Advertisement

Current Osteoporosis Reports

, Volume 16, Issue 2, pp 155–168 | Cite as

Clinical and Research Approaches to Treat Non-union Fracture

  • Claudia Schlundt
  • Christian H. Bucher
  • Serafeim Tsitsilonis
  • Hanna Schell
  • Georg N. Duda
  • Katharina Schmidt-Bleek
Orthopedic Management of Fractures (S Bukata and L Gerstenfeld, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Orthopedic Management of Fractures

Abstract

Purpose of Review

Impaired healing outcomes or even non-unions after bone injury are still a highly relevant problem in the daily clinical life. Especially within an aging population, the occurrence of bone fractures increases and thus novel treatment approaches to overcome compromised bone regeneration are needed.

Recent Findings

The gold standard to treat delayed or non-healing bone injuries is still the use of autologous bone grafts to foster regeneration. Besides its successful treatment outcome, it also has disadvantages: a second surgery is needed in order to harvest the bone material and the material is highly limited. Looking into the recent literature, a multitude of different research approaches were already conducted to identify new possible strategies to treat impaired bone regeneration: application of mesenchymal stromal cells, platelet lysates, growth factors, interference in the immune system, or bone formation stimulation by ultrasound.

Summary

This review gives an overview of the treatment approaches actually performed in the clinic as well as at the bench in the context of compromised bone healing. It clearly highlights the complexity of the nature of non-healing bone fractures as well as patient-dependent factors influencing the healing process.

Keywords

Bone fracture healing Non-union Compromised healing Autologous bone graft Cell therapy Immune therapy 

Notes

Funding Information

Funding was provided by the DFG FOR2165 and the Berlin-Brandenburg School for Regenerative Therapies.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as:• of importance•• of major importance

