Skip to main content

Advertisement

Log in

Osteoporosis in Children with Chronic Illnesses: Diagnosis, Monitoring, and Treatment

  • Pediatrics (L Ward and E Imel, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteoporosis is an under-recognized complication of chronic illness in childhood. This review will summarize recent literature addressing the risk factors, evaluation, and treatment for early bone fragility.

Recent Findings

Criteria for the diagnosis of pediatric osteoporosis include the presence of low trauma vertebral fractures alone or the combination of low bone mineral density and several long bone fractures. Monitoring for bone health may include screening for vertebral fractures that are common but often asymptomatic. Pharmacologic agents should be offered to those with fragility fractures especially when spontaneous recovery is unlikely. Controversies persist about the optimal bisphosphonate agent, dose, and duration. Newer osteoporosis drugs have not yet been adequately tested in pediatrics, though clinical trials are underway.

Summary

The prevalence of osteoporosis is increased in children with chronic illness. To reduce the frequency of fragility fractures requires increased attention to risk factors, early intervention, and additional research to optimize therapy and potentially prevent their occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wang Q, Seeman E. Skeletal growth and peak bone strength. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Eighth ed. Ames: John Wiley & Sons, Inc.; 2013. p. 127–34.

    Chapter  Google Scholar 

  2. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. doi:10.1007/s00198-015-3440-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305. doi:10.1016/j.bone.2009.10.005.

    Article  PubMed  Google Scholar 

  4. Stagi S, Cavalli L, Seminara S, de Martino M, Brandi ML. The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Ital J Pediatr. 2014;40:55. doi:10.1186/1824-7288-40-55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mäkitie O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol. 2013;9(8):465–75. doi:10.1038/nrrheum.2013.45.

    Article  CAS  PubMed  Google Scholar 

  6. •• Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79. doi:10.1007/s00198-016-3515-9. An extensive review of literature detailing risk factors, evaluation, and management of pediatric osteoporosis including pharmacologic trials to date.

    Article  CAS  PubMed  Google Scholar 

  7. •• Bianchi ML, Leonard MB, Bechtold S, Högler W, Mughal MZ, Schönau E, et al. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):281–94. doi:10.1016/j.jocd.2014.01.005. This position statement summarizes the guidelines for screening and monitoring of bone health in children and adolescents at risk for bone fragility due to chronic illnesses.

    Article  PubMed  Google Scholar 

  8. Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser. 1994;843:1–129.

    Google Scholar 

  9. Ma J, Siminoski K, Alos N, Halton J, Ho J, Lentle B, et al. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100(3):1018–27. doi:10.1210/jc.2014-3096.

    Article  CAS  PubMed  Google Scholar 

  10. Sbrocchi AM, Rauch F, Matzinger M, Feber J, Ward LM. Vertebral fractures despite normal spine bone mineral density in a boy with nephrotic syndrome. Pediatr Nephrol. 2011;26(1):139–42. doi:10.1007/s00467-010-1652-5.

    Article  PubMed  Google Scholar 

  11. • Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80. doi:10.1016/j.jocd.2014.01.004. This position statement reviews the updated definition of pediatric osteoporosis to include low trauma verterbral fracture irrespective of bone density and discusses limitations of DXA to predict fractures.

    Article  PubMed  Google Scholar 

  12. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6. doi:10.1359/jbmr.091007.

    Article  PubMed  Google Scholar 

  13. •• Cummings EA, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–17. doi:10.1210/JC.2015-2176. Prospective study determined that a third of children with ALL had vertebral fractures with the highest incidence in the first year since diagnosis. Nearly a third of VF were asymptomatic. Younger age, lower BMD Z-scores and higher glucocorticoid dose were determined to be predictors of bone fragility.

    Article  CAS  PubMed  Google Scholar 

  14. •• LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75. doi:10.1002/jbmr.2511. Longitudinal observational study in children with rheumatic disorders showed the incidence of vertebral fractures was around 12% with maximum occuring within the first year of diagnosis. Up to 50% were asymptomatic. Higher glucocorticoid dose, increased disease severity, lower BMD Z-scores and higher BMI Z-scores were predictors of bone fragility.

