Skip to main content

Advertisement

Log in

Effects of Excessive Dietary Phosphorus Intake on Bone Health

  • Nutrition, Exercise and Lifestyle in Osteoporosis (S Shapses and J Lappe, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to provide an overview of dietary phosphorus, its sources, recommended intakes, and its absorption and metabolism in health and in chronic kidney disease and to discuss recent findings in this area with a focus on the effects of inorganic phosphate additives in bone health.

Recent Findings

Recent findings show that increasing dietary phosphorus through inorganic phosphate additives has detrimental effects on bone and mineral metabolism in humans and animals. There is new data supporting an educational intervention to limit phosphate additives in patients with chronic kidney disease to control serum phosphate.

Summary

The average intake of phosphorus in the USA is well above the recommended dietary allowance. Inorganic phosphate additives, which are absorbed at a high rate, account for a substantial and likely underestimated portion of this excessive intake. These additives have negative effects on bone metabolism and present a prime opportunity to lower total phosphorus intake in the USA. Further evidence is needed to confirm whether lowering dietary phosphorus intake would have beneficial effects to improve fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Institute of Medicine. DRI: dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. Washington, DC: National Academy Press; 1997.

    Google Scholar 

  2. Aloia JF, Vaswani A, Yeh JK, Ellis K, Cohn SH. Total body phosphorus in postmenopausal women. Miner Electrolyte Metab. 1984;10(2):73–6.

    CAS  PubMed  Google Scholar 

  3. Imel EA, Peacock M. X-linked hypophosphatemia: understanding and managment. Drugs Future. 2010;35(9):755–63.

    Article  CAS  Google Scholar 

  4. Calvo MS, Moshfegh AJ, Tucker KL. Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv Nutr. 2014;5(1):104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. • McClure ST, Chang AR, Selvin E, Rebholz CM, Appel LJ. Dietary sources of phosphorus among adults in the United States: results from NHANES 2001-2014. Nutrients. 2017;9(2):95. Recent NHANES analysis of relative contributions of various dietary sources of phosphorus to total phosphorus intake in the U.S.

    Article  PubMed Central  Google Scholar 

  6. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr. 1996;126(4 Suppl):1168S–80S.

    CAS  PubMed  Google Scholar 

  7. Calvo MS, Tucker KL. Is phosphorus intake that exceeds dietary requirements a risk factor in bone health? Ann N Y Acad Sci. 2013;1301:29–35.

    Article  CAS  PubMed  Google Scholar 

  8. Tucker KL, Morita K, Qiao N, Hannan MT, Cupples LA, Kiel DP. Colas, but not other carbonated beverages, are associated with low bone mineral density in older women: the Framingham osteoporosis study. Am J Clin Nutr. 2006;84(4):936–42.

    CAS  PubMed  Google Scholar 

  9. Amato D, Maravilla A, Montoya C, Gaja O, Revilla C, Guerra R, et al. Acute effects of soft drink intake on calcium and phosphate metabolism in immature and adult rats. Rev Investig Clin. 1998;50(3):185–9.

    CAS  Google Scholar 

  10. Garcia-Contreras F, Paniagua R, Avila-Diaz M, Cabrera-Munoz L, Martinez-Muniz I, Foyo-Niembro E, et al. Cola beverage consumption induces bone mineralization reduction in ovariectomized rats. Arch Med Res. 2000;31(4):360–5.

    Article  CAS  PubMed  Google Scholar 

  11. Kim SH, Morton DJ, Barrett-Connor EL. Carbonated beverage consumption and bone mineral density among older women: the Rancho Bernardo study. Am J Public Health. 1997;87(2):276–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kristensen M, Jensen M, Kudsk J, Henriksen M, Molgaard C. Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men. Osteoporos Int. 2005;16(12):1803–8.

    Article  CAS  PubMed  Google Scholar 

  13. Wyshak G. Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med. 2000;154(6):610–3.

    Article  CAS  PubMed  Google Scholar 

  14. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  15. Hill Gallant KM. Studying dietary phosphorus intake: the challenge of when a gram is not a gram. Am J Clin Nutr. 2015;102(2):237–8.

