Skip to main content

Advertisement

Log in

Genetics of Osteopetrosis

  • Genetics (M Johnson and S Ralston, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The term osteopetrosis refers to a group of rare skeletal diseases sharing the hallmark of a generalized increase in bone density owing to a defect in bone resorption. Osteopetrosis is clinically and genetically heterogeneous, and a precise molecular classification is relevant for prognosis and treatment. Here, we review recent data on the pathogenesis of this disorder.

Recent Findings

Novel mutations in known genes as well as defects in new genes have been recently reported, further expanding the spectrum of molecular defects leading to osteopetrosis.

Summary

Exploitation of next-generation sequencing tools is ever spreading, facilitating differential diagnosis. Some complex phenotypes in which osteopetrosis is accompanied by additional clinical features have received a molecular classification, also involving new genes. Moreover, novel types of mutations have been recognized, which for their nature or genomic location are at high risk being neglected. Yet, the causative mutation is unknown in some patients, indicating that the genetics of osteopetrosis still deserves intense research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9(9):522–36. This review offered a comprehensive overview of the genetics, clinical aspects, cellular pathogenesis and treatment of osteopetrosis.

    Article  CAS  PubMed  Google Scholar 

  2. Sobacchi C, Villa A, Schulz A, Kornak U. CLCN7-Related Osteopetrosis. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. 2007 Feb 12 [updated 2016 Jun 9].

  3. Döffinger R, Smahi A, Bessia C, Geissmann F, Feinberg J, Durandy A, et al. X-linked anhidrotic ectodermal dysplasia with immunodeficiency is caused by impaired NF-kappaB signaling. Nat Genet. 2001;27(3):277–85.

    Article  PubMed  Google Scholar 

  4. Dupuis-Girod S, Corradini N, Hadj-Rabia S, Fournet JC, Faivre L, Le Deist F, et al. Osteopetrosis, lymphedema, anhidrotic ectodermal dysplasia, and immunodeficiency in a boy and incontinentia pigmenti in his mother. Pediatrics. 2002;109(6):e97.

    Article  PubMed  Google Scholar 

  5. Roberts CM, Angus JE, Leach IH, McDermott EM, Walker DA, Ravenscroft JC. A novel NEMO gene mutation causing osteopetrosis, lymphoedema, hypohidrotic ectodermal dysplasia and immunodeficiency (OL-HED-ID). Eur J Pediatr. 2010;169(11):1403–7.

    Article  PubMed  Google Scholar 

  6. Carlberg VM, Lofgren SM, Mann JA, Austin JP, Nolt D, Shereck EB, et al. Hypohidrotic ectodermal dysplasia, osteopetrosis, lymphedema, and immunodeficiency in an infant with multiple opportunistic infections. Pediatr Dermatol. 2014;31(6):716–21.

    Article  PubMed  Google Scholar 

  7. Miot C, Imai K, Imai C, Mancini AJ, Kucuk ZY, Kawai T, et al. Hematopoietic stem cell transplantation in 29 patients hemizygous for hypomorphic IKBKG/NEMO mutations. Blood. 2017;130(12):1456–67.

    Article  PubMed  Google Scholar 

  8. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med. 1985;313(3):139–45.

    Article  CAS  PubMed  Google Scholar 

  9. Hu PY, Ernst AR, Sly WS, Venta PJ, Skaggs LA, Tashian RE. Carbonic anhydrase II deficiency: single-base deletion in exon 7 is the predominant mutation in Caribbean Hispanic patients. Am J Hum Genet. 1994;54(4):602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Villa A, Guerrini MM, Cassani B, Pangrazio A, Sobacchi C. Infantile malignant, autosomal recessive osteopetrosis: the rich and the poor. Calcif Tissue Int. 2009;84(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  11. Bollerslev J, Henriksen K, Nielsen MF, Brixen K, Van Hul W. Autosomal dominant osteopetrosis revisited: lessons from recent studies. Eur J Endocrinol. 2013;69(2):R39–57.

    Article  CAS  Google Scholar 

  12. Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol. 2012;44(9):1422–35.

    Article  CAS  PubMed  Google Scholar 

  13. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet. 2000;25(3):343–6.

    Article  CAS  PubMed  Google Scholar 

  14. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, et al. The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet. 2001;10(17):1767–73.