    Article  CAS  PubMed  Google Scholar 

  15. Jaremko JL, Siminoski K, Firth GB, Matzinger MA, Shenouda N, Konji VN, et al. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study. Pediatr Radiol. 2015;45(4):593–605. doi:10.1007/s00247-014-3210-y.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kerkeni S, Kolta S, Fechtenbaum J, Roux C. Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int. 2009;20(9):1547–52. doi:10.1007/s00198-008-0832-7.

    Article  CAS  PubMed  Google Scholar 

  17. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. doi:10.1002/jbmr.5650080915.

    Article  CAS  PubMed  Google Scholar 

  18. Kyriakou A, Shepherd S, Mason A, Ahmed SF. Prevalence of vertebral fractures in children with suspected osteoporosis. J Pediatr. 2016; doi:10.1016/j.jpeds.2016.08.075.

    Article  PubMed  Google Scholar 

  19. Mäyränpää MK, Helenius I, Valta H, Mäyränpää MI, Toiviainen-Salo S, Mäkitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007;41(3):353–9. doi:10.1016/j.bone.2007.05.012.

    Article  PubMed  Google Scholar 

  20. Crabtree NJ, Högler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24(7):2015–24. doi:10.1007/s00198-012-2263-8.

    Article  CAS  PubMed  Google Scholar 

  21. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9. doi:10.1210/jc.2011-1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73. doi:10.1172/jci20641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kalkwarf HJ, Abrams SA, DiMeglio LA, Koo WW, Specker BL, Weiler H, et al. Bone densitometry in infants and young children: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):243–57. doi:10.1016/j.jocd.2014.01.002.

    Article  PubMed  Google Scholar 

  24. Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26(11):760–7. doi:10.1016/j.nmd.2016.08.011.

    Article  PubMed  Google Scholar 

  25. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–34. doi:10.1359/jbmr.090202.

    Article  PubMed  Google Scholar 

  26. Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18. doi:10.1016/j.jocd.2009.01.005.

    Article  PubMed  PubMed Central  Google Scholar 

  27. • Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42. doi:10.1016/j.jocd.2014.01.003. Guidelines defined whole body less head and AP spine as preferred sites for DXA. Appropriate reporting should include age, sex, ethnicity, and height adjusted Z-scores and avoid “osteopenia” or “osteoporosis” based on results.

    Article  PubMed  Google Scholar 

  28. • Adams JE, Engelke K, Zemel BS, Ward KA, Densitometry ISoC. Quantitative computer tomography in children and adolescents: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):258–74. doi:10.1016/j.jocd.2014.01.006. ISCD task force has reviewed the literature and summarized the clinical use of pQCT and HRpQCT in youth.

    Article  PubMed  Google Scholar 

  29. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000;26(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  30. •• Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, et al. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired Transiliac biopsy study. J Bone Miner Res. 2016;31(5):1060–9. doi:10.1002/jbmr.2756. Histomorphometric study showing low bone turnover rate in patients with DMD was further reduced during bisphosphonate therapy.

    Article  CAS  PubMed  Google Scholar 

  31. Huang Y, Eapen E, Steele S, Grey V. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44(10–11):771–8. doi:10.1016/j.clinbiochem.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

  32. Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153(4):484–90. doi:10.1016/j.jpeds.2008.04.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCloskey EV, Vasikaran S, Cooper C, Members FPDC. Official Positions for FRAX® clinical regarding biochemical markers from joint Official Positions development conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom. 2011;14(3):220–2. doi:10.1016/j.jocd.2011.05.008.

    Article  PubMed  Google Scholar 

  34. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. doi:10.1172/JCI2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. De Vries F, Bracke M, Leufkens HG, Lammers JW, Cooper C, Van Staa TP. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum. 2007;56(1):208–14. doi:10.1002/art.22294.

    Article  CAS  PubMed  Google Scholar 

  36. van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87. doi:10.1007/s001980200108.

    Article  PubMed  Google Scholar 

  37. van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18(5):913–8. doi:10.1359/jbmr.2003.18.5.913.

    Article  PubMed  Google Scholar 

  38. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64(1):122–31. doi:10.1002/acr.20589.