  1. 1.
    Haas NP. [Callus modulation—fiction or reality?]. Der Chirurg. Zeitschrift fur alle Gebiete der operativen Medizen. 2000;71(9):987–8.CrossRefGoogle Scholar
  2. 2.
    Zeckey C, Mommsen P, Andruszkow H, Macke C, Frink M, Stubig T, et al. The aseptic femoral and tibial shaft non-union in healthy patients—an analysis of the health-related quality of life and the socioeconomic outcome. Open Orthop J. 2011;5:193–7.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hak DJ, Fitzpatrick D, Bishop JA, Marsh JL, Tilp S, Schnettler R, et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(Suppl 2):S3–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Schell H, Duda GN, Peters A, Tsitsilonis S, Johnson KA, Schmidt-Bleek K. The haematoma and its role in bone healing. J Exp Orthop. 2017;4(1):5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kolar P, Schmidt-Bleek K, Schell H, Gaber T, Toben D, Schmidmaier G, et al. The early fracture hematoma and its potential role in fracture healing. Tissue Eng Part B Rev. 2010;16(4):427–34.CrossRefPubMedGoogle Scholar
  6. 6.
    Opal SM. Phylogenetic and functional relationships between coagulation and the innate immune response. Crit Care Med. 2000;28(9 Suppl):S77–80.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoff P, Maschmeyer P, Gaber T, Schutze T, Raue T, Schmidt-Bleek K, et al. Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model. Cell Mol Immunol. 2013;10(2):151–8.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gaber T, Haupl T, Sandig G, Tykwinska K, Fangradt M, Tschirschmann M, et al. Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J Rheumatol. 2009;36(12):2655–69.CrossRefPubMedGoogle Scholar
  9. 9.
    •• Schmidt-Bleek K, Schell H, Lienau J, Schulz N, Hoff P, Pfaff M, et al. Initial immune reaction and angiogenesis in bone healing. J Tissue Eng Regen Med. 2014;8(2):120–30. This study provided the proof of the strong interdependency of the switch to the anti-inflammatory phase and the starting revascularization, which is a prerequisite for a successful healing outcome, in the early fracture healing phase. CrossRefPubMedGoogle Scholar
  10. 10.
    Schmidt-Bleek K, Petersen A, Dienelt A, Schwarz C, Duda GN. Initiation and early control of tissue regeneration—bone healing as a model system for tissue regeneration. Expert Opin Biol Ther. 2014;14(2):247–59.CrossRefPubMedGoogle Scholar
  11. 11.
    Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW. Assessment of compromised fracture healing. J Am Acad Orthop Surg. 2012;20(5):273–82.CrossRefPubMedGoogle Scholar
  12. 12.
    Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88(4):692–7.PubMedGoogle Scholar
  13. 13.
    Calori GM, Phillips M, Jeetle S, Tagliabue L, Giannoudis PV. Classification of non-union: need for a new scoring system? Injury. 2008;39(Suppl 2):S59–63.CrossRefPubMedGoogle Scholar
  14. 14.
    • van Basten BM, Houben IB, Blokhuis TJ. The non-union scoring system: an interobserver reliability study. Eur J Trauma Emerg Surg. 2017; This study evaluated and confirmed the reliability of the NUSS score (introduced by Calori and colleagues) to determine the severity category of a fracture and the definitive treatment Google Scholar
  15. 15.
    Abumunaser LA, Al-Sayyad MJ. Evaluation of the Calori et al nonunion scoring system in a retrospective case series. Orthopedics. 2011;34(5):359.PubMedGoogle Scholar
  16. 16.
    Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Marelli N, et al. Validation of the non-union scoring system in 300 long bone non-unions. Injury. 2014;45(Suppl 6):S93–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Huber E, Pobloth AM, Bormann N, Kolarczik N, Schmidt-Bleek K, Schell H, et al. DBM as a carrier for BMP-2: burst release combined with long term binding and osteoinductive activity evaluated in vitro and in vivo. Tissue Eng Part A. 2017;23:1321–30.CrossRefPubMedGoogle Scholar
  18. 18.
    Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, et al. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone. 2009;45(2):185–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Schell H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN, et al. Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech. 2008;41(14):3066–72.CrossRefPubMedGoogle Scholar
  20. 20.
    Epari DR, Kassi JP, Schell H, Duda GN. Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am. 2007;89(7):1575–85.PubMedGoogle Scholar
  21. 21.
    Trepczik B, Lienau J, Schell H, Epari DR, Thompson MS, Hoffmann JE, et al. Endochondral ossification in vitro is influenced by mechanical bending. Bone. 2007;40(3):597–603.CrossRefPubMedGoogle Scholar
