Skip to main content

Advertisement

Log in

TNF and Bone Remodeling

  • Osteoimmunology (M Nakamura and M Humphrey, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The mechanisms involved in the TNF-mediated deregulated bone remodeling are little appreciated. This review will discuss and summarize the impact of TNF, Notch, and RBP-J signaling on bone remodeling.

Recent Findings

The integrity of the adult skeleton undergoes constant and dynamic remodeling throughout life to maintain a proper bone homeostasis, which is achieved by the essential tight control of coupling between osteoclast-mediated bone resorption and osteoblast-mediated bone formation. The studies in this field include not only the differentiation and function of osteoblasts and osteoclasts, but also the mechanisms that simultaneously control both cell types during bone remodeling. Chronic inflammation is one of the most evident and common pathological settings that often leads to deregulated bone remodeling. The resounding success of TNF blockade therapy has demonstrated a key role for TNF in inflammation and the pathogenesis of inflammatory bone resorption associated with diseases such as rheumatoid arthritis and periodontitis.

Summary

Recent studies have highlighted the function of Notch and RBP-J signaling in both physiological and TNF-mediated inflammatory bone remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8:656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldring SR, Purdue PE, Crotti TN, Shen Z, Flannery MR, Binder NB, Ross FP, McHugh KP. Bone remodelling in inflammatory arthritis. Ann Rheum Dis. 2013;72(Suppl 2):ii52–5.

    Article  CAS  PubMed  Google Scholar 

  3. Goldring SR. Pathogenesis of bone and cartilage destruction in rheumatoid arthritis. Rheumatology. 2003;42(Suppl 2):ii11–6.

    CAS  PubMed  Google Scholar 

  4. Teitelbaum SL. Osteoclasts; culprits in inflammatory osteolysis. Arthritis research & therapy. 2006;8:201.

    Article  Google Scholar 

  5. Boyce BF, Schwarz EM, Xing L. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr Opin Rheumatol. 2006;18:427–32.

    Article  CAS  PubMed  Google Scholar 

  6. Hayden JM, Mohan S, Baylink DJ. The insulin-like growth factor system and the coupling of formation to resorption. Bone. 1995;17:93S–8S.

    Article  CAS  PubMed  Google Scholar 

  7. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med. 2009;15:757–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105:20764–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, Oursler MJ. TGF-beta induces Wnt10b in osteoclasts from female mice to enhance coupling to osteoblasts. Endocrinology. 2013;154:3745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuzaki E, Hiratsuka S, Hamachi T, Takahashi-Yanaga F, Hashimoto Y, Higashi K, Kobayashi M, Hirofuji T, Hirata M, Maeda K. Sphingosine-1-phosphate promotes the nuclear translocation of beta-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines. Bone. 2013;55:315–24.

    Article  CAS  PubMed  Google Scholar 

  11. Negishi-Koga T, Shinohara M, Komatsu N, Bito H, Kodama T, Friedel RH, Takayanagi H. Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  CAS  PubMed  Google Scholar 

  13. Charles JF, Aliprantis AO. Osteoclasts: more than ‘bone eaters’. Trends Mol Med. 2014;20:449–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473:139–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choi Y, Arron JR, Townsend MJ. Promising bone-related therapeutic targets for rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schett G, Sieper J. Inflammation and repair mechanisms. Clin Exp Rheumatol. 2009;27:S33–5.

    CAS  PubMed  Google Scholar 

  17. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G. Dickkopf-1 is a master regulator of joint remodeling. Nat Med. 2007;13:156–63.

    Article  CAS  PubMed  Google Scholar 

  18. Schett G. Joint remodelling in inflammatory disease. Ann Rheum Dis. 2007;66(Suppl 3):iii42–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest. 2000;106:1481–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97:1566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schett G, Teitelbaum SL. Osteoclasts and arthritis. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2009;24:1142–6.