    Article  Google Scholar 

  39. Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Suppl 2):S166–74. doi:10.1542/peds.2006-2023J.

    Article  PubMed  Google Scholar 

  40. Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N Engl J Med. 2004;351(9):868–75. doi:10.1056/NEJMoa040367.

    Article  CAS  PubMed  Google Scholar 

  41. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136(1):123–30. doi:10.1053/j.gastro.2008.09.072.

    Article  PubMed  Google Scholar 

  42. Burnham JM, Shults J, Dubner SE, Sembhi H, Zemel BS, Leonard MB. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheum. 2008;58(8):2518–27. doi:10.1002/art.23683.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106(5):988–98. doi:10.1038/ajg.2010.495.

    Article  PubMed  Google Scholar 

  44. Laakso S, Valta H, Verkasalo M, Toiviainen-Salo S, Viljakainen H, Mäkitie O. Impaired bone health in inflammatory bowel disease: a case-control study in 80 pediatric patients. Calcif Tissue Int. 2012;91(2):121–30. doi:10.1007/s00223-012-9617-2.

    Article  CAS  PubMed  Google Scholar 

  45. Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21(2):331–7. doi:10.1007/s00198-009-0969-z.

    Article  CAS  PubMed  Google Scholar 

  46. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res. 2010;62(4):516–26. doi:10.1002/acr.20171.

    Article  CAS  Google Scholar 

  47. Jayanthan A, Miettunen PM, Incoronato A, Ortiz-Neira CL, Lewis VA, Anderson R, et al. Childhood acute lymphoblastic leukemia (ALL) presenting with severe osteolysis: a model to study leukemia-bone interactions and potential targeted therapeutics. Pediatr Hematol Oncol. 2010;27(3):212–27. doi:10.3109/08880011003663382.

    Article  CAS  PubMed  Google Scholar 

  48. Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–7. doi:10.1200/JCO.2011.40.4830.

    Article  CAS  PubMed  Google Scholar 

  49. Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude lifetime cohort study. Pediatr Blood Cancer. 2014;61(7):1270–6. doi:10.1002/pbc.25010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97(10):3584–92. doi:10.1210/jc.2012-2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fazeli PK, Klibanski A. Bone metabolism in anorexia nervosa. Curr Osteoporos Rep. 2014;12(1):82–9. doi:10.1007/s11914-013-0186-8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Robinson L, Aldridge V, Clark EM, Misra M, Micali N. A systematic review and meta-analysis of the association between eating disorders and bone density. Osteoporos Int. 2016;27(6):1953–66. doi:10.1007/s00198-015-3468-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. •• Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9. doi:10.1210/jc.2012-4153. Reduced radius bone strength in patients with anorexia nervosa was attributed to abnormal cortical and trabecular microarchitecture. aBMD at the radius by DXA was not different from controls.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304. doi:10.1359/jbmr.090805.

    Article  PubMed  Google Scholar 

  55. Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, et al. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. 2012;27(9):1864–71. doi:10.1002/jbmr.1640.

    Article  CAS  PubMed  Google Scholar 

  56. Faje AT, Fazeli PK, Miller KK, Katzman DK, Ebrahimi S, Lee H, et al. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord. 2014;47(5):458–66. doi:10.1002/eat.22248.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Misra M, Katzman DK, Clarke H, Snelgrove D, Brigham K, Miller KK, et al. Hip structural analysis in adolescent boys with anorexia nervosa and controls. J Clin Endocrinol Metab. 2013;98(7):2952–8. doi:10.1210/jc.2013-1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DiVasta AD, Feldman HA, O’Donnell JM, Long J, Leonard MB, Gordon CM. Skeletal outcomes by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in adolescent girls with anorexia nervosa. Osteoporos Int. 2016; doi:10.1007/s00198-016-3685-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bachmann KN, Schorr M, Bruno AG, Bredella MA, Lawson EA, Gill CM, et al. Vertebral volumetric bone density and strength are impaired in women with low-weight and atypical anorexia nervosa. J Clin Endocrinol Metab. 2017;102:57–68. doi:10.1210/jc.2016-2099.