    Article  PubMed  Google Scholar 

  16. •• Scanni R, von Rotz M, Jehle S, Hulter HN, Krapf R. The human response to acute enteral and parenteral phosphate loads. J Am Soc Nephrol. 2014;25(12):2730–9. This study used nasoduodenal and intravenous infusions of phosphate and urine phosphorus recovery to show that the kidney completely compensates for added phosphate loads by increasing phosphaturia, and that there appears to be no role for the intestine in regulating renal phosphate excretion in response to a phosphate load.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • St-Jules DE, Jagannathan R, Gutekunst L, Kalantar-Zadeh K, Sevick MA. Examining the proportion of dietary phosphorus from plants, animals, and food additives excreted in urine. J Ren Nutr. 2017;27(2):78–83. A recent review article aimed at describing the bioavailablity of phosphorus from plant, animal, and inorganic phosphate additive sources. The authors examine the proportion of dietary phosphorus consumed in four controlled feeding studies that is excreted in the urine as an indirect measure of intestinal phosphorus absorption. This paper illustrates clearly that there is a difference between “digestibility” (i.e. bioaccessibility) of phosphorus from various sources that has been shown through in vitro digestion studies, and the actual bioavailability (absorption) of phosphorus from these foods.

    Article  CAS  PubMed  Google Scholar 

  18. Bergwitz C, Juppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61:91–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Vitamin D and type II sodium-dependent phosphate cotransporters. Contrib Nephrol. 2013;180:86–97.

    Article  CAS  PubMed  Google Scholar 

  20. Forster IC, Hernando N, Biber J, Murer H. Phosphate transporters of the SLC20 and SLC34 families. Mol Asp Med. 2013;34(2–3):386–95.

    Article  CAS  Google Scholar 

  21. Fleet JC, Peacock M. Physiology of vitamin D, calcium, and phosphate absorption. In: Morris HA, Anderson PH, Nordin BEC, editors. The physiological basis of metabolic bone disease. Boca Raton: CRC Press; 2014. p. 13–40.

    Chapter  Google Scholar 

  22. Miyamoto K, Ito M, Kuwahata M, Kato S, Segawa H. Inhibition of intestinal sodium-dependent inorganic phosphate transport by fibroblast growth factor 23. Ther Apher Dial. 2005;9(4):331–5.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida T, Yoshida N, Monkawa T, Hayashi M, Saruta T. Dietary phosphorus deprivation induces 25-hydroxyvitamin D(3) 1alpha-hydroxylase gene expression. Endocrinology. 2001;142(5):1720–6.

    Article  CAS  PubMed  Google Scholar 

  24. Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, et al. Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1alphaOHase-deficient mice. Am J Physiol Cell Physiol. 2005;288:C429–C34.

    Article  CAS  PubMed  Google Scholar 

  25. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, et al. Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol-Renal. 2004;287(1):F39–47.

    Article  CAS  Google Scholar 

  26. Bonjour JP, Caverzasio J. Phosphate transport in the kidney. Rev Physiol Biochem Pharmacol. 1984;100:161–214.

    CAS  PubMed  Google Scholar 

  27. Berndt T, Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology (Bethesda). 2009;24:17–25.

    Article  CAS  Google Scholar 

  28. Shah B, Krishnarao G, Draper H. The relationship of Ca and P nutrition during adult life and osteoporosis in aged mice. J Nutr. 1967;92:30–42.

    CAS  PubMed  Google Scholar 

  29. Anderson G, Draper H. Effect of dietary phosphorus on calcium metabolism in intact and parathyroidectomized adult rats. J Nutr. 1972;102(9):1123–32.

    CAS  PubMed  Google Scholar 

  30. Draper H, Sie T-L, Bergan J. Osteoporosis in aging rats induced by high phosphorus diets. J Nutr. 1972;102(9):1133–41.

    CAS  PubMed  Google Scholar 

  31. Krishnarao G, Draper H. Influence of dietary phosphate on bone resorption in senescent mice. J Nutr. 1972;102(9):1143–5.

    CAS  PubMed  Google Scholar 

  32. Koyama Y, Rittling SR, Tsuji K, Hino K, Salincarnboriboon R, Yano T, et al. Osteopontin deficiency suppresses high phosphate load-induced bone loss via specific modulation of osteoclasts. Endocrinology. 2006;147(6):3040–9.