    Article  Google Scholar 

  22. Kim N, Kadono Y, Takami M, Lee J, Lee SH, Okada F, Kim JH, Kobayashi T, Odgren PR, Nakano H, Yeh WC, Lee SK, Lorenzo JA, Choi Y. Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis. J Exp Med. 2005;202:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Azuma Y, Kaji K, Katogi R, Takeshita S, Kudo A. Tumor necrosis factor-alpha induces differentiation of and bone resorption by osteoclasts. J Biol Chem. 2000;275:4858–64.

    Article  CAS  PubMed  Google Scholar 

  25. Anandarajah AP, Schwarz EM, Totterman S, Monu J, Feng CY, Shao T, Haas-Smith SA, Ritchlin CT. The effect of etanercept on osteoclast precursor frequency and enhancing bone marrow oedema in patients with psoriatic arthritis. Ann Rheum Dis. 2008;67:296–301.

    Article  CAS  PubMed  Google Scholar 

  26. Yao Z, Li P, Zhang Q, Schwarz EM, Keng P, Arbini A, Boyce BF, Xing L. Tumor necrosis factor-alpha increases circulating osteoclast precursor numbers by promoting their proliferation and differentiation in the bone marrow through up-regulation of c-Fms expression. J Biol Chem. 2006;281:11846–55.

    Article  CAS  PubMed  Google Scholar 

  27. Li P, Schwarz EM, O'Keefe RJ, Ma L, Looney RJ, Ritchlin CT, Boyce BF, Xing L. Systemic tumor necrosis factor alpha mediates an increase in peripheral CD11bhigh osteoclast precursors in tumor necrosis factor alpha-transgenic mice. Arthritis Rheum. 2004;50:265–76.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Q, Guo R, Schwarz EM, Boyce BF, Xing L. TNF inhibits production of stromal cell-derived factor 1 by bone stromal cells and increases osteoclast precursor mobilization from bone marrow to peripheral blood. Arthritis research & therapy. 2008;10:R37.

    Article  Google Scholar 

  29. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clinical & developmental immunology. 2013;2013:181849.

    Article  Google Scholar 

  30. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-alpha on bone homeostasis. Front Immunol. 2014;5:48.

    PubMed  PubMed Central  Google Scholar 

  32. Algate K, Haynes DR, Bartold PM, Crotti TN, Cantley MD. The effects of tumour necrosis factor-alpha on bone cells involved in periodontal alveolar bone loss; osteoclasts, osteoblasts and osteocytes. J Periodontal Res. 2016;51:549–66.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao L, Huang J, Zhang H, Wang Y, Matesic LE, Takahata M, Awad H, Chen D, Xing L. Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells. 2011;29:1601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. • Zhang H, Hilton MJ, Anolik JH, Welle SL, Zhao C, Yao Z, Li X, Wang Z, Boyce BF, Xing L. NOTCH inhibits osteoblast formation in inflammatory arthritis via noncanonical NF-kappaB. J Clin Invest. 2014;124:3200–14. This study revealed that Notch signaling contributes to the TNF-mediated inhibition of MSC differentiation into osteoblasts and suppresses bone formation through enhanced non-canonical NF-κB pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang H, Zhao N, Xu X, Xu Y, Li S, Zhang J, Yang P. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44:420–7.

    Article  CAS  PubMed  Google Scholar 

  36. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J. TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A. 2011;108:1585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 2009;45:367–76.

    Article  CAS  PubMed  Google Scholar 

  38. Yu RY, Zeng BJ, Liu YS, Zhou YS. [Recombinant human tumor necrosis factor-alpha promotes human adipose-derived stromal cells transforming into osteoblast in vitro]. Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences. 2012;44:475–80.

    CAS  Google Scholar 

  39. Lu Z, Wang G, Dunstan CR, Zreiqat H. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev. 2012;21:2420–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cho HH, Shin KK, Kim YJ, Song JS, Kim JM, Bae YC, Kim CD, Jung JS. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J Cell Physiol. 2010;223:168–77.