  60. Lucas AR, Melton LJ, Crowson CS, O’Fallon WM. Long-term fracture risk among women with anorexia nervosa: a population-based cohort study. Mayo Clin Proc. 1999;74(10):972–7. doi:10.4065/74.10.972.

    Article  CAS  PubMed  Google Scholar 

  61. Högler W, Baumann U, Kelly D. Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J Pediatr Gastroenterol Nutr. 2012;54(3):313–21. doi:10.1097/MPG.0b013e31823e9412.

    Article  CAS  PubMed  Google Scholar 

  62. Stein EM, Cohen A, Freeby M, Rogers H, Kokolus S, Scott V, et al. Severe vitamin D deficiency among heart and liver transplant recipients. Clin Transpl. 2009;23(6):861–5. doi:10.1111/j.1399-0012.2009.00989.x.

    Article  Google Scholar 

  63. Cohen A, Sambrook P, Shane E. Management of bone loss after organ transplantation. J Bone Miner Res. 2004;19(12):1919–32. doi:10.1359/JBMR.040912.

    Article  PubMed  Google Scholar 

  64. Bechtold S, Putzker S, Birnbaum J, Schwarz HP, Netz H, Dalla PR. Impaired bone geometry after heart and heart-lung transplantation in childhood. Transplantation. 2010;90(9):1006–10. doi:10.1097/TP.0b013e3181f6300b.

    Article  PubMed  Google Scholar 

  65. Tamminen IS, Valta H, Jalanko H, Salminen S, Mäyränpää MK, Isaksson H, et al. Pediatric solid organ transplantation and osteoporosis: a descriptive study on bone histomorphometric findings. Pediatr Nephrol. 2014;29(8):1431–40. doi:10.1007/s00467-014-2771-1.

    Article  PubMed  Google Scholar 

  66. Helenius I, Remes V, Salminen S, Valta H, Mäkitie O, Holmberg C, et al. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res. 2006;21(3):380–7. doi:10.1359/JBMR.051107.

    Article  PubMed  Google Scholar 

  67. Valta H, Jalanko H, Holmberg C, Helenius I, Mäkitie O. Impaired bone health in adolescents after liver transplantation. Am J Transplant. 2008;8(1):150–7. doi:10.1111/j.1600-6143.2007.02015.x.

    Article  CAS  PubMed  Google Scholar 

  68. Cohen A, Shane E. Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int. 2003;14(8):617–30. doi:10.1007/s00198-003-1426-z.

    Article  PubMed  Google Scholar 

  69. Buckner JL, Bowden SA, Mahan JD. Optimizing bone health in Duchenne muscular dystrophy. Int J Endocrinol. 2015;2015:928385. doi:10.1155/2015/928385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–8.

    Article  PubMed  Google Scholar 

  71. Mayo AL, Craven BC, McAdam LC, Biggar WD. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscul Disord. 2012;22(12):1040–5. doi:10.1016/j.nmd.2012.06.354.

    Article  CAS  PubMed  Google Scholar 

  72. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68(19):1607–13. doi:10.1212/01.wnl.0000260974.41514.83.

    Article  CAS  PubMed  Google Scholar 

  73. •• Ma J, McMillan HJ, Karagüzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2016; doi:10.1007/s00198-016-3774-5. Routine lateral spine radiographs at the initiation of GC therapy detected asymptomatic VF. Vertebral body reshaping following VF was absent, and VF were frequent after the first long bone fracture.

    Article  PubMed  Google Scholar 

  74. Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147(6):791–6. doi:10.1016/j.jpeds.2005.07.014.

    Article  PubMed  Google Scholar 

  75. • Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporos Int. 2015;26(2):505–12. doi:10.1007/s00198-014-2873-4. MRI showed underdeveloped trabecular bone microarchitecture in non ambulatory children with CP more pronounced with increased distance from the growth plate.

    Article  CAS  PubMed  Google Scholar 

  76. Finbråten AK, Syversen U, Skranes J, Andersen GL, Stevenson RD, Vik T. Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporos Int. 2015;26(1):141–50. doi:10.1007/s00198-014-2840-0.