    Article  CAS  PubMed  Google Scholar 

  15. Pangrazio A, Caldana ME, Lo Iacono N, Mantero S, Vezzoni P, Villa A, et al. Autosomal recessive osteopetrosis: report of 41 novel mutations in the TCIRG1 gene and diagnostic implications. Osteoporos Int. 2012;23(11):2713–8.

    Article  CAS  PubMed  Google Scholar 

  16. •• Palagano E, Blair HC, Pangrazio A, Tourkova I, Strina D, Angius A, et al. Buried in the middle but guilty: intronic mutations in the TCIRG1 gene cause human autosomal recessive osteopetrosis. J Bone Miner Res. 2015;30(10):1814–21. This manuscript highlighted the possible involvement of deep intronic mutations in disease pathogenesis, with relevant implications for WES data analysis.

    Article  CAS  PubMed  Google Scholar 

  17. Demir K, Nalbantoglu O, Karaer K, Korkmaz HA, Yildiz M, Tunc S, et al. Genetic diagnosis using whole exome analysis in two cases with malignant osteopetrosis of infancy. J Clin Res Pediatr Endocrinol. 2015;7(4):356–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bahr TL, Lund T, Sando NM, Orchard PJ, Miller WP. Haploidentical transplantation with post-transplant cyclophosphamide following reduced-intensity conditioning for osteopetrosis: outcomes in three children. Bone Marrow Transplant. 2016;51:1546–8.

    Article  CAS  PubMed  Google Scholar 

  19. •• Palagano E, Susani L, Menale C, Ramenghi U, Berger M, Uva P, et al. Synonymous mutations add a layer of complexity in the diagnosis of human osteopetrosis. J Bone Miner Res. 2017;32(1):99–105. This manuscript highlighted the possible involvement of synonymous but not silent mutations in disease pathogenesis, with relevant implications for WES data analysis.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, He J, Fu W, Wang C, Zhang Z. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin 2017.

  21. Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J. 2011;30(11):2140–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. •• Ludwig CF, Ullrich F, Leisle L, Stauber T, Jentsch TJ. Common gating of both CLC transporter subunits underlies voltage-dependent activation of the 2Cl-/1H+ exchanger ClC-7/Ostm1. J Biol Chem. 2013;288(40):28611–9. This and the previous work essentially contributed to the dissection of ClC7/Ostm1 pathophysiology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell. 2001;104(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  24. Chen X, Zhang K, Hock J, Wang C, Yu X. Enhanced but hypofunctional osteoclastogenesis in an autosomal dominant osteopetrosis type II case carrying a c.1856C>T mutation in CLCN7. Bone Res. 2016;4:16035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng H, He D, Rong P, Xu H, Yuan L, Li L, et al. Novel CLCN7 mutation identified in a Han Chinese family with autosomal dominant osteopetrosis-2. Mol Pain 2016;12.

  26. González-Rodríguez JD, Luis-Yanes MI, Inglés-Torres E, Arango-Sancho P, Cabrera-Sevilla JE, Duque-Fernández MR, et al. Can acetazolamide be used to treat diseases involving increased bone mineral density? Intractable Rare Dis Res. 2016;5(4):284–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ledemazel J, Plantaz D, Pagnier A, Girard P, Lasfargue M, Hullo E, et al. Malignant infantile osteopetrosis: case report of a 5-month-old boy. Arch Pediatr. 2016;23(4):389–93.

    Article  CAS  PubMed  Google Scholar 

  28. Pang Q, Chi Y, Zhao Z, Xing X, Li M, Wang O, et al. Novel mutations of CLCN7 cause autosomal dominant osteopetrosis type II (ADO-II) and intermediate autosomal recessive osteopetrosis (IARO) in Chinese patients. Osteoporos Int. 2016;27(3):1047–55.