    CAS  PubMed  Google Scholar 

  41. Briolay A, Lencel P, Bessueille L, Caverzasio J, Buchet R, Magne D. Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-alpha in human mesenchymal stem cells. Biochem Biophys Res Commun. 2013;430:1072–7.

    Article  CAS  PubMed  Google Scholar 

  42. Kopan R, Ilagan MX. The canonical notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zanotti S, Canalis E. Notch signaling and the skeleton. Endocr Rev. 2016;37:223–53.

    Article  PubMed  Google Scholar 

  44. Regan J, Long F. Notch signaling and bone remodeling. Current osteoporosis reports. 2013;11:126–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hilton MJ, Tu X, Wu X, Bai S, Zhao H, Kobayashi T, Kronenberg HM, Teitelbaum SL, Ross FP, Kopan R, Long F. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14:306–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tu X, Chen J, Lim J, Karner CM, Lee SY, Heisig J, Wiese C, Surendran K, Kopan R, Gessler M, Long F. Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1. PLoS Genet. 2012;8:e1002577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Engin F, Yao Z, Yang T, Zhou G, Bertin T, Jiang MM, Chen Y, Wang L, Zheng H, Sutton RE, Boyce BF, Lee B. Dimorphic effects of Notch signaling in bone homeostasis. Nat Med. 2008;14:299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tao J, Chen S, Yang T, Dawson B, Munivez E, Bertin T, Lee B. Osteosclerosis owing to Notch gain of function is solely Rbpj-dependent. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research. 2010;25:2175–83.

    Article  CAS  Google Scholar 

  49. Canalis E, Parker K, Feng JQ, Zanotti S. Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology. 2013;154:623–34.

    Article  CAS  PubMed  Google Scholar 

  50. Canalis E, Bridgewater D, Schilling L, Zanotti S. Canonical Notch activation in osteocytes causes osteopetrosis. Am J Physiol Endocrinol Metab. 2016;310:E171–82.

    PubMed  Google Scholar 

  51. Canalis E, Adams DJ, Boskey A, Parker K, Kranz L, Zanotti S. Notch signaling in osteocytes differentially regulates cancellous and cortical bone remodeling. J Biol Chem. 2013;288:25614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492:1–18.

    Article  CAS  PubMed  Google Scholar 

  53. Regard JB, Zhong Z, Williams BO, Yang Y Wnt signaling in bone development and disease: making stronger bone with Wnts. Cold Spring Harbor Perspect Biol. 2012;4.

  54. Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, Amling M, Schinke T. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013;200:537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bai S, Kopan R, Zou W, Hilton MJ, Ong CT, Long F, Ross FP, Teitelbaum SL. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;283:6509–18.

    Article  CAS  PubMed  Google Scholar 

  56. Yamada T, Yamazaki H, Yamane T, Yoshino M, Okuyama H, Tsuneto M, Kurino T, Hayashi S, Sakano S. Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood. 2003;101:2227–34.

    Article  CAS  PubMed  Google Scholar 

  57. Fukushima H, Nakao A, Okamoto F, Shin M, Kajiya H, Sakano S, Bigas A, Jimi E, Okabe K. The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol. 2008;28:6402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sekine C, Koyanagi A, Koyama N, Hozumi K, Chiba S, Yagita H. Differential regulation of osteoclastogenesis by Notch2/Delta-like 1 and Notch1/Jagged1 axes. Arthritis research & therapy. 2012;14:R45.

    Article  CAS  Google Scholar 

  59. Canalis E, Zanotti S. Hajdu-Cheney syndrome, a disease associated with NOTCH2 mutations. Current osteoporosis reports. 2016;14:126–31.

    Article  PubMed  Google Scholar 

  60. Canalis E, Schilling L, Yee SP, Lee SK, Zanotti S. Hajdu Cheney mouse mutants exhibit osteopenia, increased osteoclastogenesis, and bone resorption. J Biol Chem. 2016;291:1538–51.