    Article  CAS  PubMed  Google Scholar 

  33. Huttunen MM, Tillman I, Viljakainen HT, Tuukkanen J, Peng Z, Pekkinen M, et al. High dietary phosphate intake reduces bone strength in the growing rat skeleton. J Bone Miner Res. 2007;22(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  34. Reiss E, Canterbury JM, Bercovitz MA, Kaplan EL. The role of phosphate in the secretion of parathyroid hormone in man. J Clin Invest. 1970;49(11):2146–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bell RR, Draper HH, Tzeng DY, Shin HK, Schmidt GR. Physiological responses of human adults to foods containing phosphate additives. J Nutr. 1977;107(1):42–50.

    CAS  PubMed  Google Scholar 

  36. Zemel MB, Linkswiler HM. Calcium metabolism in the young adult male as affected by level and form of phosphorus intake and level of calcium intake. J Nutr. 1981;111(2):315–24.

    CAS  PubMed  Google Scholar 

  37. Kuntz D, Marie P, Berhel M, Caulin F. Treatment of post-menopausal osteoporosis with phosphate and intermittent calcitonin. Int J Clin Pharmacol Res. 1986;6(2):157–62.

    CAS  PubMed  Google Scholar 

  38. Silverberg SJ, Shane E, Clemens TL, Dempster DW, Segre GV, Lindsay R, et al. The effect of oral phosphate administration on major indices of skeletal metabolism in normal subjects. J Bone Mineral Res. 1986;1(4):383–8.

    Article  CAS  Google Scholar 

  39. Calvo MS, Kumar R, Heath H III. Elevated secretion and action of serum parathyroid hormone in young adults consuming high phosphorus, low calcium diets assembled from common foods. J Clin Endocrinol Metab. 1988;66(4):823–9.

    Article  CAS  PubMed  Google Scholar 

  40. Calvo MS, Heath H III. Acute effects of oral phosphate-salt ingestion on serum phosphorus, serum ionized calcium, and parathyroid hormone in young adults. Am J Clin Nutr. 1988;47(6):1025–9.

    CAS  PubMed  Google Scholar 

  41. Calvo MS, Kumar R, HEATH III H. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab. 1990;70(5):1334–40.

    Article  CAS  PubMed  Google Scholar 

  42. Brixen K, Nielsen HK, Charles P, Mosekilde L. Effects of a short course of oral phosphate treatment on serum parathyroid hormone (1–84) and biochemical markers of bone turnover: a dose-response study. Calcified Tissue Int. 1992;51(4):276–81.

    Article  CAS  Google Scholar 

  43. Kärkkäinen M, Lamberg-Allardt C. An acute intake of phosphate increases parathyroid hormone secretion and inhibits bone formation in young women. J Bone Miner Res. 1996;11(12):1905–12.

    Article  PubMed  Google Scholar 

  44. Whybro A, Jagger H, Barker M, Eastell R. Phosphate supplementation in young men: lack of effect on calcium homeostasis and bone turnover. Eu J Clin Nutr. 1998;52(1):29–33.

    Article  CAS  Google Scholar 

  45. Grimm M, Muller A, Hein G, Funfstuck R, Jahreis G. High phosphorus intake only slightly affects serum minerals, urinary pyridinium crosslinks and renal function in young women. Eur J Clin Nutr. 2001;55(3):153.

    Article  CAS  PubMed  Google Scholar 

  46. Ferrari SL, Bonjour JP, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90(3):1519–24.

    Article  CAS  PubMed  Google Scholar 

  47. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  CAS  PubMed  Google Scholar 

  48. Antoniucci DM, Yamashita T, Portale AA. Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab. 2006;91(8):3144–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kemi VE, Kärkkäinen MU, Lamberg-Allardt CJ. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females. Br J Nutr. 2006;96(03):545–52.

    CAS  PubMed  Google Scholar 

  50. Karp HJ, Vaihia KP, Karkkainen MU, Niemisto MJ, Lamberg-Allardt CJ. Acute effects of different phosphorus sources on calcium and bone metabolism in young women: a whole-foods approach. Calcified Tissue Int. 2007;80(4):251–8.

    Article  CAS  Google Scholar 

  51. Kemi VE, Karkkainen MU, Karp HJ, Laitinen KA, Lamberg-Allardt CJ. Increased calcium intake does not completely counteract the effects of increased phosphorus intake on bone: an acute dose-response study in healthy females. Br J Nutr. 2008;99(4):832–9.