    Article  CAS  PubMed  Google Scholar 

  77. Mughal MZ. Fractures in children with cerebral palsy. Curr Osteoporos Rep. 2014;12(3):313–8. doi:10.1007/s11914-014-0224-1.

    Article  PubMed  Google Scholar 

  78. Wang MC, Crawford PB, Hudes M, Van Loan M, Siemering K, Bachrach LK. Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am J Clin Nutr. 2003;77(2):495–503.

    Article  CAS  PubMed  Google Scholar 

  79. Remer T, Manz F, Alexy U, Schoenau E, Wudy SA, Shi L. Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J Clin Endocrinol Metab. 2011;96(9):2861–8. doi:10.1210/jc.2011-1005.

    Article  CAS  PubMed  Google Scholar 

  80. Frost HM, Schönau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13(6):571–90.

    Article  CAS  PubMed  Google Scholar 

  81. El Ghoch M, Gatti D, Calugi S, Viapiana O, Bazzani PV, Dalle Grave R. The Association between Weight Gain/Restoration and Bone Mineral Density in Adolescents with Anorexia Nervosa: A Systematic Review. Nutrients. 2016;8(12). doi:10.3390/nu8120769.

    Article  PubMed Central  Google Scholar 

  82. Matute-Llorente A, González-Agüero A, Gómez-Cabello A, Vicente-Rodríguez G, Casajús Mallén JA. Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health. 2014;54(4):385–96. doi:10.1016/j.jadohealth.2013.11.001.

    Article  PubMed  Google Scholar 

  83. • Leonard MB, Shults J, Long J, Baldassano RN, Brown JK, Hommel K, et al. Effect of low-magnitude mechanical stimuli on bone density and structure in pediatric Crohn’s disease: a randomized placebo-controlled trial. J Bone Miner Res. 2016;31(6):1177–88. doi:10.1002/jbmr.2799. Randomized placebo control trial of low magnitude mechanical stimulation as an anabolic therapy in patients with Crohn’s disease. No significant changes were noted in trabecular or cortical bone as compared to placebo using DXA and pQCT scans.

    Article  CAS  PubMed  Google Scholar 

  84. •• Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, et al. Improvements in bone density and structure during anti-TNF-α therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100(7):2630–9. doi:10.1210/jc.2014-4152. Anti-TNF- α Therapy in children with Crohn’s disease was associated with decreased disease activity and gains in vBMD and microarchitecture. The study highlights the importance of controlling inflammation to improve bone health.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Billiau AD, Loop M, Le PQ, Berthet F, Philippet P, Kasran A, et al. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49(8):1550–8. doi:10.1093/rheumatology/keq123.

    Article  CAS  Google Scholar 

  86. Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91. doi:10.1210/jcem.87.6.8574.

    Article  CAS  PubMed  Google Scholar 

  87. Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8. doi:10.1002/jbmr.447.

    Article  CAS  PubMed  Google Scholar 

  88. Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev. 2007;4:CD005324. doi:10.1002/14651858.CD005324.pub2.

    Article  Google Scholar 

  89. Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford). 2005;44(6):813–8. doi:10.1093/rheumatology/keh538.

    Article  CAS  Google Scholar 

  90. Sbrocchi AM, Forget S, Laforte D, Azouz EM, Rodd C. Zoledronic acid for the treatment of osteopenia in pediatric Crohn’s disease. Pediatr Int. 2010;52(5):754–61. doi:10.1111/j.1442-200X.2010.03174.x.

    Article  CAS  PubMed  Google Scholar 

  91. Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–11. doi:10.1007/s00198-012-1911-3.

    Article  CAS  PubMed  Google Scholar 

  92. Houston C, Mathews K, Shibli-Rahhal A. Bone density and alendronate effects in Duchenne muscular dystrophy patients. Muscle Nerve. 2014;49(4):506–11. doi:10.1002/mus.23948.

    Article  PubMed  Google Scholar 

  93. Kim MJ, Kim SN, Lee IS, Chung S, Lee J, Yang Y, et al. Effects of bisphosphonates to treat osteoporosis in children with cerebral palsy: a meta-analysis. J Pediatr Endocrinol Metab. 2015;28(11–12):1343–50. doi:10.1515/jpem-2014-0527.

