conflict of Interest

Mamatha Pillai, J. Gopinathan, R. Selvakumar, and Amitava Bhattacharyya declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, M.M., Gopinathan, J., Selvakumar, R. et al. Human Knee Meniscus Regeneration Strategies: a Review on Recent Advances. Curr Osteoporos Rep 16, 224–235 (2018). https://doi.org/10.1007/s11914-018-0436-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0436-x

Keywords

Navigation