Skip to main content

Advertisement

Log in

Marrow Fat—a New Target to Treat Bone Diseases?

  • Bone Marrow and Adipose Tissue (G Duque and B Lecka-Czernik, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The goal of this review is to summarize recent findings on marrow adipose tissue (MAT) function and to discuss the possibility of targeting MAT for therapeutic purposes.

Recent Findings

MAT is characterized with high heterogeneity which may suggest both that marrow adipocytes originate from multiple different progenitors and/or their phenotype is determined by skeletal location and environmental cues. Close relationship to osteoblasts and heterogeneity suggests that MAT consists of cells representing spectrum of phenotypes ranging from lipid-filled adipocytes to pre-osteoblasts. We propose a term of adiposteoblast for describing phenotypic spectrum of MAT. Manipulating with MAT activity in diseases where impairment in energy metabolism correlates with bone functional deficit, such as aging and diabetes, may be beneficial for both. Paracrine activities of MAT might be considered for treatment of bone diseases.

Summary

MAT has unrecognized potential, either beneficial or detrimental, to regulate bone homeostasis in physiological and pathological conditions. More research is required to harness this potential for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tavassoli M. Marrow adipose cells and hemopoiesis: an interpretative review. Exp Hematol. 1984;12(2):139–46.

    CAS  PubMed  Google Scholar 

  2. Rappaport H, Raum M, Horrell JB. Bone marrow embolism. Am J Pathol. 1951;27(3):407–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Beresford JN, Bennett JH, Devlin C, Leboy PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci. 1992;102(Pt 2):341–51.

    CAS  PubMed  Google Scholar 

  4. Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, et al. Bone marrow adipocytes. Adipocyte. 2017;6:1–12. https://doi.org/10.1080/21623945.2017.1367881.

    Article  Google Scholar 

  5. Calo E, Quintero-Estades JA, Danielian PS, Nedelcu S, Berman SD, Lees JA. Rb regulates fate choice and lineage commitment in vivo. Nature. 2010;466(7310):1110–4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ambrosi TH, Scialdone A, Graja A, Gohlke S, Jank AM, Bocian C, et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell. 2017;20(6):771–84 e6. https://doi.org/10.1016/j.stem.2017.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berry R, Rodeheffer MS, Rosen CJ, Horowitz MC. Adipose tissue residing progenitors (adipocyte lineage progenitors and adipose derived stem cells (ADSC)). Curr Mol Biol Rep. 2015;1(3):101–9. https://doi.org/10.1007/s40610-015-0018-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016;18(6):782–96. https://doi.org/10.1016/j.stem.2016.02.015.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19(8):891–903. https://doi.org/10.1038/ncb3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fan Y, Hanai JI, Le PT, Bi R, Maridas D, DeMambro V, et al. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab. 2017;25(3):661–72. https://doi.org/10.1016/j.cmet.2017.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015;160(1–2):269–84. https://doi.org/10.1016/j.cell.2014.11.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Lecka-Czernik B, Stechschulte LA, Czernik PJ, Sherman SB, Huang S, Krings A. Marrow adipose tissue: skeletal location, sexual dimorphism, and response to sex steroid deficiency. Front Endocrinol (Lausanne). 2017;8:188. https://doi.org/10.3389/fendo.2017.00188. This study suggests metabolic diversity among MAT in different skeletal locations and correlation with bone mass and sex steroids status.

    Article  PubMed Central  Google Scholar 

  13. •• Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun. 2015;6:7808. https://doi.org/10.1038/ncomms8808. These studies represent the first indication of diverse phenotype of MAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krings A, Rahman S, Huang S, Lu Y, Czernik PJ, Lecka-Czernik B. Bone marrow fat has brown adipose tissue characteristics, which are attenuated with aging and diabetes. Bone. 2012;50(2):546–52.

    Article  CAS  PubMed  Google Scholar 

  15. Elbaz A, Rivas D, Duque G. Effect of estrogens on bone marrow adipogenesis and Sirt1 in aging C57BL/6J mice. Biogerontology. 2009;10(6):747–55. https://doi.org/10.1007/s10522-009-9221-7.

    Article  CAS  PubMed  Google Scholar 

  16. Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S. Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int. 2008;19(9):1323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lecka-Czernik B, Stechschulte LA. Bone and fat: a relationship of different shades. Arch Biochem Biophys. 2014;561:124–9. https://doi.org/10.1016/j.abb.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  18. Lecka-Czernik B, Rosen CJ. Energy excess, glucose utilization, and skeletal remodeling: new insights. J Bone Miner Res. 2015;30(8):1356–61. https://doi.org/10.1002/jbmr.2574.