    Article  CAS  PubMed  Google Scholar 

  94. Ooi HL, Briody J, Biggin A, Cowell CT, Munns CF. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr. 2013;80(3):179–84. doi:10.1159/000354303.

    Article  CAS  PubMed  Google Scholar 

  95. Brown JP, Morin S, Leslie W, Papaioannou A, Cheung AM, Davison KS, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60(4):324–33.

    PubMed  PubMed Central  Google Scholar 

  96. Biggin A, Zheng L, Briody JN, Coorey CP, Munns CF. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta. Horm Res Paediatr. 2015;83(3):183–9. doi:10.1159/000369582.

    Article  CAS  PubMed  Google Scholar 

  97. Harcke HT, Stevenson KL, Kecskemethy HH, Bachrach SJ, Grissom LE. Fracture after bisphosphonate treatment in children with cerebral palsy: the role of stress risers. Pediatr Radiol. 2012;42(1):76–81. doi:10.1007/s00247-011-2198-9.

    Article  PubMed  Google Scholar 

  98. •• Vasanwala RF, Sanghrajka A, Bishop NJ, Högler W. Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: are we Overtreating? J Bone Miner Res. 2016;31(7):1449–54. doi:10.1002/jbmr.2805. Case report of atypical femur fracture in a pediatric patient with OI treated with long term bisphosphonate therapy.

    Article  CAS  PubMed  Google Scholar 

  99. Trejo P, Fassier F, Glorieux FH, Rauch F. Diaphyseal femur fractures in osteogenesis imperfecta: characteristics and relationship with bisphosphonate treatment. J Bone Miner Res. 2016; doi:10.1002/jbmr.3071.

    Article  CAS  PubMed  Google Scholar 

  100. •• Srinivasan R, Rawlings D, Wood CL, Cheetham T, Moreno AC, Mayhew A, et al. Prophylactic oral bisphosphonate therapy in duchenne muscular dystrophy. Muscle Nerve. 2016;54(1):79–85. doi:10.1002/mus.24991. A primary prevention trial with bisphosphonate in patients with DMD treated with glucocorticoids showed maintenance of BMD and lower fracture rate in treated patients.

    Article  CAS  PubMed  Google Scholar 

  101. Brown JP, Reid IR, Wagman RB, Kendler D, Miller PD, Jensen JE, et al. Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. J Bone Miner Res. 2014;29(9):2051–6. doi:10.1002/jbmr.2236.

    Article  CAS  PubMed  Google Scholar 

  102. Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. doi:10.1186/s13023-014-0145-1.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Setsu N, Kobayashi E, Asano N, Yasui N, Kawamoto H, Kawai A, et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34(1):118–22. doi:10.1007/s00774-015-0677-z.

    Article  PubMed  Google Scholar 

  104. Boyce AM, Chong WH, Yao J, Gafni RI, Kelly MH, Chamberlain CE, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res. 2012;27(7):1462–70. doi:10.1002/jbmr.1603.

    Article  CAS  PubMed  Google Scholar 

  105. Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Herrmann R, et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98(8):3121–6. doi:10.1210/jc.2013-1143.

    Article  CAS  PubMed  Google Scholar 

  106. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O. Clinical features of 24 patients with rebound-associated vertebral fractures after Denosumab discontinuation: systematic review and additional cases. J Bone Miner Res. 2017; doi:10.1002/jbmr.3110.

    Article  CAS  PubMed  Google Scholar 

  107. •• Feurer E, Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emerg Drugs. 2014;19(3):385–95. doi:10.1517/14728214.2014.936377. Review article discusses recent advances with novel drug therapies including Cathepsin K inhibitos, Anti-sclerostin antibodies, and PTHrp 1-34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura K. Bachrach.

Ethics declarations

Conflict of Interest

Monica Grover and Laura Bachrach declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pediatrics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grover, M., Bachrach, L.K. Osteoporosis in Children with Chronic Illnesses: Diagnosis, Monitoring, and Treatment. Curr Osteoporos Rep 15, 271–282 (2017). https://doi.org/10.1007/s11914-017-0371-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0371-2

Keywords

Navigation