Skip to main content
Log in

The Microbiome and Osteosarcopenic Obesity in Older Individuals in Long-Term Care Facilities

  • Nutrition, Exercise, and Lifestyle in Osteoporosis (CM Weaver and R Daly, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Increasing evidence points to a role of altered microbiota on inflammation, obesity, and other chronic conditions. This commentary addresses the connection between osteosarcopenic obesity syndrome, an impairment in bone, muscle, and adipose tissues that occurs concurrently, with the altered microbiota in elderly individuals, particularly those living in long-term care facilities. As elderly move to long-term care facilities, they experience changes in gut bacteria that might exasperate the underlying conditions such as osteosarcopenic obesity. These individuals have exponentially higher osteoporotic fracture rates and immobility impairments compared to independently living individuals. However, there is very limited research on this topic and more insight is needed on the impact of probiotic treatment and diet in older individuals, especially those with chronic conditions related to aging, such as osteosarcopenic obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev. 2014;15:51–60. Provides the proof of concept for the osteosarcopenic obesity syndrome and explains interconnection between bone muscle and adipose tissues.

  2. Ilich JZ, Kelly OJ, Kim Y, Spicer MT. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Industrial Hygiene Tocsicol. 2014;65:139–48.

    CAS  Google Scholar 

  3. International Osteoporosis Foundation: http://www.iofbonehealth.org/facts-statistics(accessed 4/18/2015).

  4. Liu Y, Tang RB, Peng YF, Li W. Assessment of bone marrow changes in postmenopausal women with varying bone densities: magnetic resonance spectroscopy and diffusion magnetic resonance imaging. Chin Med J. 2010;123:1524–7.

    PubMed  Google Scholar 

  5. Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol. 2010;65:377–81.

    Article  CAS  PubMed  Google Scholar 

  6. Bredella MA, Fazeli PK, Daley SM, Miller KK, Rosen CJ, Klibanski A, et al. Marrow fat composition in anorexia nervosa. Bone. 2014;66:199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60:324–33.

    Article  PubMed  Google Scholar 

  8. Domiciano D, Figueiredo C, Lopes J, Caparbo V, Takayama L, Menezes P, et al. Discriminating sarcopenia in community-dwelling older women with high frequency of overweight/obesity: the Sao Paulo Ageing & Health Study (SPAH). Osteoporos Int. 2012;24:595–603.

    Article  PubMed  Google Scholar 

  9. Ilich JZ, Inglis JE, Owen KJ, McGee DL. Osteosarcopenic obesity is associated with reduced handgrip strength, walking abilities, and balance in postmenopausal women. Osteoporos Int. 2015. doi:10.1007/s00198-015-3186-y. Presents the original data showing that women with osteosarcopenic obesity have lower diminished functional abilities compared to women with obesity only.

  10. Hita-Contreras F, Martínez-Amat A, Cruz-Díaz D, Pérez-López FR. Osteosarcopenic obesity and fall prevention strategies. Maturitas. 2015;80:126–32. doi:10.1016/j.maturitas.

    Article  PubMed  Google Scholar 

  11. Langille MG, Meehan CJ, Koenig JE, Dhanani AS, Rose RA, Howlett SE, et al. Microbial shifts in the aging mouse gut. Microbiome. 2014;2:50. doi:10.1186/s40168-014-014-0050-9.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26:69–74.

    Article  CAS  PubMed  Google Scholar 

  13. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70:S38–44. doi:10.1111/j.1753-4887.2012.00493.x.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Weaver CM. Diet, gut microbiome, and bone health. Curr Osteoporos Rep. 2015;13:125–30. doi:10.1007/s11914-015-0257-0. Gives overview of microbiome and its relation with bone health.

  15. Murugesan S, Ulloa-Martínez M, Martínez-Rojano H, Galván-Rodríguez FM, Miranda-Brito C, Romano MC, et al. Study of the diversity and short-chain fatty acids production by the bacterial community in overweight and obese Mexican children. Eur J Clin Microbiol Infect Dis. 2015;34:1337–46.

    Article  CAS  PubMed  Google Scholar 

  16. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84. doi:10.1038/nature11319.

    Article  CAS  PubMed  Google Scholar 

  17. Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013;7:1256–61. doi:10.1038/ismej.2013.80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Van Tongeren SP, Slaets JP, Harmsen JM, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71:6438–42. doi:10.1128/AEM.71.10.6438-6442.2005.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Rampelli S, Candela M, Turroni S, Biagi E, Collino S, Franceschi C, et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging. 2013;5:902–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2015. doi:10.1038/ismej.2015.88. Presents the data on the change of microbiome in older individuals entering the long-term care facilities.

  21. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–67.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30.

    Article  CAS  PubMed  Google Scholar 

  24. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101:15718–23.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Curtis M, Hu Z, Klimko C, Narayanan S, Deberardinis R, Sperandio V. The gut commensal Bacteroides thetaiotaomicron exacerbates enteric infection through modification of the metabolic landscape. Cell Host Microbe. 2014;16(6):759–69. doi:10.1016/j.chom.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  26. Ohlsson C, Engdahl C, Fåk F, et al. Probiotics protect mice from ovariectomy-induced cortical bone loss. Ryffel B, ed. PLoS ONE. 2014;9(3):e92368. doi:10.1371/journal.pone.0092368.

  27. Rodrigues FC, Castro AS, Rodrigues VC, Fernandes SA, Fontes EA, de Oliveira TT, et al. Yacon flour and Bifidobacterium longum modulate bone health in rats. J Med Food. 2012;15:664–70. doi:10.1089/jmf.2011.0296. Epub 2012 Apr.

    Article  CAS  PubMed  Google Scholar 

  28. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, et al. Homocysteine as a predictive factor for hip fracture in older persons. New Engl J Med. 2004;350:2042–9.

    Article  CAS  PubMed  Google Scholar 

  29. Mithal A, Bonjour JP, Boonen S, Burckhardt P, Degens H, El Hajj Fuleihan G, et al. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int. 2013;24:1555–66. doi:10.1007/s00198-012-2236-y.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. PNAS. 2009;106:2365–70. doi:10.1073/pnas.0812600106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ismail AN, Ragab SH, Abd ElBaky A, Shoeib ARS, Alhosary Y, Fekry D. Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. AMS. 2011;7:501–7. doi:10.5114/aoms.2011.23418.

    CAS  Google Scholar 

  32. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6. doi:10.1038/nature12506.

    Article  PubMed  Google Scholar 

  33. Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, Bae IH, Lee SJ. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J Med Food. 2015;18(5):549–56. doi:10.1089/jmf.2014.3265.

  34. Becker C, Cameron ID, Klenk J, Lindemann U, Heinrich S, König HH, et al. Reduction of femoral fractures in long-term care facilities: the Bavarian fracture prevention study. PLoS One. 2011. doi:10.1371/journal.pone.0024311.

    Google Scholar 

  35. Pocock NA, Culton NL, Harris ND. The potential effect on hip fracture incidence of mass screening for osteoporosis. Med J Aust. 1999;170:486–8.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Julia Inglis and Dr. Jasminka Ilich declare no conflict of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasminka Z. Ilich.

Additional information

This article is part of the Topical Collection on Nutrition, Exercise, and Lifestyle in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inglis, J.E., Ilich, J.Z. The Microbiome and Osteosarcopenic Obesity in Older Individuals in Long-Term Care Facilities. Curr Osteoporos Rep 13, 358–362 (2015). https://doi.org/10.1007/s11914-015-0287-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-015-0287-7

Keywords

Navigation