    Article  CAS  PubMed  Google Scholar 

  52. Vervloet MG, van Ittersum FJ, Buttler RM, Heijboer AC, Blankenstein MA, ter Wee PM. Effects of dietary phosphate and calcium intake on fibroblast growth factor-23. Clin J Am Soc Nephrol. 2011;6(2):383–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sigrist M, Tang M, Beaulieu M, Espino-Hernandez G, Er L, Djurdjev O, et al. Responsiveness of FGF-23 and mineral metabolism to altered dietary phosphate intake in chronic kidney disease (CKD): results of a randomized trial. Nephrol Dial Transplant. 2013;28(1):161–9.

    Article  CAS  PubMed  Google Scholar 

  54. •• Gutiérrez OM, Luzuriaga-McPherson A, Lin Y, Gilbert LC, Ha S-W, Beck GR Jr. Impact of phosphorus-based food additives on bone and mineral metabolism. J Clin Endocrinol Metab. 2015;100(11):4264–71. This is a controlled feeding study that shows the adverse effects of increasing dietary phosphorus through addition of inorganic phosphate additives on bone metabolism in healthy adults. The authors also present complementary studies in mice that show similar adverse effects on bone and mineral metabolism, including detrimental effects of phosphate additives on bone mineral density and cortical and cancellous bone geometry.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee AW, Cho SS. Association between phosphorus intake and bone health in the NHANES population. Nutr J. 2015;14(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee K-J, Kim K-S, Kim H-N, Seo J-A, Song S-W. Association between dietary calcium and phosphorus intakes, dietary calcium/phosphorus ratio and bone mass in the Korean population. Nutr J. 2014;13(1):114.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Brot C, Jørgensen N, Madsen O, Jensen L, Sørensen O. Relationships between bone mineral density, serum vitamin D metabolites and calcium: phosphorus intake in healthy perimenopausal women. J Intern Med. 1999;245(5):509–16.

    Article  CAS  PubMed  Google Scholar 

  58. Pinheiro MM, Schuch NJ, Genaro PS, Ciconelli RM, Ferraz MB, Martini LA. Nutrient intakes related to osteoporotic fractures in men and women—the Brazilian osteoporosis study (BRAZOS). Nutr J. 2009;8(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. •• Campos-Obando N, Koek WN, Hooker ER, van der Eerden BC, Pols HA, Hofman A, et al. Serum phosphate is associated with fracture risk: the Rotterdam study and MrOS. J Bone Miner Res. 2017;32(6):1182–93. Serum phosphate levels within the normal range are associated with an increased fracture risk in men and women from the Rotterdam Study and men from MrOS. This was independent of phosphorus intake, but the authors note that phosphate intake accuracy may be limited by assessment methods.

  60. Katsumata S, Matsuzaki H, Katsumata-Tsuboi R, Uehara M, Suzuki K. Effects of high phosphorus diet on bone metabolism-related gene expression in young and aged mice. J Nutr Metab. 2014;2014:575932.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Katsumata S, Matsuzaki H, Uehara M, Suzuki K. Effects of dietary calcium supplementation on bone metabolism, kidney mineral concentrations, and kidney function in rats fed a high-phosphorus diet. J Nutr Sci Vitaminol. 2015;61(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  62. Heaney RP, Recker RR. Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. J Lab Clin Med. 1982;99(1):46–55.

    CAS  PubMed  Google Scholar 

  63. Spencer H, Kramer L, Osis D, Norris C. Effect of phosphorus on the absorption of calcium and on the calcium balance in man. J Nutr. 1978;108(3):447–57.

    CAS  PubMed  Google Scholar 

  64. Spencer H, Menczel J, Lewin I, Samachson J. Effect of high phosphorus intake on calcium and phosphorus metabolism in man. J Nutr. 1965;86:125–32.

    CAS  PubMed  Google Scholar 

  65. Teegarden D, Lyle RM, McCabe GP, McCabe LD, Proulx WR, Michon K, et al. Dietary calcium, protein, and phosphorus are related to bone mineral density and content in young women. Am J Clin Nutr. 1998;68(3):749–54.

    CAS  PubMed  Google Scholar 

  66. Sax L. The institute of medicine’s “dietary reference intake” for phosphorus: a critical perspective. J Am Coll Nutr. 2001;20(4):271–8.