    Article  CAS  PubMed  Google Scholar 

  19. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med. 2010;14(4):982–91. https://doi.org/10.1111/j.1582-4934.2009.00751.x.

    Article  CAS  PubMed  Google Scholar 

  20. • Rahman S, Lu Y, Czernik PJ, Rosen CJ, Enerback S, Lecka-Czernik B. Inducible brown adipose tissue, or beige fat, is anabolic for the skeleton. Endocrinology. 2013;154(8):2687–701. These studies identify for the first time bone anabolic secretome of beige-like MAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kolli V, Stechschulte LA, Dowling AR, Rahman S, Czernik PJ, Lecka-Czernik B. Partial agonist, telmisartan, maintains PPARgamma serine 112 phosphorylation, and does not affect osteoblast differentiation and bone mass. PLoS One. 2014;9(5):e96323. https://doi.org/10.1371/journal.pone.0096323.

    Article  PubMed  PubMed Central  Google Scholar 

  22. • Stechschulte LA, Czernik PJ, Rotter ZC, Tausif FN, Corzo CA, Marciano DP, et al. PPARG post-translational modifications regulate bone formation and bone resorption. EBioMedicine. 2016;10:174–84. https://doi.org/10.1016/j.ebiom.2016.06.040. These studies demonstrated that SR10171 compound which acts as PPARγ inverse agonist has beneficial effect on bone and insulin sensitivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Stechschulte LA, Ge C, Hinds TD Jr, Sanchez ER, Franceschi RT, Lecka-Czernik B. Protein phosphatase PP5 controls bone mass and the negative effects of rosiglitazone on bone through reciprocal regulation of PPARgamma (peroxisome proliferator-activated receptor gamma) and RUNX2 (runt-related transcription factor 2). J Biol Chem. 2016;291(47):24475–86. https://doi.org/10.1074/jbc.M116.752493. These studies identify PP5 for its inhibitory effect on RUNX2 activity and anabolic activity of beige-like MAT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell. 2001;106(5):563–73.

    Article  CAS  PubMed  Google Scholar 

  25. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148(6):2669–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, et al. Pharmacological repression of PPARgamma promotes osteogenesis. Nat Commun. 2015;6:7443. https://doi.org/10.1038/ncomms8443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes: an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care. 2008;31(5):845–51.

    Article  CAS  PubMed  Google Scholar 

  28. Modder UI, Monroe DG, Fraser DG, Spelsberg TC, Rosen CJ, Gehin M, et al. Skeletal consequences of deletion of steroid receptor coactivator-2/transcription intermediary factor-2. J Biol Chem. 2009;284(28):18767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang Y, Luo X, Xie X, Yan F, Chen G, Zhao W, et al. Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy. Climacteric. 2016;19(3):285–91. https://doi.org/10.3109/13697137.2015.1126576.

    Article  CAS  PubMed  Google Scholar 

  30. Kong J, Li YC. Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am J Physiol Endocrinol Metab. 2006;290(5):E916–24. https://doi.org/10.1152/ajpendo.00410.2005.

    Article  CAS  PubMed  Google Scholar 

  31. Lee H, Bae S, Yoon Y. Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/beta-catenin pathway. Int J Mol Med. 2012;30(5):1219–24. https://doi.org/10.3892/ijmm.2012.1101.

    Article  CAS  PubMed  Google Scholar 

  32. Kelly KA, Gimble JM. 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology. 1998;139(5):2622–8.

    Article  CAS  PubMed  Google Scholar 

  33. Narvaez CJ, Simmons KM, Brunton J, Salinero A, Chittur SV, Welsh JE. Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J Cell Physiol. 2013;228(10):2024–36. https://doi.org/10.1002/jcp.24371.

    Article  CAS  PubMed  Google Scholar 

  34. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2014;15(6):528–37. https://doi.org/10.1111/obr.12162.

    Article  CAS  PubMed  Google Scholar 

  35. Wright HM, Clish CB, Mikami T, Hauser S, Yanagi K, Hiramatsu R, et al. A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation. J Biol Chem. 2000;275(3):1873–7.

    Article  CAS  PubMed  Google Scholar 

  36. Santiago-Mora R, Casado-Diaz A, De Castro MD, Quesada-Gomez JM. Oleuropein enhances osteoblastogenesis and inhibits adipogenesis: the effect on differentiation in stem cells derived from bone marrow. Osteoporos Int. 2011;22(2):675–84. https://doi.org/10.1007/s00198-010-1270-x.