  22. 22.
    Epari DR, Schell H, Bail HJ, Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone. 2006;38(6):864–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Lienau J, Schell H, Duda GN, Seebeck P, Muchow S, Bail HJ. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res. 2005;23(3):639–45.CrossRefPubMedGoogle Scholar
  24. 24.
    Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res. 2005;23(5):1022–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Kaspar K, Schell H, Seebeck P, Thompson MS, Schutz M, Haas NP, et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J Bone Joint Surg Am. 2005;87(9):2028–37.CrossRefPubMedGoogle Scholar
  26. 26.
    Willie BM, Blakytny R, Glockelmann M, Ignatius A, Claes L. Temporal variation in fixation stiffness affects healing by differential cartilage formation in a rat osteotomy model. Clin Orthop Relat Res. 2011;469(11):3094–101.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Claes L, Blakytny R, Besse J, Bausewein C, Ignatius A, Willie B. Late dynamization by reduced fixation stiffness enhances fracture healing in a rat femoral osteotomy model. J Orthop Trauma. 2011;25(3):169–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Claes L, Blakytny R, Gockelmann M, Schoen M, Ignatius A, Willie B. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J Orthop Res. 2009;27(1):22–7.Google Scholar
  29. 29.
    Bartnikowski N, Claes LE, Koval L, Glatt V, Bindl R, Steck R, et al. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing. Acta Orthop. 2017;88(2):217–22.CrossRefPubMedGoogle Scholar
  30. 30.
    Schmidt-Bleek K, Kwee BJ, Mooney DJ, Duda GN. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Eng Part B Rev. 2015;Google Scholar
  31. 31.
    Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, Perka C, et al. Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res. 2009;27(9):1133–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Konnecke I, Serra A, El Khassawna T, Schlundt C, Schell H, Hauser A, et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone. 2014;64:155–65.CrossRefPubMedGoogle Scholar
  33. 33.
    Schlundt C, Schell H, Goodman SB, Vunjak-Novakovic G, Duda GN, Schmidt-Bleek K. Immune modulation as therapeutic strategy in bone regeneration. J Exp Orthop. 2015;2:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Poon B, Kha T, Tran S, Dass CR. Bone morphogenetic protein-2 and bone therapy: successes and pitfalls. J Pharm Pharmacol. 2016;68(2):139–47.CrossRefPubMedGoogle Scholar
  35. 35.
    Ratko TA, Belinson SE, Samson DJ, Bonnell C, Ziegler KM, Aronson N. Bone morphogenetic protein: the state of the evidence of on-label and off-label use. Rockville (MD): AHRQ Technology Assessments; 2010.Google Scholar
  36. 36.
    Gopal S, Giannoudis PV, Murray A, Matthews SJ, Smith RM. The functional outcome of severe, open tibial fractures managed with early fixation and flap coverage. J Bone Joint Surg Br. 2004;86(6):861–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Francel TJ, Vander Kolk CA, Hoopes JE, Manson PN, Yaremchuk MJ. Microvascular soft-tissue transplantation for reconstruction of acute open tibial fractures: timing of coverage and long-term functional results. Plast Reconstr Surg. 1992;89(3):478–87. discussion 88-9 CrossRefPubMedGoogle Scholar
  38. 38.
    Cierny G 3rd, Byrd HS, Jones RE. Primary versus delayed soft tissue coverage for severe open tibial fractures. A comparison of results. Clin Orthop Relat Res. 1983;178:54–63.Google Scholar
  39. 39.
    Wood T, Sameem M, Avram R, Bhandari M, Petrisor B. A systematic review of early versus delayed wound closure in patients with open fractures requiring flap coverage. J Trauma Acute Care Surg. 2012;72(4):1078–85.CrossRefPubMedGoogle Scholar
  40. 40.
    Dym H, Zeidan J. Microbiology of acute and chronic osteomyelitis and antibiotic treatment. Dent Clin N Am. 2017;61(2):271–82.CrossRefPubMedGoogle Scholar
  41. 41.
    Taj-Aldeen SJ, Gamaletsou MN, Rammaert B, Sipsas NV, Zeller V, Roilides E, et al. Bone and joint infections caused by mucormycetes: a challenging osteoarticular mycosis of the twenty-first century. Med Mycol. 2017;55(7):691–704.PubMedGoogle Scholar
  42. 42.
    Haddad S, Corona PS, Reverte MM, Amat C, Flores X. Antibiotic-impregnated cement spacer as a definitive treatment for post-arthroscopy shoulder destructive osteomyelitis: case report and review of literature. Strat Trauma Limb Reconstr. 2013;8(3):199–205.CrossRefGoogle Scholar
  43. 43.