    Article  CAS  PubMed  Google Scholar 

  61. Radtke F, Fasnacht N, Macdonald HR. Notch signaling in the immune system. Immunity. 2010;32:14–27.

    Article  CAS  PubMed  Google Scholar 

  62. Shang Y, Smith S, Hu X. Role of notch signaling in regulating innate immunity and inflammation in health and disease. Protein & cell. 2016;7:159–74.

    Article  CAS  Google Scholar 

  63. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841–6.

    Article  CAS  PubMed  Google Scholar 

  64. Weber JM, Calvi LM. Notch signaling and the bone marrow hematopoietic stem cell niche. Bone. 2010;46:281–5.

    Article  CAS  PubMed  Google Scholar 

  65. Tan JB, Xu K, Cretegny K, Visan I, Yuan JS, Egan SE, Guidos CJ. Lunatic and manic fringe cooperatively enhance marginal zone B cell precursor competition for delta-like 1 in splenic endothelial niches. Immunity. 2009;30:254–63.

    Article  PubMed  Google Scholar 

  66. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell. 2004;117:515–26.

    Article  CAS  PubMed  Google Scholar 

  67. Maekawa Y, Tsukumo S, Chiba S, Hirai H, Hayashi Y, Okada H, Kishihara K, Yasutomo K. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity. 2003;19:549–59.

    Article  CAS  PubMed  Google Scholar 

  68. Krawczyk CM, Sun J, Pearce EJ. Th2 differentiation is unaffected by Jagged2 expression on dendritic cells. J Immunol. 2008;180:7931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vigouroux S, Yvon E, Wagner HJ, Biagi E, Dotti G, Sili U, Lira C, Rooney CM, Brenner MK. Induction of antigen-specific regulatory T cells following overexpression of a Notch ligand by human B lymphocytes. J Virol. 2003;77:10872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao B, Takami M, Yamada A, Wang X, Koga T, Hu X, Tamura T, Ozato K, Choi Y, Ivashkiv LB, Takayanagi H, Kamijo R. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat Med. 2009;15:1066–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Zhao B, Grimes SN, Li S, Hu X, Ivashkiv LB. TNF-induced osteoclastogenesis and inflammatory bone resorption are inhibited by transcription factor RBP-J. J Exp Med. 2012;209:319–34. This study for the first time identified RBP-J as a key negative regulator predominantly in TNF-induced osteoclastogenesis and inflammatory bone resorption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. •• Li S, Miller CH, Giannopoulou E, Hu X, Ivashkiv LB, Zhao B. RBP-J imposes a requirement for ITAM-mediated costimulation of osteoclastogenesis. J Clin Invest. 2014;124:5057–73. This study suggested a conceptually new model where ITAMs positively while RBP-J negatively regulates PLCγ-calcium signaling. The balance between these opposing pathways fine tunes osteoclastogenesis and determines the strength of activating signals required for osteoclastogenesis in physiological and various pathological settings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C, Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 2012;13:642–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu X, Chung AY, Wu I, Foldi J, Chen J, Ji JD, Tateya T, Kang YJ, Han J, Gessler M, Kageyama R, Ivashkiv LB. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity. 2008;29:691–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol. 2008;28:7427–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Plaisance S, Vanden Berghe W, Boone E, Fiers W, Haegeman G. Recombination signal sequence binding protein Jkappa is constitutively bound to the NF-kappaB site of the interleukin-6 promoter and acts as a negative regulatory factor. Mol Cell Biol. 1997;17:3733–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Izumiya Y, Izumiya C, Hsia D, Ellison TJ, Luciw PA, Kung HJ. NF-kappaB serves as a cellular sensor of Kaposi’s sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jkappa coactivator. J Virol. 2009;83:4435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Swarnkar G, Karuppaiah K, Mbalaviele G, Chen TH, Abu-Amer Y. Osteopetrosis in TAK1-deficient mice owing to defective NF-kappaB and NOTCH signaling. Proc Natl Acad Sci U S A. 2015;112:154–9.