    Article  CAS  PubMed  Google Scholar 

  29. Piret SE, Gorvin CM, Trinh A, Taylor J, Lise S, Taylor JC, et al. Autosomal dominant osteopetrosis associated with renal tubular acidosis is due to a CLCN7 mutation. Am J Med Genet A. 2016;170(11):2988–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zeng B, Li R, Hu Y, Hu B, Zhao Q, Liu H, et al. A novel mutation and a known mutation in the CLCN7 gene associated with relatively stable infantile malignant osteopetrosis in a Chinese patient. Gene. 2016;576(1 Pt 1):176–81.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng H, Shao C, Zheng Y, He JW, Fu WZ, Wang C, et al. Two novel mutations of CLCN7 gene in Chinese families with autosomal dominant osteopetrosis (type II). J Bone Miner Metab. 2016;34(4):440–6.

    Article  CAS  PubMed  Google Scholar 

  32. Okamoto N, Kohmoto T, Naruto T, Masuda K, Komori T, Imoto I. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis. Hum Genome Var. 2017;4:17036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Worby CA, Dixon JE. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol. 2002;3(12):919–31.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou C, Wang Y, Peng J, Li C, Liu P, Shen X. SNX10 plays a critical role in MMP9 secretion via JNK-p38-ERK signaling pathway. J Cell Biochem 2017.

  35. Aker M, Rouvinski A, Hashavia S, Ta-Shma A, Shaag A, Zenvirt S, et al. An SNX10 mutation causes malignant osteopetrosis of infancy. J Med Genet. 2012;49(4):221–6.

    Article  CAS  PubMed  Google Scholar 

  36. Pangrazio A, Fasth A, Sbardellati A, Orchard PJ, Kasow KA, Raza J, et al. SNX10 mutations define a subgroup of human autosomal recessive osteopetrosis with variable clinical severity. J Bone Miner Res. 2013;28(5):1041–9.

    Article  CAS  PubMed  Google Scholar 

  37. •• Stattin EL, Henning P, Klar J, McDermott E, Stecksen-Blicks C, Sandström PE, et al. SNX10 gene mutation leading to osteopetrosis with dysfunctional osteoclasts. Sci Rep. 2017;7(1):3012. This work contributed to unravel the mechanism elicited by SNX10 mutation in the pathogenesis of osteopetrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Amirfiroozy A, Hamidieh AA, Golchehre Z, Rezamand A, Yahyaei M, Beiranvandi F, et al. A novel mutation in SNX10 gene causes malignant infantile Osteopetrosis. Avicenna J Med Biotechnol. 2017;9(4):205–8.

    PubMed  PubMed Central  Google Scholar 

  39. Xu M, Stattin EL, Murphy M, Barry F. Generation of induced pluripotent stem cells (ARO-iPSC1–11) from a patient with autosomal recessive osteopetrosis harboring the c.212+1G>T mutation in SNX10 gene. Stem Cell Res. 2017;24:51–4.

    Article  CAS  PubMed  Google Scholar 

  40. Lange PF, Wartosch L, Jentsch TJ, Fuhrmann JC. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature. 2006;440(7081):220–3.

    Article  CAS  PubMed  Google Scholar 

  41. Fischer T, De Vries L, Meerloo T, Farquhar MG. Promotion of Gαi3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci. 2003;100:8270–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feigin ME, Malbon CC. OSTM1 regulates beta-catenin/Lef1 interaction and is required for Wnt/beta-catenin signaling. Cell Signal. 2008;20(5):949–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pandruvada SN, Beauregard J, Benjannet S, Pata M, Lazure C, Seidah NG, et al. Role of Ostm1 cytosolic complex with kinesin 5B in intracellular dispersion and trafficking. Mol Cell Biol. 2015;36(3):507–21.

    Article  PubMed  CAS  Google Scholar 

  44. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med. 2003;9(4):399–406.

    Article  CAS  PubMed  Google Scholar 

  45. Pangrazio A, Poliani PL, Megarbane A, Lefranc G, Lanino E, Di Rocco M, et al. Mutations in OSTM1 (grey lethal) define a particularly severe form of autosomal recessive osteopetrosis with neural involvement. J Bone Miner Res. 2006;21(7):1098–105.