    Article  CAS  PubMed  Google Scholar 

  37. Duque G, Li W, Vidal C, Bermeo S, Rivas D, Henderson J. Pharmacological inhibition of PPARgamma increases osteoblastogenesis and bone mass in male C57BL/6 mice. J Bone Miner Res. 2013;28(3):639–48. https://doi.org/10.1002/jbmr.1782.

    Article  CAS  PubMed  Google Scholar 

  38. Lecka-Czernik B, Rosen CJ. Skeletal integration of energy homeostasis: translational implications. Bone. 2016;82:35–41. https://doi.org/10.1016/j.bone.2015.07.026.

    Article  PubMed  Google Scholar 

  39. Liu JM, Rosen CJ, Ducy P, Kousteni S, Karsenty G. Regulation of glucose handling by the skeleton: insights from mouse and human studies. Diabetes. 2016;65(11):3225–32. https://doi.org/10.2337/db16-0053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mosialou I, Shikhel S, Liu JM, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543(7645):385–90. https://doi.org/10.1038/nature21697.

    Article  CAS  PubMed  Google Scholar 

  41. Scheller EL, Burr AA, MacDougald OA, Cawthorn WP. Inside out: bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte. 2016;5(3):251–69. https://doi.org/10.1080/21623945.2016.1149269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia. 2017;60:1163–9. https://doi.org/10.1007/s00125-017-4269-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen MX, McPartlin AE, Brown L, Chen YH, Barker HM, Cohen PTA. Novel human protein serine/threonine phosphatase, which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. EMBO J. 1994;13(18):4278–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang H, Sayner SL, Gross KL, Russell LC, Chinkers M. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation. Biochemistry. 2001;40(35):10485–90.

    Article  CAS  PubMed  Google Scholar 

  45. Hinds TD Jr, Sanchez ER. Protein phosphatase 5. Int J Biochem Cell Biol. 2008;40(11):2358–62. https://doi.org/10.1016/j.biocel.2007.08.010.

    Article  CAS  PubMed  Google Scholar 

  46. Skinner J, Sinclair C, Romeo C, Armstrong D, Charbonneau H, Rossie S. Purification of a fatty acid-stimulated protein-serine/threonine phosphatase from bovine brain and its identification as a homolog of protein phosphatase 5. J Biol Chem. 1997;272(36):22464–71.

    Article  CAS  PubMed  Google Scholar 

  47. Hinds TD Jr, Stechschulte LA, Cash HA, Whisler D, Banerjee A, Yong W, et al. Protein phosphatase 5 mediates lipid metabolism through reciprocal control of glucocorticoid and PPAR{gamma} receptors. J Biol Chem. 2011;286(10):42911–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cher C, Tremblay MH, Barber JR, Chung Ng S, Zhang B. Identification of chaulmoogric acid as a small molecule activator of protein phosphatase 5. Appl Biochem Biotechnol. 2010;160(5):1450–9. https://doi.org/10.1007/s12010-009-8647-3.

    Article  CAS  PubMed  Google Scholar 

  49. Ramsey AJ, Chinkers M. Identification of potential physiological activators of protein phosphatase 5. Biochemistry. 2002;41(17):5625–32.

    Article  CAS  PubMed  Google Scholar 

  50. Haslbeck V, Drazic A, Eckl JM, Alte F, Helmuth M, Popowicz G, Schmidt W, Braun F, Weiwad M, Fischer G, Gemmecker G, Sattler M, Striggow F, Groll M, Richter K Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism. Biosci Rep. 2015;35(3), e00210. https://doi.org/10.1042/BSR20150042

  51. Hong TJ, Park K, Choi EW, Hahn JS. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism. Biochem Biophys Res Commun. 2017;482(2):215–20. https://doi.org/10.1016/j.bbrc.2016.11.043.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata Lecka-Czernik.

Ethics declarations

Conflict of Interest

Beata Lecka-Czernik, Sudipta Baroi, Lance Stechschulte, and Amit Sopan Chougule declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects.

Additional information

This article is part of the Topical Collection on Bone Marrow and Adipose Tissue

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecka-Czernik, B., Baroi, S., Stechschulte, L.A. et al. Marrow Fat—a New Target to Treat Bone Diseases?. Curr Osteoporos Rep 16, 123–129 (2018). https://doi.org/10.1007/s11914-018-0426-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0426-z

Keywords

Navigation