    Article  CAS  PubMed  Google Scholar 

  79. Hayward SD. Viral interactions with the Notch pathway. Semin Cancer Biol. 2004;14:387–96.

    Article  CAS  PubMed  Google Scholar 

  80. Taniguchi Y, Furukawa T, Tun T, Han H, Honjo T. LIM protein KyoT2 negatively regulates transcription by association with the RBP-J DNA-binding protein. Mol Cell Biol. 1998;18:644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beres TM, Masui T, Swift GH, Shi L, Henke RM, MacDonald RJ. PTF1 is an organ-specific and Notch-independent basic helix-loop-helix complex containing the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. Mol Cell Biol. 2006;26:117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Maillard I, Fang T, Pear WS. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu Rev Immunol. 2005;23:945–74.

    Article  CAS  PubMed  Google Scholar 

  83. Foldi J, Shang Y, Zhao B, Ivashkiv LB, Hu X. RBP-J is required for M2 macrophage polarization in response to chitin and mediates expression of a subset of M2 genes. Protein & cell. 2016;7:201–9.

    Article  CAS  Google Scholar 

  84. Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med. 2007;204:1653–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma J, Liu YL, Hu YY, Wei YN, Zhao XC, Dong GY, Qin HY, Ding Y, Han H. Disruption of the transcription factor RBP-J results in osteopenia attributable to attenuated osteoclast differentiation. Mol Biol Rep. 2013;40:2097–105.

    Article  CAS  PubMed  Google Scholar 

  86. Long CL, Humphrey MB. Osteoimmunology: the expanding role of immunoreceptors in osteoclasts and bone remodeling. BoneKEy Rep. 2012;1

  87. Hamidi H, Gustafason D, Pellegrini M, Gasson J. Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis. PLoS One. 2011;6:e20022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Castel D, Mourikis P, Bartels SJ, Brinkman AB, Tajbakhsh S, Stunnenberg HG. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 2013;27:1059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H, Pear WS, Schug J, Blacklow SC, Arnett KL, Bernstein BE, Kieff E, Aster JC. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci U S A. 2011;108:14908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tao J, Jiang MM, Jiang L, Salvo JS, Zeng HC, Dawson B, Bertin TK, Rao PH, Chen R, Donehower LA, Gannon F, Lee BH. Notch activation as a driver of osteogenic sarcoma. Cancer Cell. 2014;26:390–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yabe Y, Matsumoto T, Tsurumoto T, Shindo H. Immunohistological localization of Notch receptors and their ligands Delta and Jagged in synovial tissues of rheumatoid arthritis. Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association. 2005;10:589–94.

    Article  CAS  Google Scholar 

  92. Ishii H, Nakazawa M, Yoshino S, Nakamura H, Nishioka K, Nakajima T. Expression of notch homologues in the synovium of rheumatoid arthritis and osteoarthritis patients. Rheumatol Int. 2001;21:10–4.

    Article  CAS  PubMed  Google Scholar 

  93. Ando K, Kanazawa S, Tetsuka T, Ohta S, Jiang X, Tada T, Kobayashi M, Matsui N, Okamoto T. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene. 2003;22:7796–803.

    Article  CAS  PubMed  Google Scholar 

  94. Okamoto T. The epigenetic alteration of synovial cell gene expression in rheumatoid arthritis and the roles of nuclear factor kappaB and Notch signaling pathways. Mod Rheumatol. 2005;15:79–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by NIH grants AR062047, AR068970, and AR071463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhao.

Ethics declarations

Conflict of Interest

Baohong Zhao declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Osteoimmunology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B. TNF and Bone Remodeling. Curr Osteoporos Rep 15, 126–134 (2017). https://doi.org/10.1007/s11914-017-0358-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0358-z

Keywords

Navigation