    Article  CAS  PubMed  Google Scholar 

  46. • Shin B, Yu J, Park ES, Choi S, Yu J, Hwang JM, et al. Secretion of a truncated osteopetrosis-associated transmembrane protein 1 (OSTM1) mutant inhibits osteoclastogenesis through down-regulation of the B lymphocyte-induced maturation protein 1 (BLIMP1)-nuclear factor of activated T cells c1 (NFATc1) axis. J Biol Chem. 2014;289(52):35868–81. This work described a possible mechanism elicited by OSTM1 truncated protein products in the pathogenesis of osteopetrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ott CE, Fischer B, Schröter P, Richter R, Gupta N, Verma N, et al. Severe neuronopathic autosomal recessive osteopetrosis due to homozygous deletions affecting OSTM1. Bone. 2013;55(2):292–7.

    Article  CAS  PubMed  Google Scholar 

  48. Herebian D, Alhaddad B, Seibt A, Schwarzmayr T, Danhauser K, Klee D, et al. Coexisting variants in OSTM1 and MANEAL cause a complex neurodegenerative disorder with NBIA-like brain abnormalities. Eur J Hum Genet. 2017;25(9):1092–5.

    Article  CAS  PubMed  Google Scholar 

  49. Fujiwara T, Ye S, Castro-Gomes T, Winchell CG, Andrews NW, Voth DE, et al. PLEKHM1/DEF8/RAB7 complex regulates lysosome positioning and bone homeostasis. JCI Insight. 2016;1(17):e86330.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Marwaha R, Arya SB, Jagga D, Kaur H, Tuli A, Sharma M. The Rab7 effector PLEKHM1 binds Arl8b to promote cargo traffic to lysosomes. J Cell Biol. 2017;216(4):1051–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015;57(1):39–54.

    Article  CAS  PubMed  Google Scholar 

  52. Witwicka H, Jia H, Kutikov A, Reyes-Gutierrez P, Li X, Odgren PR. TRAFD1 (FLN29) interacts with Plekhm1 and regulates osteoclast acidification and resorption. PLoS One. 2015;10(5):e0127537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Del Fattore A, Fornari R, Van Wesenbeeck L, de Freitas F, Timmermans JP, Peruzzi B, et al. A new heterozygous mutation (R714C) of the osteopetrosis gene, pleckstrin homolog domain containing family M (with run domain) member 1 (PLEKHM1), impairs vesicular acidification and increases TRACP secretion in osteoclasts. J Bone Miner Res. 2008;23(3):380–91.

    Article  PubMed  Google Scholar 

  55. Bo T, Yan F, Guo J, Lin X, Zhang H, Guan Q, et al. Characterization of a relatively malignant form of osteopetrosis caused by a novel mutation in the PLEKHM1 gene. J Bone Miner Res. 2016;31(11):1979–87.

    Article  CAS  PubMed  Google Scholar 

  56. Tolar J, Teitelbaum SL, Orchard PJ. Osteopetrosis. N Engl J Med. 2004;351:2839–49.

    Article  PubMed  Google Scholar 

  57. Shah GN, Bonapace G, Hu PY, Strisciuglio P, Sly WS. Carbonic anhydrase II deficiency syndrome (osteopetrosis with renal tubular acidosis and brain calcification): novel mutations in CA2 identified by direct sequencing expand the opportunity for genotype-phenotype correlation. Hum Mutat. 2004;24(3):272.

    Article  PubMed  CAS  Google Scholar 

  58. Alhuzaim ON, Almohareb OM. Sherbeeni SM carbonic anhydrase II deficiency in a Saudi woman. Clin Med Insights Case Rep. 2015;8:7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pang Q, Qi X, Jiang Y, Wang O, Li M, Xing X, et al. Two novel CAII mutations causing carbonic anhydrase II deficiency syndrome in two unrelated Chinese families. Metab Brain Dis. 2015;30(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  60. Alsharidi A, Al-Hamed M, Alsuwaida A. Carbonic anhydrase II deficiency: report of a novel mutation. CEN Case Rep. 2016;5:108–12.

    Article  PubMed  Google Scholar 

  61. Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci. 2016;129(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, et al. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol. 2011;192(5):883–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crazzolara R, Maurer K, Schulze H, Zieger B, Zustin J, Schulz AS. A new mutation in the KINDLIN-3 gene ablates integrin-dependent leukocyte, platelet, and osteoclast function in a patient with leukocyte adhesion deficiency-III. Pediatr Blood Cancer. 2015;62(9):1677–9.