    Article  CAS  PubMed  Google Scholar 

  67. Kemi VE, Karkkainen MU, Rita HJ, Laaksonen MM, Outila TA, Lamberg-Allardt CJ. Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br J Nutr. 2010;103(4):561–8.

    Article  CAS  PubMed  Google Scholar 

  68. Carrigan A, Klinger A, Choquette SS, Luzuriaga-McPherson A, Bell EK, Darnell B, et al. Contribution of food additives to sodium and phosphorus content of diets rich in processed foods. J Ren Nutr. 2014;24(1):13–9. 9e1

    Article  CAS  PubMed  Google Scholar 

  69. Calvo MS, Uribarri J. Contributions to total phosphorus intake: all sources considered. Semin Dial. 2013;26(1):54–61.

    Article  PubMed  Google Scholar 

  70. McGartland C, Robson PJ, Murray L, Cran G, Savage MJ, Watkins D, et al. Carbonated soft drink consumption and bone mineral density in adolescence: the Northern Ireland young hearts project. J Bone Miner Res. 2003;18(9):1563–9.

    Article  CAS  PubMed  Google Scholar 

  71. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2006;69(11):1945–53.

    Article  CAS  PubMed  Google Scholar 

  72. Moorthi RN, Moe SM. Recent advances in the noninvasive diagnosis of renal osteodystrophy. Kidney Int. 2013;84(5):886–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kalantar-Zadeh K, Tortorici AR, Chen JL, Kamgar M, Lau WL, Moradi H, et al. Dietary restrictions in dialysis patients: is there anything left to eat? Semin Dial. 2015;28(2):159–68.

    Article  PubMed  PubMed Central  Google Scholar 

  74. • Nelson SM, Sarabia SR, Christilaw E, Ward EC, Lynch SK, Adams MA, et al. Phosphate-containing prescription medications contribute to the daily phosphate intake in a third of hemodialysis patients. J Ren Nutr. 2017;27(2):91–6. This is an analysis of the phosphorus content of medications used by hemodialysis patients, showing that medications can contribute a meaningful amount of phosphorus to total intake for patients who are often advised to follow a phosphorus-restricted diet.

    Article  CAS  PubMed  Google Scholar 

  75. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am J Kidney Dis. 2003;42(4 Suppl 3):S1–201.

  76. Sullivan C, Sayre SS, Leon JB, Machekano R, Love TE, Porter D, et al. Effect of food additives on hyperphosphatemia among patients with end-stage renal disease: a randomized controlled trial. J Am Med Assoc. 2009;301(6):629–35.

    Article  CAS  Google Scholar 

  77. •• de Fornasari ML, Dos Santos Sens YA. Replacing phosphorus-containing food additives with foods without additives reduces phosphatemia in end-stage renal disease patients: a randomized clinical trial. J Ren Nutr. 2017;27(2):97–105. This is a 3-month randomized controlled trial of an educational intervention to decreased phosphate additive intake in hemodialysis patients that corroborates the work of Sullivan et al. (2009). Patients who received the intervention had significantly improved serum phosphate after three months, with no change in indicators of nutritional status.

    Article  PubMed  Google Scholar 

  78. Takeda E, Yamamoto H, Yamanaka-Okumura H, Taketani Y. Dietary phosphorus in bone health and quality of life. Nutr Rev. 2012;70(6):311–21.

    Article  PubMed  Google Scholar 

  79. Sehgal AR, Sullivan C, Leon JB, Bialostosky K. Public health approach to addressing hyperphosphatemia among dialysis patients. J Ren Nutr. 2008;18(3):256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Karalis M. Food and Drug Administration petition on food labeling: an update from the American Dietetic Association and National Kidney Foundation. J Ren Nutr. 2007;17(6):423–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Hill Gallant.

Ethics declarations

Conflict of Interest

Kathleen Hill Gallant and Ranjani Moorthi report grants from the NIH (NIDDK K01 DK102864), during the conduct of the study.

Elizabeth Stremke and Colby Vorland declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Nutrition, Exercise and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorland, C.J., Stremke, E.R., Moorthi, R.N. et al. Effects of Excessive Dietary Phosphorus Intake on Bone Health. Curr Osteoporos Rep 15, 473–482 (2017). https://doi.org/10.1007/s11914-017-0398-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0398-4

Keywords

Navigation