    Ferguson J, Diefenbeck M, McNally M. Ceramic biocomposites as biodegradable antibiotic carriers in the treatment of bone infections. J Bone Jt Infect. 2017;2(1):38–51.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Saxer F, Eckardt H. Reconstruction of osseous defects using the Masquelet technique. Der Orthopade. 2017;46(8):665–72.CrossRefPubMedGoogle Scholar
  45. 45.
    Chadayammuri V, Hake M, Mauffrey C. Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Saf Surg. 2015;9:32.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Qi Y, Sun HT, Fan YG, Li FM, Lin ZS. Do stress fractures induce hypertrophy of the grafted fibula? A report of three cases received free vascularized fibular graft treatment for tibial defects. Chin J Traumatol. 2016;19(3):179–81.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Taylor GI, Corlett RJ, Ashton MW. The evolution of free vascularized bone transfer: a 40-year experience. Plast Reconstr Surg. 2016;137(4):1292–305.CrossRefPubMedGoogle Scholar
  48. 48.
    Cheung WH, Chin WC, Wei FY, Li G, Leung KS. Applications of exogenous mesenchymal stem cells and low intensity pulsed ultrasound enhance fracture healing in rat model. Ultrasound Med Biol. 2013;39(1):117–25.CrossRefPubMedGoogle Scholar
  49. 49.
    Dreger T, Watson JT, Akers W, Molligan J, Achilefu S, Schon LC, et al. Intravenous application of CD271-selected mesenchymal stem cells during fracture healing. J Orthop Trauma. 2014;28(Suppl 1):S15–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Obermeyer TS, Yonick D, Lauing K, Stock SR, Nauer R, Strotman P, et al. Mesenchymal stem cells facilitate fracture repair in an alcohol-induced impaired healing model. J Orthop Trauma. 2012;26(12):712–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Qi Y, Zhao T, Yan W, Xu K, Shi Z, Wang J. Mesenchymal stem cell sheet transplantation combined with locally released simvastatin enhances bone formation in a rat tibia osteotomy model. Cytotherapy. 2013;15(1):44–56.CrossRefPubMedGoogle Scholar
  52. 52.
    Xue G, He M, Zhao J, Chen Y, Tian Y, Zhao B, et al. Intravenous umbilical cord mesenchymal stem cell infusion for the treatment of combined malnutrition nonunion of the humerus and radial nerve injury. Regen Med. 2011;6(6):733–41.CrossRefPubMedGoogle Scholar
  53. 53.
    Hernigou P, Poignard A, Beaujean F, Rouard H. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am Vol. 2005;87(7):1430–7.Google Scholar
  54. 54.
    Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41.CrossRefPubMedGoogle Scholar
  55. 55.
    Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.CrossRefPubMedGoogle Scholar
  56. 56.
    Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am Vol. 2002;84-A(12):2123–34.CrossRefGoogle Scholar
  57. 57.
    Aro HT, Govender S, Patel AD, Hernigou P, Perera de Gregorio A, Popescu GI, et al. Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. J Bone Joint Surg Am Vol. 2011;93(9):801–8.CrossRefGoogle Scholar
  58. 58.
    Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am Vol. 2001;83-A(Suppl 1(Pt 2)):S151–8.Google Scholar
  59. 59.
    Desmyter S, Goubau Y, Benahmed N, de Wever A, Verdonk R. The role of bone morphogenetic protein-7 (osteogenic protein-1) in the treatment of tibial fracture non-unions. An overview of the use in Belgium. Acta Orthop Belg. 2008;74(4):534–7.PubMedGoogle Scholar
  60. 60.
    Giannoudis PV, Kanakaris NK, Dimitriou R, Gill I, Kolimarala V, Montgomery RJ. The synergistic effect of autograft and BMP-7 in the treatment of atrophic nonunions. Clin Orthop Relat Res. 2009;467(12):3239–48.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Conway JD, Shabtai L, Bauernschub A, Specht SC. BMP-7 versus BMP-2 for the treatment of long bone nonunion. Orthopedics. 2014;37(12):e1049–57.CrossRefPubMedGoogle Scholar
  62. 62.
    Woo EJ. Adverse events after recombinant human BMP2 in nonspinal orthopaedic procedures. Clin Orthop Relat Res. 2013;471(5):1707–11.CrossRefPubMedGoogle Scholar
  63. 63.
    Sreekumar V, Aspera-Werz RH, Tendulkar G, Reumann MK, Freude T, Breitkopf-Heinlein K, et al. BMP9 a possible alternative drug for the recently withdrawn BMP7? New perspectives for (re-)implementation by personalized medicine. Arch Toxicol. 2017;91(3):1353–66.CrossRefPubMedGoogle Scholar
  64. 64.
    Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury. 2011;42(6):556–61.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Eckardt H, Ding M, Lind M, Hansen ES, Christensen KS, Hvid I. Recombinant human vascular endothelial growth factor enhances bone healing in an experimental nonunion model. J Bone Joint Surg Br Vol. 2005;87(10):1434–8.CrossRefGoogle Scholar
  66. 66.