    Article  CAS  PubMed  Google Scholar 

  64. Palagano E, Slatter MA, Uva P, Menale C, Villa A, Abinun M, et al. Hematopoietic stem cell transplantation corrects osteopetrosis in a child carrying a novel homozygous mutation in the FERMT3 gene. Bone. 2017;97:126–9.

    Article  CAS  PubMed  Google Scholar 

  65. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues (review). Mol Med Rep. 2015;11(5):3212–8.

    Article  CAS  PubMed  Google Scholar 

  66. •• Luo J, Yang Z, Ma Y, Yue Z, Lin H, Qu G, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–46. This work identified LGR4 as an additional receptor for the essential osteoclastogenic cytokine RANKL; the implications of these data in bone pathophysiology still have to be completely understood.

    Article  CAS  PubMed  Google Scholar 

  67. • Schena F, Menale C, Caci E, Diomede L, Palagano E, Recordati C, et al. Murine Rankl-/- Mesenchymal Stromal Cells display an osteogenic differentiation defect improved by a RANKL-expressing lentiviral vector. Stem Cells. 2017;35(5):1365–77. This work first described a defect in the osteoblast lineage due to RANKL absence; the implications of these data in bone pathophysiology still have to be clarified and might extend well beyond RANKL-deficient ARO.

    Article  CAS  PubMed  Google Scholar 

  68. Sobacchi C, Frattini A, Guerrini MM, Abinun M, Pangrazio A, Susani L, et al. Osteoclast-poor human osteopetrosis due to mutations in the gene encoding RANKL. Nat Genet. 2007;39(8):960–2.

    Article  CAS  PubMed  Google Scholar 

  69. • Lo Iacono N, Pangrazio A, Abinun M, Bredius R, Zecca M, Blair HC, et al. RANKL cytokine: from pioneer of the osteoimmunology era to cure for a rare disease. Clin Dev Immunol. 2013;2013:412768. This work described RANKL-deficient ARO patients; to the best of our knowledge, this remains the only subgroup of ARO in which the bone defect is not corrected by HSCT.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008 Jul;83(1):64–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. • Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Miner Res. 2012;27(2):342–51. This work described RANK-deficient ARO patients and clearly highlighted the differences with the RANKL-dependent subgroup of osteoclast-poor ARO patients.

    Article  CAS  PubMed  Google Scholar 

  72. Porta F, Cavagnini S, Imberti L, Sottini A, Bolda F, Beghin A, et al. Partial depletion of TCR alpha/beta+/CD19+ cells in matched unrelated transplantation of three patients with osteopetrosis. Bone Marrow Transplant. 2015;50(12):1583–5.

    Article  CAS  PubMed  Google Scholar 

  73. Natsheh J, Drozdinsky G, Simanovsky N, Lamdan R, Erlich O, Gorelik N, et al. Improved outcomes of hematopoietic stem cell transplantation in patients with infantile malignant osteopetrosis using fludarabine-based conditioning. Pediatr Blood Cancer. 2016;63(3):535–40.

    Article  CAS  PubMed  Google Scholar 

  74. Simanovsky N, Rozovsky K, Hiller N, Weintraub M, Stepensky P. Extending the spectrum of radiological findings in patients with severe osteopetrosis and different genetic backgrounds. Pediatr Blood Cancer. 2016;63(7):1222–6.

    Article  CAS  PubMed  Google Scholar 

  75. Shamriz O, Shaag A, Yaacov B, NaserEddin A, Weintraub M, Elpeleg O, et al. The use of whole exome sequencing for the diagnosis of autosomal recessive malignant infantile osteopetrosis. Clin Genet. 2017;92(1):80–5.

    Article  CAS  PubMed  Google Scholar 

  76. Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21(22):4904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turan S, Mumm S, Gottesman GS, Abali S, Baş S, Atay Z, et al. Dysosteosclerosis from a unique mutation in SLC29A3. Presented at the 7th International Conference on Children’s Bone Health 2015, Salzburg, Austria. Bone Abstracts 4:97.

  78. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  79. Novinec M, Lenarčič B. Cathepsin K: a unique collagenolytic cysteine peptidase. Biol Chem. 2013;394(9):1163–79.

    Article  CAS  PubMed  Google Scholar 

  80. Christensen J, Shastri VP. Matrix-metalloproteinase-9 is cleaved and activated by cathepsin K. BMC Res Notes. 2015;8:322.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bonnet N, Brun J, Rousseau JC, Duong LT, Ferrari SL. Cathepsin K controls cortical bone formation by degrading periostin. J Bone Miner Res. 2017;32(7):1432–41.

    Article  CAS  PubMed  Google Scholar 

  82. Xue Y, Cai T, Shi S, Wang W, Zhang Y, Mao T, et al. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet J Rare Dis. 2011;6:20.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Xue Y, Wang L, Xia D, Li Q, Gao S, Dong M, et al. Dental abnormalities caused by novel compound heterozygous CTSK mutations. J Dent Res. 2015;94(5):674–81.

    Article  CAS  PubMed  Google Scholar 

  84. Singh A, Cuevas-Covarrubias S, Pradhan G, Gautam VK, Messina-Baas O, Gonzalez-Huerta LM, et al. Novel mutation and white matter involvement in an Indian child with pycnodysostosis. Indian J Pediatr. 2015;82(5):471–3.

    Article  PubMed  Google Scholar 

  85. Huang X, Qi X, Li M, Wang O, Jiang Y, Xing X, et al. A mutation in CTSK gene in an autosomal recessive pycnodysostosis family of Chinese origin. Calcif Tissue Int. 2015;96(5):373–8.

    Article  CAS  PubMed  Google Scholar 

  86. Araujo TF, Ribeiro EM, Arruda AP, Moreno CA, de Medeiros PF, Minillo RM, et al. Molecular analysis of the CTSK gene in a cohort of 33 Brazilian families with pycnodysostosis from a cluster in a Brazilian northeast region. Eur J Med Res. 2016;21(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mandal K, Ray S, Saxena D, Srivastava P, Moirangthem A, Ranganath P, et al. Pycnodysostosis: mutation spectrum in five unrelated Indian children. Clin Dysmorphol. 2016;25(3):113–20.

    Article  PubMed  Google Scholar 

  88. Rovira Martí P, Ullot FR. Orthopaedic disorders of pycnodysostosis: a report of five clinical cases. Int Orthop. 2016;40(11):2221–31.

    Article  PubMed  Google Scholar 

  89. Song HK, Sohn YB, Choi YJ, Chung YS, Jang JH. A case report of pycnodysostosis with atypical femur fracture diagnosed by next-generation sequencing of candidate genes. Medicine (Baltimore). 2017;96(12):e6367.

    Article  Google Scholar 

  90. Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13(8):1015–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. • Weisz Hubshman M, Basel-Vanagaite L, Krauss A, Konen O, Levy Y, Garty BZ, et al. Homozygous deletion of RAG1, RAG2 and 5′ region TRAF6 causes severe immune suppression and atypical osteopetrosis. Clin Genet. 2017;91(6):902–7. This work suggested a role for TRAF6 in the pathogenesis of human osteopetrosis.

    Article  CAS  PubMed  Google Scholar 

  92. • Iida A, Xing W, Docx MFK, Nakashima T, Wang Z, Kimizuka M, et al. Identification of biallelic LRRK1 mutations in osteosclerotic metaphyseal dysplasia and evidence for locus heterogeneity. J Med Genet. 2016;53:568–74. This work suggested a possible pathogenetic role of LRRK1 recessive mutations in a peculiar form of osteopetrosis.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Xing WR, Goodluck H, Zeng C, Mohan S. Role and mechanism of action of leucine-rich repeat kinase 1 in bone. Bone Res. 2017;5:17003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lu SY, Li M, Lin YL. Mitf regulates osteoclastogenesis by modulating NFATc1 activity. Exp Cell Res. 2014;328(1):32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Steingrímsson E, Moore KJ, Lamoreux ML, Ferré-D'Amaré AR, Burley SK, Zimring DC, et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat Genet. 1994;8(3):256–63.

    Article  PubMed  Google Scholar 

  96. • George A, Zand DJ, Hufnagel RB, Sharma R, Sergeev YV, Legare JM, et al. Biallelic mutations in MITF cause coloboma, osteopetrosis, microphthalmia, macrocephaly, albinism, and deafness. Am J Hum Genet. 2016;99(6):1388–94. This work suggested a possible pathogenetic role of MITF recessive mutations in a peculiar form of osteopetrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. • Frederiksen AL, Larsen MJ, Brusgaard K, Novack DV, Thii Knudsen PJ, Daa Schroder H, et al. Neonatal high bone mass with first mutation of the NF-kB complex: heterozygous de novo missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res. 2016;31(1):163–72. This work suggested a possible pathogenetic role of a RELA mutation in a form of neonatal High Bone Mass.