    Ogilvie CM, Lu C, Marcucio R, Lee M, Thompson Z, Hu D, et al. Vascular endothelial growth factor improves bone repair in a murine nonunion model. Iowa Orthop J. 2012;32:90–4.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Garcia P, Pieruschka A, Klein M, Tami A, Histing T, Holstein JH, et al. Temporal and spatial vascularization patterns of unions and nonunions: role of vascular endothelial growth factor and bone morphogenetic proteins. J Bone Joint Surg Am Vol. 2012;94(1):49–58.CrossRefGoogle Scholar
  68. 68.
    Kaipel M, Schutzenberger S, Schultz A, Ferguson J, Slezak P, Morton TJ, et al. BMP-2 but not VEGF or PDGF in fibrin matrix supports bone healing in a delayed-union rat model. J Orthop Res. 2012;30(10):1563–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Oprea WE, Karp JM, Hosseini MM, Davies JE. Effect of platelet releasate on bone cell migration and recruitment in vitro. J Craniofacial Surg. 2003;14(3):292–300.CrossRefGoogle Scholar
  70. 70.
    Graves DT, Valentin-Opran A, Delgado R, Valente AJ, Mundy G, Piche J. The potential role of platelet-derived growth factor as an autocrine or paracrine factor for human bone cells. Connect Tissue Res. 1989;23(2–3):209–18.CrossRefPubMedGoogle Scholar
  71. 71.
    Labibzadeh N, Emadedin M, Fazeli R, Mohseni F, Hosseini SE, Moghadasali R, et al. Mesenchymal stromal cells implantation in combination with platelet lysate product is safe for reconstruction of human long bone nonunion. Cell J. 2016;18(3):302–9.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jiang HJ, Tan XX, Ju HY, Su JP, Yan W, Song XG, et al. Autologous platelet lysates local injections for treatment of tibia non-union with breakage of the nickelclad: a case report. SpringerPlus. 2016;5(1):2013.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-cot/Tpl2-MEK-ERK signaling pathway. J Biol Chem. 2014;289(15):10330–44.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Leung KS, Cheung WH, Zhang C, Lee KM, Lo HK. Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res. 2004;418:253–9.CrossRefGoogle Scholar
  75. 75.
    Gebauer D, Mayr E, Orthner E, Ryaby JP. Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol. 2005;31(10):1391–402.CrossRefPubMedGoogle Scholar
  76. 76.
    Jingushi S, Mizuno K, Matsushita T, Itoman M. Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures. J Orthop Sci. 2007;12(1):35–41.CrossRefPubMedGoogle Scholar
  77. 77.
    Mayr E, Frankel V, Ruter A. Ultrasound--an alternative healing method for nonunions? Arch Orthop Trauma Surg. 2000;120(1–2):1–8.CrossRefPubMedGoogle Scholar
  78. 78.
    Schofer MD, Block JE, Aigner J, Schmelz A. Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Dis. 2010;11:229.CrossRefGoogle Scholar
  79. 79.
    Higgins A, Glover M, Yang Y, Bayliss S, Meads C, Lord J. EXOGEN ultrasound bone healing system for long bone fractures with non-union or delayed healing: a NICE medical technology guidance. Appl Health Econ Health Pol. 2014;12(5):477–84.CrossRefGoogle Scholar
  80. 80.
    Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535–6.CrossRefPubMedGoogle Scholar
  81. 81.
    •• Reinke S, Geissler S, Taylor WR, Schmidt-Bleek K, Juelke K, Schwachmeyer V, et al. Terminally differentiated CD8(+) T cells negatively affect bone regeneration in humans. Sci Transl Med. 2013;5(177):177ra36. This study was the first to clearly show the high interconnectivity of the amount of potential unfavorable CD8+ terminally differentiated effector memory T cells (TEMRA), and thus of the adaptive immunity, and of impaired bone regeneration in fracture patients. CrossRefPubMedGoogle Scholar
  82. 82.
    Schlundt C, El Khassawna T, Serra A, Dienelt A, Wendler S, Schell H, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification. Bone. 2015.Google Scholar
  83. 83.
    Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ. Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci. 2016;113(6):1534–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Pobloth, A., Checa, S., Razi, H., Petersen, A., Weaver, J. C., Schmidt-Bleek, K., Windolf, M., Tatai, A. Á., Roth, C. P., Schaser, K. D., Duda, G. N., Schwabe, P. Mechano-biologically optimized 3D titanium-mesh scaffolds enhance regeneration in large segmental bone defects. Cience Transl Med, 2018, in press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Claudia Schlundt
    • 1
    • 2
  • Christian H. Bucher
    • 1
    • 2
  • Serafeim Tsitsilonis
    • 1
    • 2
  • Hanna Schell
    • 1
  • Georg N. Duda
    • 1
    • 2
  • Katharina Schmidt-Bleek
    • 1
    • 2
  1. 1.Julius Wolff Institut and Center for Musculoskeletal SurgeryCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Berlin-Brandenburg Center for Regenerative TherapiesCharité-Universitätsmedizin BerlinBerlinGermany

Personalised recommendations