    Article  CAS  PubMed  Google Scholar 

  98. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  99. • Monies D, Maddirevula S, Kurdi W, Alanazy MH, Alkhalidi H, Al-Owain M, et al. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation. Genet Med. 2017. This work suggested a possible pathogenetic role of CSF1R mutations in two ARO patients.

  100. Migliaccio S, Luciani M, Taranta A, De Rossi G, Minisola S, El Hachem M, et al. Association of intermediate osteopetrosis with poikiloderma. J Bone Miner Res. 1999;14(5):834–6.

    Article  CAS  PubMed  Google Scholar 

  101. Mroczek S, Krwawicz J, Kutner J, Lazniewski M, Kuciński I, Ginalski K, et al. C16orf57, a gene mutated in poikiloderma with neutropenia, encodes a putative phosphodiesterase responsible for the U6 snRNA 3′ end modification. Genes Dev. 2012;26(17):1911–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. • Colombo EA, Bazan JF, Negri G, Gervasini C, Elcioglu NH, Yucelten D, et al. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations. Orphanet J Rare Dis. 2012;7:7. This work identified C16orf57 as the gene mutated in a patient displaying osteopetrosis, poikiloderma and neutropenia.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Colombo EA, Carra S, Fontana L, Bresciani E, Cotelli F, Larizza L. A zebrafish model of Poikiloderma with neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor. Sci Rep. 2015;5:15814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Patil P, Uechi T, Kenmochi N. Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol. 2015;12(4):426–34.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Schulz AS, Moshous D, Steward CG, Villa A, Sobacchi C. Osteopetrosis–Consensus Guidelines of the ESID and the EBMT Working Party Inborn Errors [online], https://esid.org/layout/set/print/content/view/full/14267.

  106. Orchard PJ, Fasth AL, Le Rademacher J, He W, Boelens JJ, Horwitz EM, et al. Hematopoietic stem cell transplantation for infantile osteopetrosis. Blood. 2015;126(2):270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chiesa R, Ruggeri A, Paviglianiti A, Zecca M, Gónzalez-Vicent M, Bordon V, et al. Outcomes after unrelated umbilical cord blood transplantation for children with Osteopetrosis. Biol Blood Marrow Transpl. 2016;22(11):1997–2002.

    Article  Google Scholar 

  108. Wu CC, Econs MJ, DiMeglio LA, Insogna KL, Levine MA, Orchard PJ, et al. Diagnosis and management of osteopetrosis: consensus guidelines from the Osteopetrosis Working Group. J Clin Endocrinol Metab. 2017;102(9):3111–23.

    Article  PubMed  Google Scholar 

  109. Jamuar SS, Tan EC. Clinical application of next-generation sequencing for Mendelian diseases. Hum Genomics. 2015;9:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Frebourg T. The challenge for the next generation of medical geneticists. Hum Mutat. 2014;35(8):909–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the many authors whose original contribution in the field could not be cited in this minireview for the sake of brevity.

Funding

This work was partially supported by the European Community’s Seventh Framework Program (FP7/2007–2013, SYBIL Project), by PRIN Projects (20102M7T8X_003 and 2015F3JHMB_004) to AV and by Programma Nazionale per la Ricerca-Consiglio Nazionale delle Ricerche Aging Project to AV, and by Ministero della Salute - Giovani Ricercatori (grant GR-2011-02348266) to CS.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to organize, draft, and revise the manuscript.

Corresponding author

Correspondence to Cristina Sobacchi.

Ethics declarations

Conflict of Interest

Eleonora Palagano, Cristina Sobacchi, Anna Villa, and Ciro Menale declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palagano, E., Menale, C., Sobacchi, C. et al. Genetics of Osteopetrosis. Curr Osteoporos Rep 16, 13–25 (2018). https://doi.org/10.1007/s11914-018-0415-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0415-2

Keywords

Navigation